Quantum Cellular Automata (QCA)

Andrew Valesky

Presentation Schedule

• Quantum Observations (5 min)

• Cellular Automata (5 min)

• Quantum Cellular Automata (10 min)

Pythagoras of Samos

• Pythagorean Theorem

• Pythagoreanism

Flatland: A Romance of Many Dimensions

- Edwin Abbot Abbot (1884)
- women are line-segments
- men are polygons (n-sided)
- for he cannot conceive of any other except himself and plumes himself upon the variety of *Its Thought* as an instance of creative Power. Let us leave this God of Pointland to the ignorant fruition of his omnipresence and omniscience. ~ (the Sphere)

The Quantum Mind

- Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the 10th Dimension
 - Michio Kako
- Human's see in 3 dimensions
 - No advantage to see in other dimentions
 - Evolutionary survival
- Must our minds work in 3 dimensions?

- Quantum Probability in Cognition
 - Dr. MacLennan
- Theories of Cognition
 - Logic
 - Aristotle's time
 - Classical Probability
 - 1970
 - Quantum Probability

- Collective Unconscious
 - Jung 1916
- dreams, fantasies, and other exceptional states appear natively
- primordial images or archetypes, as I have called them, belong to the basic stock of the unconscious psyche and cannot be explained as personal acquisitions
- Collectively called the collective unconscious

Michelangelo's Creation of Adam

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey Iteter by istlef, but the wrod as a wlohe.

According to a researcher (sic) at Cambridge University, it doesn't matter in what order the letters in a word are, the only important thing is that the first and last letter be at the right place. The rest can be a total mess and you can still read it without problem. This is because the human mind does not read every letter by itself but the word as a whole.

Cellular Automata

- John von Neumann
- "What kind of logical organization is sufficient for an automaton to reproduce itself?"
 - 1903

- Regular Grid of cells
- Finite number of states for each grid
- N-dimensional
- Neighborhood defined for each cell
- Initial state defined for each cell
- A changing function for each cell
 - Based on neighborhood
 - Usually same for each cell

Processing Image of Game of life

Processing Image of Spiernsky Triangle

Game of Life

- John Conway 1970
- Infinite two-dimensional orthogonal grid of cells
- Two possible states
- Rules (function or changing cells)
 - Living cell with fewer than two live neighbours dies
 - living cell with two or three live neighbours lives on
 - Living cell with more than three live neighbours dies
 - Dead cell with exactly three live neighbours becomes a live cell

Cellular Automata?

- Turing Complete
- Edge of Chaos
- Applications to other fields

Rule 110: Cellular Automata

- Turing Complete
 - Simulate a single taped Turing Machine
 - Computable
- Edge of Chaos
 - Lambda value
 - 0 = order
 - 1 = chaos

current pattern	111	110	101	100	011	010	001	000
new state for center cell	0	1	1	0	1	1	1	0

01101110

Miller – Urey Experiment

- Create early earth conditions
 - methane (CH₄)
 - water (H₂O)
 - ammonia (NH₃)
 - hydrogen (H₂)
 - Continuous Electric Sparks
- Amino Acids were created
 - Protein
 - 20 +

Quantum Cellular Automata

- Generalization of cellular automata (CA)
- Reversible CA
- Grössing G, Zeilinger A (1988) Quantum cellular automata
- No agreed upon definition

Cellular Automata vs Quantum Cellular Automata

• (CA) is a 4-tuple (L, Σ, N, f)

Definition (Cellular Automata) A cellular automaton (CA) is a 4-tuple (L, Σ , \mathcal{N} , f) consisting of (1) a d-dimensional lattice of cells L indexed $i \in \mathbb{Z}^d$, (2) a finite set of states Σ , (3) a finite neighborhood scheme $\mathcal{N} \subset \mathbb{Z}^d$, and (4) a local transition function $f: \Sigma^{\mathcal{N}} \to \Sigma$.

• (QCA) is a 3-tuple (L, H, U)

Definition (Grössing–Zeilinger QCA) A Grössing– Zeilinger QCA is a 3-tuple (L, \mathcal{H} , U) which consists of (1) an infinite 1-dimensional lattice $L \subseteq \mathbb{Z}$ representing basis states of (2) a Hilbert space \mathcal{H} with basis set { $|\phi_i\rangle$ }, and (3) a band-diagonal unitary operator U.

Definition (Partitioned Watrous QCA) A partitioned Watrous QCA is a Watrous QCA with $\Sigma = \Sigma_l \times \Sigma_c \times \Sigma_r$ for finite sets Σ_l, Σ_c , and Σ_r , and matrix Λ of size $\Sigma \times \Sigma$. For any state $s = (s_l, s_c, s_r) \in \Sigma$ define transition function f as

$$f(s_1, s_2, s_3, s) = \Lambda_{(s_{l_3}, s_{m_2}, s_{r_1}, s)}, \qquad (2)$$

with matrix element Λ_{s_i,s_j} .

Partitioned Watrous QCA

Definition (Partitioned Watrous QCA) A partitioned Watrous QCA is a Watrous QCA with $\Sigma = \Sigma_l \times \Sigma_c \times \Sigma_r$ for finite sets Σ_l, Σ_c , and Σ_r , and matrix Λ of size $\Sigma \times \Sigma$. For any state $s = (s_l, s_c, s_r) \in \Sigma$ define transition function f as

$$f(s_1, s_2, s_3, s) = \Lambda_{(s_{l_3}, s_{m_2}, s_{r_1}, s)}, \qquad (2)$$

with matrix element Λ_{s_i,s_j} .

- First proof of computational universality
- Given any quantum Turing Machine, there exists a PWQCA which simulates the Turing Machine with Constant slowdown
- Given any PWQCA, there exists a Turing Machine which simulates the PWQCA with linear slowdown

Types of QCA

- Reversible
- Local Unitary
 - 1 dimensional
 - Universal Simulate any quantum circuit
 - Can be simulated using a family of quantum circuits
- Block Partitioned
- Continuous Time
- Hamiltonian

QCA Exploration

- Logical Devices using QCA
 - Quantum Dots
 - Xor
 - adder
- Quantum Turing Machines are still theoretical
 - Confined to a very finite number of elements
- Optical lattices
 - Artificial crystals of light and consists of microtraps
 - Crossed laser beams,
 - creating polarization pattern
 - Atoms cool and congregate in the minima
 - Resembles a crystal lattice
 - Quantum tunneling can occur

Quantum Lattice Gas Automata

- partial differential equation can be the evolution of some CA
- CA will mimic the partial differentiation equation
 - Continuous time limit
 - Continuous space limit
- QLGA has demonstrated the equivalence
 - Evolution of set of quantum lattice Boltzman equations
- Explored to model physical systems

Quantum Tunneling

- Wave-Particle Duality
- Particle
 - Classical mechanics
 - Sum of energy
- Wave
 - Quantum mechanics

Quantum Tunneling

• The matter rides the wave

Quantum Dot Automata

- Quantum Dots
 - Consist of nanoparticles
 - 5 quantum dots
 - Two electrons
 - Dots hop among the five states
 - Electrons find farthest distance

Works Cited

• Available upon request