Topological Quantum Computing

Megan Lilly COSC 594 Unconventional Computation

A Little Topology

• Coffee and donuts:

- Knots:
 - Exponentially hard problem!

A Little More Topology

Topological Quantum Field Theory:

• Amplitudes depend only on the topology of the process

Therefore,

• Amplitudes = knot invariants

TQFT computer!

Non-Abelian Statistics and Anyons

- Non-Abelian = non-commuting
- Anyons = 2D quasiparticles

- Ground state is degenerate
- Braiding quasiparticles creates transitions between ground states
- Local operators cannot mix ground states

Topological Quantum Computation

- Qubits = degenerate ground states
 - Input = particle pairs from vacuum
 - Output = particle pairs that are not annihilated
- Gates = braids

Surface Codes

- Topological methods to encode information
- Existing qubit technology
- Scalability
- Error correction/suppression

https://www.youtube.com/watch?v=FAiiXp9IoBk

https://arxiv.org/pdf/0707.1889v2.pdf

https://arxiv.org/pdf/quant-ph/0101025v2.pdf

https://www.youtube.com/watch?v=igPXzKjqrNg

http://stationq.cnsi.ucsb.edu/~freedman/publications/96.pdf