COSC 594 Final Presentation Membrane Systems/ P Systems

Mesbah Uddin & Gangotree Chakma

November 23, 2016

Motivation of Unconventional Computing

- Parallel computing-- restricted in conventional computers
- Deterministic conventional computing
- Exhaustive search exponential in classic computing
- Power and scaling--restraining element against better computing performance

Instructions (to processor) Data (to or from processor)	Main memory
	Processor

What is Membrane System/P System?

- Bio-inspired natural computing model
- Concept first introduced by Gheorghe Paun in 1998
- Structure based on biological cells
- Capable of parallel programming

History of P Systems

- Mechanically computable-- Turing Machine (1935)
- Neural Computing -- Anderson (1996)
- Genetic algorithms and evolutionary computing/programming -- Koza and Rice (1992)
- DNA computing -- Adleman (1994)

Elements of P System

- Basic Elements
 - Environment
 - \circ Membranes
 - \circ Symbols
 - \circ Catalysts
 - Rules
- The Cell-like Membrane Structure

Păun, Gheorghe. "Introduction to membrane computing." *Applications of Membrane Computing*. Springer Berlin Heidelberg, 2006. 1-42.

Representation of a P system

$\Pi = (V, T, C, \mu, M_1, \dots, M_m, R_1, \dots, R_m R_m, i_0)$

- V : the alphabet of the system
- $T \subseteq V$: the terminal alphabet
- C: set of catalysts
- μ : the membrane structure (of degree m here)
- M₁,....,M_m: finite set of objects (strings/multisets) present in 'm' regions of the membrane structure, μ
- R_1, \ldots, R_m : finite rules associated with those 'm' regions of μ
- i₀ : Output membrane

Representation of a P system

• $\Pi = (V, T, C, \mu, M_1, \dots, M_m, R_1, \dots, R_m, i_0)$

· Rules are analogous to the chemical reaction rules working on objects present in that compartment

- Rules can indicate the flow of objects from one membrane to another membrane.
- Can be of forms like $a \rightarrow (a,in)$, $a \rightarrow (a,out)$ or $a \rightarrow (a,here)$

- Can have priority rules
- Can also have multiple sets of parallel rules that can't be applied simultaneously, chosen randomly

• Membrane dissolving rules: $a \rightarrow \delta$

- Find if n is divisible by k or not
- Membrane 3 is the resultant chamber

<u>Step 1</u>

Example: n = 6K = 2

<u>Step 5</u>

<u>Step 1</u>

Another example: n = 7 k = 2

Another example: SAT(Boolean Satisfiability Problem)

NP-complete problem Representation: $\gamma = C_1 \wedge C_2 \wedge \dots \wedge C_m$ with $C_i = y_{i1} \vee y_{i2} \vee \dots \vee y_{ip}$ C: clause, y: literal

Example SAT problem:

 $\gamma = (\mathsf{x}_1 \lor \mathsf{x}_2) \land (\mathsf{\sim}\mathsf{x}_1 \lor \mathsf{\sim}\mathsf{x}_2)$

- Two variables a₁ and a₂
- C₀ is a object which increments in each time step

 $\gamma = (\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_1 \vee \mathbf{x}_2)$

 $\gamma = (\mathbf{X}_1 \vee \mathbf{X}_2) \wedge (\mathbf{x}_1 \vee \mathbf{x}_2)$

 $\gamma = (\mathbf{X}_1 \vee \mathbf{X}_2) \wedge (\mathbf{x}_1 \vee \mathbf{x}_2)$

 $\gamma = (\mathbf{x}_1 \vee \mathbf{x}_2) \wedge (\mathbf{x}_1 \vee \mathbf{x}_2)$

 $\gamma = (\mathbf{X}_1 \vee \mathbf{X}_2) \wedge (\mathbf{x}_1 \vee \mathbf{x}_2)$ $c_5 t_1 t_2$ $c_5 f_1 t_2$ $c_5 f_1 f_2$ $C_5 t_1 f_2$

 $\gamma = (\mathbf{X}_1 \vee \mathbf{X}_2) \wedge (\mathbf{x}_1 \vee \mathbf{x}_2)$ 0 0 0 $c_5 f_1 t_2$ $c_5 t_1 t_2$ 2 0 0 0 $c_5 f_1 f_2$ $c_5 t_1 f_2$ 2 3

 $\gamma = (\mathbf{X}_1 \vee \mathbf{X}_2) \wedge (\mathbf{x}_1 \vee \mathbf{x}_2)$ 0 0 $c_5 f_1 t_2$ $c_5 t_1 t_2$ 2 0 $c_5 t_1 f_2$ $c_5 f_1 f_2$ 2 3

- Membranes which satisfy the conditions dissolve
- NP-complete problem thus can be solved in linear time using P system

- Three main types of P system
 - Cell-like P systems
 - Tissue-like P systems
 - Neural-like P systems

- Cell-like P systems
 - Imitates the cell and basic membrane structure
 - Objects described by symbols or strings and multisets of objects places in compartments
 - Rules maintained-- Rewriting rules, transport rules, transition rule and string processing rule

- Tissue-like P systems
 - One membrane cells evolving in a common environment
 - Both cells and environment contain objects
 - Cells communicate directly or through the environment
 - Channels are given in advance or dynamically established (*population P-systems*)

- Neural-like P systems
 - Basically two types.
 - Tissue like neural P systems
 - Spiking neural P systems
 - Tissue like neural P systems inspired by neurons and have a state which controls evolution
 - Spiking neural P system uses only one object, *"spike"* and main information to work with is distance between consecutive spikes

Efficiency of P System Computation

- P systems are powerful (most classes are Turing complete) and efficient (contains enhanced parallelism)
- Speed-up obtained by trading space for time
- Exponential workspace--Membrane creation, separation and string replication
- Investigations with complexity of time and space

Research and Future of P Systems

- Hardware Implementation:
 - Petreska and Teuscher's hardware implementation
 - Fundamental features of P systems
 - Reaction rules applied sequentially in region
 - One level of parallelism

"it is important to underline the fact that "implementing" a membrane system on an existing electronic computer cannot be a real implementation, it is merely a simulation. As long as we do not have genuinely parallel hardware on which the parallelism [...] of membrane systems could be realized, what we obtain cannot be more than simulations, thus losing the main, good features of membrane systems"

Research and Future of P Systems

- Hardware Implementation:
 - Reconfigurable Hardware (Reconfig-P)
 - V. Nguyen *et al.* implemented on ASIC design
 - Better performance than software based microprocessors
 - Source code generator and an FPGA

Major Application of a P System

- Biology
 - Modeling of cells, tissues, neurons
 - Modeling biological dynamics
- Computer science
 - As another computing system
 - Cryptography, Computer graphics, Optimization problem etc.

Concluding Thoughts

- Compartmentalization
- Non-deterministic and maximally parallel application
- Polynomial or linear solutions to NP-complete problems

