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B.7 Uncertainty principle (supplementary)

You might be surprised that the famous Heisenberg uncertainty principle
is not among the postulates of quantum mechanics. That is because it is
not a postulate, but a theorem, which can be proved from the postulates.
This section is optional, since the uncertainty principle is not required for
quantum computation.

B.7.a INFORMALLY

The uncertainty principle states a lower bound on the precision with which
certain pairs of variables, called conjugate variables, can be measured. These
are such pairs as position and momentum, and energy and time. For example,
the same state can be represented by the wave function ¢ (x) as a function
of space and by ¢(p) as a function of momentum. The most familiar version
of the Heisenberg principle, limits the precision with which location and mo-
mentum can be measured simultaneously: Az Ap > h/2, where the reduced
Plank constant i = h/2r, where h is Planck’s constant.

It is often supposed that the uncertainty principle is a manifestation of
the observer effect, the inevitable effect that measuring a system has on it,
but this is not the case. “While it is true that measurements in quantum
mechanics cause disturbance to the system being measured, this is most em-
phatically not the content of the uncertainty principle.” (Nielsen & Chuang,
2010, p. 89)

Often the uncertainty principle is a result of the variables representing
measurements in two bases that are Fourier transforms of each other. Con-
sider an audio signal () and its Fourier transform W(w) (its spectrum).
Note that 1 is a function of time, with dimension ¢, and its spectrum ¥ is a
function of frequency, with dimension ¢t~!. They are reciprocals of each other,
and that is always the case with Fourier transforms. Simultaneous mea-
surement in the time and frequency domains obeys the uncertainty relation
AtAw > 1/2. (For more details on this, including an intuitive explanation,
see MacLennan (prep, ch. 6).)

Time and energy are also conjugate, as a result of the de Broglie relation,
according to which energy is proportional to frequency: E = hv (v in Hertz,
or cycles per second) or £ = hw (w in radians per second). Therefore simul-

taneous measurement in the time and energy domains obeys the uncertainty
principle AtAE > h/2.
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More generally, the observables are represented by Hermitian operators
P, Q) that do not commute. That is, to the extent they do not commute,
to that extent you cannot measure them both (because you would have to
do either PQ or QP, but they do not give the same result). The best
interpretation of the uncertainty principle is that if you set up the experiment
multiple times, and measure the outcomes, you will find

2 AP AQ > [{[P,Q))],

where P and @) are conjugate observables. (The commutator [P, Q)] is defined
below, Def. B.2, p. 96.)

Note that this is a purely mathematical result (proved in Sec. B.7.b). Any
system obeying the QM postulates will have uncertainty principles for every
pair of non-commuting observables.

B.7.b FORMALLY

In this section we’ll derive the uncertainty principle more formally. Since
it deals with the variances of measurements, we begin with their definition.
To understand the motivation for these definitions, suppose we have a quan-
tum system (such as an atom) that can be in three distinct states |ground),
|first excited), |second excited) with energies e, ey, 2, respectively. Then the
energy observable is the operator

E = eglgroundfground| + e [first excitedfirst excited|

+ eg|second excited)second excited|,

or more briefly, 32 _ e,.|mYm]|.

m=0

Definition B.1 (observable) An observable M is a Hermitian operator on
the state space.

An observable M has a spectral decomposition (Sec. A.2.g):
N
M=) enPn,
m=1

where the P, are projectors onto the eigenspaces of M, and the eigenvalues
e are the corresponding measurement results. The projector P, projects
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into the eigenspace corresponding to eigenvalue e,,. (For projectors, see Sec.
A.2.d.) Since an observable is described by a Hermitian operator M, it has
a spectral decomposition with real eigenvalues, M = S~ __ e,.[m)m|, where
|m) is the measurement basis. Therefore we can write M UEUT, where
E = diag(ey, e2,...,en), U =(|1),|2),...,|NV)), and

Ut=(1).12),-...[N) =]
(V]
U expresses the state in the measurement basis and U translates back. In

the measurement basis, the matrix for an observable is a diagonal matrix:
E = diag(ey,...,en). The probability of measuring e,, is

p(m) = (¢ | PLPp | ¥) = (¢ | PP | ¥) = (| P | ¥).

We can derive the mean or expectation value of an energy measurement
for a given quantum state |1):

(B) = pw = f:{E}

= 2 emp
Z (¥ | m)(m | )

Zw emlm)im] [)
— (| (Zemmxm) )
— WI|E|v).

This formula can be used to derive the standard deviation o and variance
0%, which are important in the uncertainty principle:

ob = (A = Var{E}
= E{(F - ()}
= (B?) (B’
= WIE|9) = (| E|$))
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Note that E?, the matrix F multiplied by itself, is also the operator that
measures the square of the energy, E* = 3 ef [mfm|. (This is because E
is diagonal in this basis; alternately, E? can be interpreted as an operator
function.)

We now proceed to the derivation of the uncertainty principle.?

Definition B.2 (commutator) If L, M : H — H are linear operators,
then their commutator is defined:

[L,M] = LM — ML. (I11.6)

Remark B.1 In effect, [L, M| distills out the non-commutative part of the
product of L and M. If the operators commute, then [L, M| = 0, the iden-

tically zero operator. Constant-valued operators always commute (cL = Lc),
and so [c, L] = 0.

Definition B.3 (anti-commutator) If L, M : H — H are linear opera-
tors, then their anti-commutator is defined:

(L, M} = LM + ML. (IIL7)
If {L,M} =0, we say that L and M anti-commute, LM = —ML.

See B.2.c (p. 82) for the justification of the following definitions.

Definition B.4 (mean of measurement) If M is a Hermitian operator
representing an observable, then the mean value of the measurement of a
state ) is

(M) = (¥ [ M | ).

Definition B.5 (variance and standard deviation of measurement)
If M is a Hermitian operator representing an observable, then the variance
in the measurement of a state |1) is

Var{M} = (M — (M)?)) = (M?) — (M)*.
As usual, the standard deviation AM of the measurement is defined

AM = \/Var{M}.

2The following derivation is from MacLennan (prep, ch. 5).
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Proposition B.1 If L and M are Hermitian operators on H and ) € H,
then

AW | L2 [ ) (0 | M 1) > [ [ [L, M] | )" + (0 | {L, M} | ¥) "

More briefly, in terms of average measurements,
AL*)(M?) > [([L, M])[* + [({L, M}) .
Proof: Let z +iy = (¢ | LM | v). Then,

20 = (Y| LM [ ¢)+ (| LM [ )"

= (LM | ¢)+ (¢ | MTLY | )
(| LM | )+ (¢p | ML | ¢)  since L, M are Hermitian
([ {L, M} [ 1).

Likewise,

2y = (W[ LM [¢) = (¢ ] LM|))
(W[ LM | ) = (| ML [ ¢)
= (@[, M][¢).

Hence,

[ LM [ ) = 42" +y7)
= | L, M][ )] + [ [ {L, M} [ )]

Let |\) = L|¢) and |u) = M|v). By the Cauchy-Schwarz inequality, [||\)]] [|[x)] >
[(A ] )] and so (A A) (| p) > [(A | )]*. Hence,

(WL | 4) (| M* [ ¥) > [ | LM | ¥)]*.

The result follows.

Proposition B.2 Prop. B.1 can be weakened into a more useful form:

A | L [ ) (@ | M* | 4) > [ ] [L, M] | )],
or 4(L*)(M?) = [{[L, M])[?
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Proposition B.3 (uncertainty principle) If Hermitian operators P and
Q) are measurements (observables), then

AP AQ = 3|6 | [P.Q)| ).

That is, AP AQ > [{[P,Q])|/2. So the product of the variances is bounded
below by the degree to which the operators do not commute.

Proof: Let L =P — (P) and M = Q — (Q). By Prop. B.2 we have

AVar{P} Var{Q} = 4(L*)(M?)
> [([L, M])[?
([P —(P),Q = (Q)])

= [([P.@DI"

Hence,

2 APAQ > [{[P,Q))]



