Chapter V

Analog Computation

These lecture notes are exclusively for the use of students in Prof. MacLen-
nan’s Unconventional Computation course. (02017, B. J. MacLennan, EECS,
University of Tennessee, Knoxville. Version of November 20, 2017.

A Definition

Although analog computation was eclipsed by digital computation in the
second half of the twentieth century, it is returning as an important alterna-
tive computing technology. Indeed, as explained in this chapter, theoretical
results imply that analog computation can escape from the limitations of
digital computation. Furthermore, analog computation has emerged as an
important theoretical framework for discussing computation in the brain and
other natural systems.

Analog computation gets its name from an analogy, or systematic rela-
tionship, between the physical processes in the computer and those in the
system it is intended to model or simulate (the primary system). For exam-
ple, the electrical quantities voltage, current, and conductance might be used
as analogs of the fluid pressure, flow rate, and pipe diameter of a hydrolic sys-
tem. More specifically, in traditional analog computation, physical quantities
in the computation obey the same mathematical laws as physical quantities
in the primary system. Thus the computational quantities are proportional

IThis chapter is based on an unedited draft for an article that appeared in the Ency-
clopedia of Complexity and System Science (Springer, 2008).

231



232 CHAPTER V. ANALOG COMPUTATION

to the modeled quantities. This is in contrast to digital computation, in which
quantities are represented by strings of symbols (e.g., binary digits) that have
no direct physical relationship to the modeled quantities. According to the
Ozford English Dictionary (2nd ed., s.vv. analogue, digital), these usages
emerged in the 1940s.

However, in a fundamental sense all computing is based on an analogy,
that is, on a systematic relationship between the states and processes in the
computer and those in the primary system. In a digital computer, the rela-
tionship is more abstract and complex than simple proportionality, but even
so simple an analog computer as a slide rule goes beyond strict proportion
(i.e., distance on the rule is proportional to the logarithm of the number).
In both analog and digital computation—indeed in all computation—the
relevant abstract mathematical structure of the problem is realized in the
physical states and processes of the computer, but the realization may be
more or less direct (MacLennan, 1994a,c, 2004).

Therefore, despite the etymologies of the terms “analog” and “digital,”
in modern usage the principal distinction between digital and analog com-
putation is that the former operates on discrete representations in discrete
steps, while the later operated on continuous representations by means of
continuous processes (e.g., MacLennan 2004, Siegelmann 1999, p. 147, Small
2001, p. 30, Weyrick 1969, p. 3). That is, the primary distinction resides in
the topologies of the states and processes, and it would be more accurate to
refer to discrete and continuous computation (Goldstine, 1972, p. 39). (Con-
sider so-called analog and digital clocks. The principal difference resides in
the continuity or discreteness of the representation of time; the motion of the
two (or three) hands of an “analog” clock do not mimic the motion of the
rotating earth or the position of the sun relative to it.)

B Introduction

B.1 History
B.1.a PRE-ELECTRONIC ANALOG COMPUTATION

Just like digital calculation, analog computation was originally performed by
hand. Thus we find several analog computational procedures in the “con-
structions” of Euclidean geometry (Euclid, fl. 300 BCE), which derive from
techniques used in ancient surveying and architecture. For example, Problem



B. INTRODUCTION 233

I1.51 is “to divide a given straight line into two parts, so that the rectangle
contained by the whole and one of the parts shall be equal to the square of the
other part.” Also, Problem VI.13 is “to find a mean proportional between
two given straight lines,” and VI.30 is “to cut a given straight line in ex-
treme and mean ratio.” These procedures do not make use of measurements
in terms of any fixed unit or of digital calculation; the lengths and other con-
tinuous quantities are manipulated directly (via compass and straightedge).
On the other hand, the techniques involve discrete, precise operational steps,
and so they can be considered algorithms, but over continuous magnitudes
rather than discrete numbers.

It is interesting to note that the ancient Greeks distinguished continuous
magnitudes (Grk., megethoi), which have physical dimensions (e.g., length,
area, rate), from discrete numbers (Grk., arithmoi), which do not (Maziarz &
Greenwood, 1968). Euclid axiomatizes them separately (magnitudes in Book
V, numbers in Book VII), and a mathematical system comprising both dis-
crete and continuous quantities was not achieved until the nineteenth century
in the work of Weierstrass and Dedekind.

The earliest known mechanical analog computer is the “Antikythera mech-
anism,” which was found in 1900 in a shipwreck under the sea near the Greek
island of Antikythera (between Kythera and Crete). It dates to the second
century BCE and appears to be intended for astronomical calculations. The
device is sophisticated (at least 70 gears) and well engineered, suggesting that
it was not the first of its type, and therefore that other analog computing de-
vices may have been used in the ancient Mediterranean world (Freeth et al.,
2006). Indeed, according to Cicero (Rep. 22) and other authors, Archimedes
(c. 287—c. 212 BCE) and other ancient scientists also built analog comput-
ers, such as armillary spheres, for astronomical simulation and computation.
Other antique mechanical analog computers include the astrolabe, which is
used for the determination of longitude and a variety of other astronomi-
cal purposes, and the torquetum, which converts astronomical measurements
between equatorial, ecliptic, and horizontal coordinates.

A class of special-purpose analog computer, which is simple in concep-
tion but may be used for a wide range of purposes, is the nomograph (also,
nomogram, alignment chart). In its most common form, it permits the solu-
tion of quite arbitrary equations in three real variables, f(u,v,w) = 0. The
nomograph is a chart or graph with scales for each of the variables; typically
these scales are curved and have non-uniform numerical markings. Given
values for any two of the variables, a straightedge is laid across their posi-



234 CHAPTER V. ANALOG COMPUTATION

tions on their scales, and the value of the third variable is read off where the
straightedge crosses the third scale. Nomographs were used to solve many
problems in engineering and applied mathematics. They improve intuitive
understanding by allowing the relationships among the variables to be visu-
alized, and facilitate exploring their variation by moving the straightedge.
Lipka (1918) is an example of a course in graphical and mechanical methods
of analog computation, including nomographs and slide rules.

Until the introduction of portable electronic calculators in the early 1970s,
the slide rule was the most familiar analog computing device. Slide rules use
logarithms for multiplication and division, and they were invented in the early
seventeenth century shortly after John Napier’s description of logarithms.

The mid-nineteenth century saw the development of the field analogy
method by G. Kirchhoff (1824-87) and others (Kirchhoff, 1845). In this ap-
proach an electrical field in an electrolytic tank or conductive paper was
used to solve two-dimensional boundary problems for temperature distribu-
tions and magnetic fields (Small, 2001, p. 34). It is an early example of
analog field computation, which operates on continuous spatial distributions
of quantity (i.e., fields).

In the nineteenth century a number of mechanical analog computers were
developed for integration and differentiation (e.g., Lipka 1918, pp. 246-56,
Clymer 1993). For example, the planimeter measures the area under a curve
or within a closed boundary. While the operator moves a pointer along the
curve, a rotating wheel accumulates the area. Similarly, the integraph is
able to draw the integral of a given function as its shape is traced. Other
mechanical devices can draw the derivative of a curve or compute a tangent
line at a given point.

In the late nineteenth century William Thomson, Lord Kelvin, constructed
several analog computers, including a “tide predictor” and a “harmonic an-
alyzer,” which computed the Fourier coefficients of a tidal curve (Thomson,
1878, 1938). In 1876 he described how the mechanical integrators invented
by his brother could be connected together in a feedback loop in order to
solve second and higher order differential equations (Small 2001, pp. 34-5,
42, Thomson 1876). He was unable to construct this differential analyzer,
which had to await the invention of the torque amplifier in 1927.

The torque amplifier and other technical advancements permitted Van-
nevar Bush at MIT to construct the first practical differential analyzer in
1930 (Small, 2001, pp. 42-5). It had six integrators and could also do ad-
dition, subtraction, multiplication, and division. Input data were entered in



B. INTRODUCTION 235

the form of continuous curves, and the machine automatically plotted the
output curves continuously as the equations were integrated. Similar differ-
ential analyzers were constructed at other laboratories in the US and the
UK.

Setting up a problem on the MIT differential analyzer took a long time;
gears and rods had to be arranged to define the required dependencies among
the variables. Bush later designed a much more sophisticated machine, the
Rockefeller Differential Analyzer, which became operational in 1947. With
18 integrators (out of a planned 30), it provided programmatic control of ma-
chine setup, and permitted several jobs to be run simultaneously. Mechanical
differential analyzers were rapidly supplanted by electronic analog comput-
ers in the mid-1950s, and most were disassembled in the 1960s (Bowles 1996,
Owens 1986, Small 2001, pp. 50-5).

During World War II, and even later wars, an important application
of optical and mechanical analog computation was in “gun directors” and
“bomb sights,” which performed ballistic computations to accurately target
artillery and dropped ordnance.

B.1.b ELECTRONIC ANALOG COMPUTATION IN THE 20TH CENTURY

It is commonly supposed that electronic analog computers were superior
to mechanical analog computers, and they were in many respects, including
speed, cost, ease of construction, size, and portability (Small, 2001, pp. 54-6).
On the other hand, mechanical integrators produced higher precision results
(0.1%, vs. 1% for early electronic devices) and had greater mathematical
flexibility (they were able to integrate with respect to any variable, not just
time). However, many important applications did not require high precision
and focused on dynamic systems for which time integration was sufficient;
for these, electronic analog computers were superior.

Analog computers (non-electronic as well as electronic) can be divided
into active-element and passive-element computers; the former involve some
kind of amplification, the latter do not (Truitt & Rogers, 1960, pp. 2-1-4).
Passive-element computers included the network analyzers that were devel-
oped in the 1920s to analyze electric power distribution networks, and which
continued in use through the 1950s (Small, 2001, pp. 35-40). They were
also applied to problems in thermodynamics, aircraft design, and mechan-
ical engineering. In these systems networks or grids of resistive elements
or reactive elements (i.e., involving capacitance and inductance as well as



236 CHAPTER V. ANALOG COMPUTATION

resistance) were used to model the spatial distribution of physical quanti-
ties such as voltage, current, and power (in electric distribution networks),
electrical potential in space, stress in solid materials, temperature (in heat
diffusion problems), pressure, fluid flow rate, and wave amplitude (Truitt
& Rogers, 1960, p. 2-2). That is, network analyzers dealt with partial dif-
ferential equations (PDEs), whereas active-element computers, such as the
differential analyzer and its electronic successors, were restricted to ordinary
differential equations (ODEs) in which time was the independent variable.
Large network analyzers are early examples of analog field computers.

Electronic analog computers became feasible after the invention of the
DC operational amplifier (“op amp”) c. 1940 (Small, 2001, pp. 64, 67-72).
Already in the 1930s scientists at Bell Telephone Laboratories (BTL) had
developed the DC-coupled feedback-stabilized amplifier, which is the basis
of the op amp. In 1940, as the USA prepared to enter World War II, D.
L. Parkinson at BTL had a dream in which he saw DC amplifiers being
used to control an anti-aircraft gun. As a consequence, with his colleagues
C. A. Lovell and B. T. Weber, he wrote a series of papers on “electrical
mathematics,” which described electrical circuits to “operationalize” addi-
tion, subtraction, integration, differentiation, etc. The project to produce
an electronic gun-director led to the development and refinement of DC op
amps suitable for analog computation.

The war-time work at BTL was focused primarily on control applications
of analog devices, such as the gun-director. Other researchers, such as E.
Lakatos at BTL, were more interested in applying them to general-purpose
analog computation for science and engineering, which resulted in the de-
sign of the General Purpose Analog Computer (GPAC), also called “Gypsy,”
completed in 1949 (Small, 2001, pp. 69-71). Building on the BTL op amp
design, fundamental work on electronic analog computation was conducted
at Columbia University in the 1940s. In particular, this research showed how
analog computation could be applied to the simulation of dynamic systems
and to the solution of nonlinear equations.

Commercial general-purpose analog computers (GPACs) emerged in the
late 1940s and early 1950s (Small, 2001, pp. 72-3). Typically they provided
several dozen integrators, but several GPACs could be connected together
to solve larger problems. Later, large-scale GPACs might have up to 500
amplifiers and compute with 0.01%-0.1% precision (Truitt & Rogers, 1960,
pp. 2-33).

Besides integrators, typical GPACs provided adders, subtracters, multi-



B. INTRODUCTION 237

pliers, fixed function generators (e.g., logarithms, exponentials, trigonometric
functions), and variable function generators (for user-defined functions) (Tru-
itt & Rogers, 1960, chs. 1.3, 2.4). A GPAC was programmed by connecting
these components together, often by means of a patch panel. In addition,
parameters could be set by adjusting potentiometers (attenuators), and ar-
bitrary functions could be entered in the form of graphs (Truitt & Rogers,
1960, pp. 1-72-81, 2-154-156). Output devices plotted data continuously or
displayed it numerically (Truitt & Rogers, 1960, pp. 3-1-30).

The most basic way of using a GPAC was in single-shot mode (Weyrick,
1969, pp. 168-70). First, parameters and initial values were entered into the
potentiometers. Next, putting a master switch in “reset” mode controlled
relays to apply the initial values to the integrators. Turning the switch to
“operate” or “compute” mode allowed the computation to take place (i.e., the
integrators to integrate). Finally, placing the switch in “hold” mode stopped
the computation and stabilized the values, allowing them to be read from
the computer (e.g., on voltmeters). Although single-shot operation was also
called “slow operation” (in comparison to “repetitive operation,” discussed
next), it was in practice quite fast. Because all of the devices computed in
parallel and at electronic speeds, analog computers usually solved problems
in real-time but often much faster (Truitt & Rogers 1960, pp. 1-30-32, Small
2001, p. 72).

One common application of GPACs was to explore the effect of one or
more parameters on the behavior of a system. To facilitate this exploration
of the parameter space, some GPACs provided a repetitive operation mode,
which worked as follows (Weyrick 1969, p. 170, Small 2001, p. 72). An
electronic clock switched the computer between reset and compute modes at
an adjustable rate (e.g., 10-1000 cycles per second) (Ashley, 1963, p. 280, n.
1). In effect the simulation was rerun at the clock rate, but if any parameters
were adjusted, the simulation results would vary along with them. Therefore,
within a few seconds, an entire family of related simulations could be run.
More importantly, the operator could acquire an intuitive understanding of
the system’s dependence on its parameters.

B.1.c THE ECLIPSE OF ANALOG COMPUTING

A common view is that electronic analog computers were a primitive pre-
decessor of the digital computer, and that their use was just a historical
episode, or even a digression, in the inevitable triumph of digital technol-



238 CHAPTER V. ANALOG COMPUTATION

ogy. It is supposed that the current digital hegemony is a simple matter of
technological superiority. However, the history is much more complicated,
and involves a number of social, economic, historical, pedagogical, and also
technical factors, which are outside the scope of this book (see Small 1993
and Small 2001, especially ch. 8, for more information). In any case, begin-
ning after World War II and continuing for twenty-five years, there was lively
debate about the relative merits of analog and digital computation.

Speed was an oft-cited advantage of analog computers (Small, 2001, ch.
8). While early digital computers were much faster than mechanical dif-
ferential analyzers, they were slower (often by several orders of magnitude)
than electronic analog computers. Furthermore, although digital computers
could perform individual arithmetic operations rapidly, complete problems
were solved sequentially, one operation at a time, whereas analog comput-
ers operated in parallel. Thus it was argued that increasingly large problems
required more time to solve on a digital computer, whereas on an analog com-
puter they might require more hardware but not more time. Even as digital
computing speed was improved, analog computing retained its advantage for
several decades, but this advantage eroded steadily.

Another important issue was the comparative precision of digital and ana-
log computation (Small, 2001, ch. 8). Analog computers typically computed
with three or four digits of precision, and it was very expensive to do much
better, due to the difficulty of manufacturing the parts and other factors. In
contrast, digital computers could perform arithmetic operations with many
digits of precision, and the hardware cost was approximately proportional
to the number of digits. Against this, analog computing advocates argued
that many problems did not require such high precision, because the mea-
surements were known to only a few significant figures and the mathematical
models were approximations. Further, they distinguished between precision
and accuracy, which refers to the conformity of the computation to physi-
cal reality, and they argued that digital computation was often less accurate
than analog, due to numerical limitations (e.g., truncation, cumulative error
in numerical integration). Nevertheless, some important applications, such
as the calculation of missile trajectories, required greater precision, and for
these, digital computation had the advantage. Indeed, to some extent pre-
cision was viewed as inherently desirable, even in applications where it was
unimportant, and it was easily mistaken for accuracy. (See Sec. C.4.a for
more on precision and accuracy.)

There was even a social factor involved, in that the written programs,



B. INTRODUCTION 239

precision, and exactness of digital computation were associated with mathe-
matics and science, but the hands-on operation, parameter variation, and ap-
proximate solutions of analog computation were associated with engineering,
and so analog computing inherited “the lower status of engineering vis-a-vis
science” (Small, 2001, p. 251). Thus the status of digital computing was fur-
ther enhanced as engineering became more mathematical and scientific after
World War IT (Small, 2001, pp. 247-51).

Already by the mid-1950s the competition between analog and digital
had evolved into the idea that they were complementary technologies. This
resulted in the development of a variety of hybrid analog/digital computing
systems (Small, 2001, pp. 251-3, 263-6). In some cases this involved using a
digital computer to control an analog computer by using digital logic to con-
nect the analog computing elements, to set parameters, and to gather data.
This improved the accessibility and usability of analog computers, but had
the disadvantage of distancing the user from the physical analog system. The
intercontinental ballistic missile program in the USA stimulated the further
development of hybrid computers in the late 1950s and 1960s (Small, 1993).
These applications required the speed of analog computation to simulate the
closed-loop control systems and the precision of digital computation for ac-
curate computation of trajectories. However, by the early 1970s hybrids were
being displaced by all digital systems. Certainly part of the reason was the
steady improvement in digital technology, driven by a vibrant digital com-
puter industry, but contemporaries also pointed to an inaccurate perception
that analog computing was obsolete and to a lack of education about the
advantages and techniques of analog computing.

Another argument made in favor of digital computers was that they
were general-purpose, since they could be used in business data processing
and other application domains, whereas analog computers were essentially
special-purpose, since they were limited to scientific computation (Small,
2001, pp. 248-50). Against this it was argued that all computing is essen-
tially computing by analogy, and therefore analog computation was general-
purpose because the class of analog computers included digital computers!
(See also Sec. A on computing by analogy.) Be that as it may, analog com-
putation, as normally understood, is restricted to continuous variables, and
so it was not immediately applicable to discrete data, such as that manipu-
lated in business computing and other nonscientific applications. Therefore
business (and eventually consumer) applications motivated the computer in-
dustry’s investment in digital computer technology at the expense of analog



240 CHAPTER V. ANALOG COMPUTATION

technology.

Although it is commonly believed that analog computers quickly disap-
peared after digital computers became available, this is inaccurate, for both
general-purpose and special-purpose analog computers have continued to be
used in specialized applications to the present time. For example, a general-
purpose electrical (vs. electronic) analog computer, the Anacom, was still
in use in 1991. This is not technological atavism, for “there is no doubt
considerable truth in the fact that Anacom continued to be used because it
effectively met a need in a historically neglected but nevertheless important
computer application area” (Aspray, 1993). As mentioned, the reasons for
the eclipse of analog computing were not simply the technological superiority
of digital computation; the conditions were much more complex. Therefore
a change in conditions has necessitated a reevaluation of analog technology.

B.1.d AnaLoc VLSI

In the mid-1980s, Carver Mead, who already had made important contri-
butions to digital VLSI technology, began to advocate for the development
of analog VLSI (Mead, 1987, 1989). His motivation was that “the nervous
system of even a very simple animal contains computing paradigms that are
orders of magnitude more effective than are those found in systems made
by humans” and that they “can be realized in our most commonly available
technology—silicon integrated circuits” (Mead, 1989, p. xi). However, he
argued, since these natural computation systems are analog and highly non-
linear, progress would require understanding neural information processing
in animals and applying it in a new analog VLSI technology.

Because analog computation is closer to the physical laws by which all
computation is realized (which are continuous), analog circuits often use
fewer devices than corresponding digital circuits. For example, a four-quadrant
adder (capable of adding two signed numbers) can be fabricated from four
transistors (Mead, 1989, pp. 87-8), and a four-quadrant multiplier from nine
to seventeen, depending on the required range of operation (Mead, 1989, pp.
90-6). Intuitions derived from digital logic about what is simple or complex
to compute are often misleading when applied to analog computation. For ex-
ample, two transistors are sufficient to compute the logarithm or exponential,
five for the hyperbolic tangent (which is very useful in neural computation),
and three for the square root (Mead, 1989, pp. 70-1, 97-9). Thus analog
VLSI is an attractive approach to “post-Moore’s Law computing” (see Sec.



B. INTRODUCTION 241

H, p. 275 below). Mead and his colleagues demonstrated a number of analog
VLSI devices inspired by the nervous system, including a “silicon retina” and
an “electronic cochlea” (Mead, 1989, chs. 15-16), research that has lead to a
renaissance of interest in electronic analog computing.

B.1.e FIELD-PROGRAMMABLE ANALOG ARRAYS

Field Programmable Analog Arrays (FPAAs) permit the programming of
analog VLSI systems comparable to Field Programmable Gate Arrays (FP-
GAs) for digital systems. An FPAA comprises a number of identical Com-
putational Analog Blocks (CABs), each of which contains a small number of
analog computing elements. Programmable switching matrices control the
interconnections among the elements of a CAB and the interconnections be-
tween the CABs. Contemporary FPA As make use of floating-gate transistors,
in which the gate has no DC connection to other circuit elements and thus is
able to hold a charge indefinitely . Therefore the floating gate can be
used to store a continuous value that governs the impedance of the transistor
by several orders of magnitude. The gate charge can be changed by processes
such as electron tunneling, which increases the charge, and hot-electron in-
jection, which decreases it. Digital decoders allow individual floating-gate
transistors in the switching matrices to be addressed and programmed. At
the extremes of zero and infinite impedance the transistors operate as per-
fect switches, connecting or disconnecting circuit elements. Programming
the connections to these extreme values is time consuming, however, and
so in practice some tradeoff is made between programming time and switch
impedance. Each CAB contains several Operational Transconductance Am-
plifiers (OTAs), which are op-amps whose gain is controlled by a bias current.
They are the principal analog computing elements, since they can be used for
operations such as integration, differentiation, and gain amplification. Other
computing elements may include tunable band-pass filters, which can be used
for Fourier signal processing, and small matrix-vector multipliers, which can
be used to implement linear operators. Current FPAAs can compute with a
resolution of 10 bits (precision of 1073).

B.1.f NON-ELECTRONIC ANALOG COMPUTATION

As will be explained later in this chapter, analog computation suggests many
opportunities for future computing technologies. Many physical phenomena



242 CHAPTER V. ANALOG COMPUTATION

are potential media for analog computation provided they have useful math-
ematical structure (i.e., the mathematical laws describing them are math-
ematical functions useful for general- or special-purpose computation), and
they are sufficiently controllable for practical use.

B.2 Chapter roadmap

The remainder of this chapter will begin by summarizing the fundamentals of
analog computing, starting with the continuous state space and the various
processes by which analog computation can be organized in time. Next it
will discuss analog computation in nature, which provides models and inspi-
ration for many contemporary uses of analog computation, such as neural
networks. Then we consider general-purpose analog computing, both from
a theoretical perspective and in terms of practical general-purpose analog
computers. This leads to a discussion of the theoretical power of analog
computation and in particular to the issue of whether analog computing is
in some sense more powerful than digital computing. We briefly consider the
cognitive aspects of analog computing, and whether it leads to a different
approach to computation than does digital computing. Finally, we conclude
with some observations on the role of analog computation in “post-Moore’s
Law computing.”

C Fundamentals of analog computing

C.1 Continuous state space

As discussed in Sec. B, the fundamental characteristic that distinguishes
analog from digital computation is that the state space is continuous in analog
computation and discrete in digital computation. Therefore it might be
more accurate to call analog and digital computation continuous and discrete
computation, respectively. Furthermore, since the earliest days there have
been hybrid computers that combine continuous and discrete state spaces
and processes. Thus, there are several respects in which the state space may
be continuous.

In the simplest case the state space comprises a finite (generally mod-
est) number of variables, each holding a continuous quantity (e.g., voltage,
current, charge). In a traditional GPAC they correspond to the variables in



C. FUNDAMENTALS OF ANALOG COMPUTING 243

the ODEs defining the computational process, each typically having some
independent meaning in the analysis of the problem. Mathematically, the
variables are taken to contain bounded real numbers, although complex-
valued variables are also possible (e.g., in AC electronic analog computers).
In a practical sense, however, their precision is limited by noise, stability,
device tolerance, and other factors (discussed below, Sec. C.4).

In typical analog neural networks the state space is larger in dimension
but more structured than in traditional analog computers. The artificial
neurons are organized into one or more layers, each composed of a (possi-
bly large) number of artificial neurons. Commonly each layer of neurons is
densely connected to the next layer (i.e., each neuron in one layer is connected
to every neuron in the next). In general the layers each have some meaning
in the problem domain, but the individual neurons constituting them do not
(and so, in mathematical descriptions, the neurons are typically numbered
rather than named).

The individual artificial neurons usually perform a simple computation
such as this:

n
y = o(s), where s = b+ Zwimi,
i=1
and where y is the activity of the neuron, x1,...,z, are the activities of
the neurons that provide its inputs, b is a bias term, and wy, ..., w, are the

weights or strengths of the connections. Often the activation function o is a
real-valued sigmoid (“S-shaped”) function, such as the logistic sigmoid,

B 1
14’

a(s)

in which case the neuron activity y is a real number, but some applications
use a discontinuous threshold function, such as the Heaviside function,

41, ifs>0
U“V‘{o . ifs<0

in which case the activity is a discrete quantity. The saturated-linear or
pieceunse-linear sigmoid is also used occasionally:

+1 , ifs>1
o(s)=<2 s , f0<s<1
0 . ifs<0



244 CHAPTER V. ANALOG COMPUTATION

Regardless of whether the activation function is continuous or discrete,
the bias b and connection weights wy, ..., w, are real numbers, as is the “net
input” s = b+ >, w;z; to the activation function. Analog computation may
be used to evaluate the linear combination s and the activation function o(s),
if it is real-valued. If it is discrete, analog computation can approximate
it with a sufficiently sharp sigmoid. The biases and weights are normally
determined by a learning algorithm (e.g., back-propagation), which is also a
good candidate for analog implementation.

In summary, the continuous state space of a neural network includes the
bias values and net inputs of the neurons and the interconnection strengths
between the neurons. It also includes the activity values of the neurons, if
the activation function is a real-valued sigmoid function, as is often the case.
Often large groups (“layers”) of neurons (and the connections between these
groups) have some intuitive meaning in the problem domain, but typically
the individual neuron activities, bias values, and interconnection weights do
not (they are “sub-symbolic”).

If we extrapolate the number of neurons in a layer to the continuum limit,
we get a field, which may be defined as a spatially continuous distribution
of continuous quantity. Treating a group of artificial or biological neurons
as a continuous mass is a reasonable mathematical approximation if their
number is sufficiently large and if their spatial arrangement is significant (as
it generally is in the brain). Fields are especially useful in modeling cortical
maps, in which information is represented by the pattern of activity over a
region of neural cortex.

In field computation the state space in continuous in two ways: it is
continuous in variation but also in space. Therefore, field computation is
especially applicable to solving PDEs and to processing spatially extended
information such as visual images. Some early analog computing devices were
capable of field computation (Truitt & Rogers, 1960, pp. 1-14-17, 2-2-16).
For example, as previously mentioned (Sec. B), large resistor and capacitor
networks could be used for solving PDEs such as diffusion problems. In these
cases a discrete ensemble of resistors and capacitors was used to approximate
a continuous field, while in other cases the computing medium was spatially
continuous. The latter made use of conductive sheets (for two-dimensional
fields) or electrolytic tanks (for two- or three-dimensional fields). When they
were applied to steady-state spatial problems, these analog computers were
called field plotters or potential analyzers.

The ability to fabricate very large arrays of analog computing devices,



C. FUNDAMENTALS OF ANALOG COMPUTING 245

combined with the need to exploit massive parallelism in realtime computa-
tion and control applications, creates new opportunities for field computa-
tion (MacLennan, 1987, 1990, 1999). There is also renewed interest in using
physical fields in analog computation. For example, Rubel (1993) defined an
abstract extended analog computer (EAC), which augments Shannon’s (1941)
general purpose analog computer with (unspecified) facilities for field com-
putation, such as PDE solvers (see Secs. E.3-E.4 below). J. W. Mills has
explored the practical application of these ideas in his artificial neural field
networks and VLSI EACs, which use the diffusion of electrons in bulk silicon
or conductive gels and plastics for 2D and 3D field computation (Mills, 1996;
Mills et al., 2006).

C.2 Computational process

We have considered the continuous state space, which is the basis for analog
computing, but there are a variety of ways in which analog computers can
operate on the state. In particular, the state can change continuously in time
or be updated at distinct instants (as in digital computation).

C.2.a CONTINUOUS TIME

Since the laws of physics on which analog computing is based are differential
equations, many analog computations proceed in continuous real time. Also,
as we have seen, an important application of analog computers in the late
19th and early 20th centuries was the integration of ODEs in which time
is the independent variable. A common technique in analog simulation of
physical systems is time scaling, in which the differential equations are altered
systematically so the simulation proceeds either more slowly or more quickly
than the primary system (see Sec. C.4 for more on time scaling). On the
other hand, because analog computations are close to the physical processes
that realize them, analog computing is rapid, which makes it very suitable
for real-time control applications.

In principle, any mathematically describable physical process operating
on time-varying physical quantities can be used for analog computation. In
practice, however, analog computers typically provide familiar operations
that scientists and engineers use in differential equations (Rogers & Con-
nolly, 1960; Truitt & Rogers, 1960). These include basic arithmetic opera-
tions, such as algebraic sum and difference (u(t) = v(t) £ w(t)), constant



246 CHAPTER V. ANALOG COMPUTATION

multiplication or scaling (u(t) = cv(t)), variable multiplication and division
(u(t) = v(t)w(t), u(t) = v(t)/w(t)), and inversion (u(t) = —wv(t)). Transcen-
dental functions may be provided, such as the exponential (u(t) = exp v(t)),
logarithm (u(t) = Inw(t)), trigonometric functions (u(t) = sinv(t), etc.), and
resolvers for converting between polar and rectangular coordinates. Most
important, of course, is definite integration (u(t) = vy + fot v(T)dr), but dif-
ferentiation may also be provided (u(t) = v(t)). Generally, however, direct
differentiation is avoided, since noise tends to have a higher frequency than
the signal, and therefore differentiation amplifies noise; typically problems
are reformulated to avoid direct differentiation (Weyrick, 1969, pp. 26-7).
As previously mentioned, many GPACs include (arbitrary) function genera-
tors, which allow the use of functions defined only by a graph and for which
no mathematical definition might be available; in this way empirically defined
functions can be used (Rogers & Connolly, 1960, pp. 32-42). Thus, given a
graph (z, f(x)), or a sufficient set of samples, (xy, f(zx)), the function gen-
erator approximates u(t) = f(v(t)). Rather less common are generators for
arbitrary functions of two variables, u(t) = f(v(t),w(t)), in which the func-
tion may be defined by a surface, (x,y, f(x,y)), or by sufficient samples from
it.

Although analog computing is primarily continuous, there are situations
in which discontinuous behavior is required. Therefore some analog comput-
ers provide comparators, which produce a discontinuous result depending on
the relative value of two input values. For example,

" ko, ifv>w,
10, ifv<uw.

Typically, this would be implemented as a Heaviside (unit step) function
applied to the difference of the inputs, u = kU(v — w). In addition to
allowing the definition of discontinuous functions, comparators provide a
primitive decision making ability, and may be used, for example to terminate
a computation (switching the computer from “operate” to “hold” mode).

Other operations that have proved useful in analog computation are time
delays and noise generators (Howe, 1961, ch. 7). The function of a time delay
is simply to retard the signal by an adjustable delay T' > 0: u(t +T') = v(t).
One common application is to model delays in the primary system (e.g.,
human response time).

Typically a noise generator produces time-invariant Gaussian-distributed
noise with zero mean and a flat power spectrum (over a band compatible with



C. FUNDAMENTALS OF ANALOG COMPUTING 247

the analog computing process). The standard deviation can be adjusted by
scaling, the mean can be shifted by addition, and the spectrum altered by
filtering, as required by the application. Historically noise generators were
used to model noise and other random effects in the primary system, to
determine, for example, its sensitivity to effects such as turbulence. However,
noise can make a positive contribution in some analog computing algorithms
(e.g., for symmetry breaking and in simulated annealing, weight perturbation
learning, and stochastic resonance).

As already mentioned, some analog computing devices for the direct so-
lution of PDEs have been developed. In general a PDE solver depends on
an analogous physical process, that is, on a process obeying the same class
of PDEs that it is intended to solve. For example, in Mills’ EAC, diffusion
of electrons in conductive sheets or solids is used to solve diffusion equations
(Mills, 1996; Mills et al., 2006). Historically, PDEs were solved on electronic
GPACs by discretizing all but one of the independent variables, thus replac-
ing the differential equations by difference equations (Rogers & Connolly,
1960, pp. 173-93). That is, computation over a field was approximated by
computation over a finite real array.

Reaction-diffusion computation is an important example of continuous-
time analog computing. The state is represented by a set of time-varying
chemical concentration fields, ci,...,c,. These fields are distributed across
a one-, two-, or three-dimensional space €2, so that, for x € Q, cx(x,t) repre-
sents the concentration of chemical k at location x and time . Computation
proceeds in continuous time according to reaction-diffusion equations, which
have the form:

dc/ot = DV?c + F(c),

where ¢ = (cy,...,¢,)7T is the vector of concentrations, D = diag(dy, .. .,d,)
is a diagonal matrix of positive diffusion rates, and F is nonlinear vector
function that describes how the chemical reactions affect the concentrations.

Some neural net models operate in continuous time and thus are examples
of continuous-time analog computation. For example, Grossberg (Grossberg,
1967, 1973, 1976) defines the activity of a neuron by differential equations
such as this:

B = —ami+ Y bywl fi(x) = Y eyl gi(x;) + I
j=1 J=1

This describes the continuous change in the activity of neuron i resulting



248 CHAPTER V. ANALOG COMPUTATION

from passive decay (first term), positive feedback from other neurons (second
term), negative feedback (third term), and input (last term). The f; and
g; are nonlinear activation functions, and the wg;r) and wfj_ )

excitatory and inhibitory connection strengths, respectively.

are adaptable

The continuous Hopfield network is another example of continuous-time
analog computation (Hopfield, 1984). The output y; of a neuron is a nonlinear
function of its internal state x;, y; = o(z;), where the hyperbolic tangent is
usually used as the activation function, o(x) = tanhz, because its range is
[—1,1]. The internal state is defined by a differential equation,

n
Tl.ﬁEz = —Q;%; + bz + E wijyj,
=1

where 7; is a time constant, a; is the decay rate, b; is the bias, and w;; is the
connection weight to neuron ¢ from neuron j. In a Hopfield network every
neuron is symmetrically connected to every other (w;; = wj;) but not to itself

Of course analog VLSI implementations of neural networks also operate
in continuous time (e.g., Mead, 1989; Fakhraie & Smith, 1997)

Concurrent with the resurgence of interest in analog computation have
been innovative reconceptualizations of continuous-time computation. For
example, Brockett (1988) has shown that dynamical systems can perform a
number of problems normally considered to be intrinsically sequential. In
particular, a certain system of ODEs (a nonperiodic finite Toda lattice) can
sort a list of numbers by continuous-time analog computation. The system
is started with the vector x equal to the values to be sorted and a vector
y initialized to small nonzero values; the y vector converges to a sorted
permutation of x.

C.2.b SEQUENTIAL TIME

Sequential-time computation refers to computation in which discrete compu-
tational operations take place in succession but at no definite interval (van
Gelder, 1997). Ordinary digital computer programs take place in sequential
time, for the operations occur one after another, but the individual oper-
ations are not required to have any specific duration, so long as they take
finite time.



C. FUNDAMENTALS OF ANALOG COMPUTING 249

One of the oldest examples of sequential analog computation is provided
by the compass-and-straightedge constructions of traditional Euclidean ge-
ometry (Sec. B). These computations proceed by a sequence of discrete
operations, but the individual operations involve continuous representations
(e.g., compass settings, straightedge positions) and operate on a continuous
state (the figure under construction). Slide rule calculation might seem to be
an example of sequential analog computation, but if we look at it, we see that
although the operations are performed by an analog device, the intermediate
results are recorded digitally (and so this part of the state space is discrete).
Thus it is a kind of hybrid computation.

The familiar digital computer automates sequential digital computations
that once were performed manually by human “computers.” Sequential ana-
log computation can be similarly automated. That is, just as the control unit
of an ordinary digital computer sequences digital computations, so a digital
control unit can sequence analog computations. In addition to the analog
computation devices (adders, multipliers, etc.), such a computer must pro-
vide variables and registers capable of holding continuous quantities between
the sequential steps of the computation (see also Sec. C.2.c below).

The primitive operations of sequential-time analog computation are typ-
ically similar to those in continuous-time computation (e.g., addition, multi-
plication, transcendental functions), but integration and differentiation with
respect to sequential time do not make sense. However, continuous-time
integration within a single step, and space-domain integration, as in PDE
solvers or field computation devices, are compatible with sequential analog
computation.

In general, any model of digital computation can be converted to a similar
model of sequential analog computation by changing the discrete state space
to a continuum, and making appropriate changes to the rest of the model.
For example, we can make an analog Turing machine by allowing it to write
a bounded real number (rather than a symbol from a finite alphabet) onto a
tape cell. The Turing machine’s finite control can be altered to test for tape
markings in some specified range.

Similarly, in a series of publications Blum, Shub, and Smale developed a
theory of computation over the reals, which is an abstract model of sequential-
time analog computation (Blum et al., 1998, 1988). In this “BSS model”
programs are represented as flowcharts, but they are able to operate on real-
valued variables. Using this model they were able to prove a number of
theorems about the complexity of sequential analog algorithms.



250 CHAPTER V. ANALOG COMPUTATION

The BSS model, and some other sequential analog computation models,
assume that it is possible to make exact comparisons between real numbers
(analogous to exact comparisons between integers or discrete symbols in dig-
ital computation) and to use the result of the comparison to control the path
of execution. Comparisons of this kind are problematic because they imply
infinite precision in the comparator (which may be defensible in a mathemat-
ical model but is impossible in physical analog devices), and because they
make the execution path a discontinuous function of the state (whereas ana-
log computation is usually continuous). Indeed, it has been argued that this
is not “true” analog computation (Siegelmann, 1999, p. 148).

Many artificial neural network models are examples of sequential-time
analog computation. In a simple feed-forward neural network, an input vector
is processed by the layers in order, as in a pipeline. That is, the output
of layer n becomes the input of layer n + 1. Since the model does not
make any assumptions about the amount of time it takes a vector to be
processed by each layer and to propagate to the next, execution takes place
in sequential time. Most recurrent neural networks, which have feedback, also
operate in sequential time, since the activities of all the neurons are updated
synchronously (that is, signals propagate through the layers, or back to earlier
layers, in lockstep).

Many artificial neural-net learning algorithms are also sequential-time
analog computations. For example, the back-propagation algorithm updates
a network’s weights, moving sequentially backward through the layers.

In summary, the correctness of sequential time computation (analog or
digital) depends on the order of operations, not on their duration, and sim-
ilarly the efficiency of sequential computations is evaluated in terms of the
number of operations, not on their total duration.

C.2.c DISCRETE TIME

Discrete-time analog computation has similarities to both continuous-time
and sequential-time analog computation. Like the latter, it proceeds by a
sequence of discrete (analog) computation steps; like the former, these steps
occur at a constant rate in real time (e.g., some “frame rate”). If the real-
time rate is sufficient for the application, then discrete-time computation can
approximate continuous-time computation (including integration and differ-
entiation).

Some electronic GPACs implemented discrete-time analog computation



C. FUNDAMENTALS OF ANALOG COMPUTING 251

by a modification of repetitive operation mode, called iterative analog compu-
tation (Ashley, 1963, ch. 9). Recall (Sec. B.1.b) that in repetitive operation
mode a clock rapidly switched the computer between reset and compute
modes, thus repeating the same analog computation, but with different pa-
rameters (set by the operator). However, each repetition was independent of
the others. Iterative operation was different in that analog values computed
by one iteration could be used as initial values in the next. This was accom-
plished by means of an analog memory circuit (based on an op amp) that
sampled an analog value at the end of one compute cycle (effectively during
hold mode) and used it to initialize an integrator during the following reset
cycle. (A modified version of the memory circuit could be used to retain a
value over several iterations.) Iterative computation was used for problems
such as determining, by iterative search or refinement, the initial conditions
that would lead to a desired state at a future time. Since the analog compu-
tations were iterated at a fixed clock rate, iterative operation is an example
of discrete-time analog computation. However, the clock rate is not directly
relevant in some applications (such as the iterative solution of boundary
value problems), in which case iterative operation is better characterized as
sequential analog computation.

The principal contemporary examples of discrete-time analog computing
are in neural network applications to time-series analysis and (discrete-time)
control. In each of these cases the input to the neural net is a sequence
of discrete-time samples, which propagate through the net and generate
discrete-time output signals. Many of these neural nets are recurrent, that
is, values from later layers are fed back into earlier layers, which allows the
net to remember information from one sample to the next.

C.3 Analog computer programs

The concept of a program is central to digital computing, both practically,
for it is the means for programming general-purpose digital computers, and
theoretically, for it defines the limits of what can be computed by a universal
machine, such as a universal Turing machine. Therefore it is important to
discuss means for describing or specifying analog computations.
Traditionally, analog computers were used to solve ODEs (and sometimes
PDEs), and so in one sense a mathematical differential equation is one way
to represent an analog computation. However, since the equations were usu-
ally not suitable for direct solution on an analog computer, the process of



252 CHAPTER V. ANALOG COMPUTATION

programming involved the translation of the equations into a schematic dia-
gram showing how the analog computing devices (integrators etc.) should be
connected to solve the problem. These diagrams are the closest analogies to
digital computer programs and may be compared to flowcharts, which were
once popular in digital computer programming. It is worth noting, how-
ever, that flowcharts (and ordinary computer programs) represent sequences
among operations, whereas analog computing diagrams represent functional
relationships among variables, and therefore a kind of parallel data flow.

Differential equations and schematic diagrams are suitable for continuous-
time computation, but for sequential analog computation something more
akin to a conventional digital program can be used. Thus, as previously
discussed (Sec. C.2.b), the BSS system uses flowcharts to describe sequen-
tial computations over the reals. Similarly, Moore (1996) defines recursive
functions over the reals by means of a notation similar to a programming
language.

In principle any sort of analog computation might involve constants that
are arbitrary real numbers, which therefore might not be expressible in finite
form (e.g., as a finite string of digits). Although this is of theoretical interest
(see Sec. F.3 below), from a practical standpoint these constants could be
set with about at most four digits of precision (Rogers & Connolly, 1960,
p. 11). Indeed, automatic potentiometer-setting devices were constructed
that read a series of decimal numerals from punched paper tape and used
them to set the potentiometers for the constants (Truitt & Rogers, 1960,
pp. 3-58-60). Nevertheless it is worth observing that analog computers do
allow continuous inputs that need not be expressed in digital notation, for
example, when the parameters of a simulation are continuously varied by
the operator. In principle, therefore, an analog program can incorporate
constants that are represented by a real-valued physical quantity (e.g., an
angle or a distance), which need not be expressed digitally. Further, as we
have seen (Sec. B.1.b), some electronic analog computers could compute a
function by means of an arbitrarily drawn curve, that is, not represented by
an equation or a finite set of digitized points. Therefore, in the context of
analog computing it is natural to expand the concept of a program beyond
discrete symbols to include continuous representations (scalar magnitudes,
vectors, curves, shapes, surfaces, etc.).

Typically such continuous representations would be used as adjuncts to
conventional discrete representations of the analog computational process,
such as equations or diagrams. However, in some cases the most natural static



C. FUNDAMENTALS OF ANALOG COMPUTING 253

representation of the process is itself continuous, in which case it is more like
a “guiding image” than a textual prescription (MacLennan, 1995). A simple
example is a potential surface, which defines a continuum of trajectories from
initial states (possible inputs) to fixed-point attractors (the results of the
computations). Such a “program” may define a deterministic computation
(e.g., if the computation proceeds by gradient descent), or it may constrain
a nondeterministic computation (e.g., if the computation may proceed by
any potential-decreasing trajectory). Thus analog computation suggests a
broadened notion of programs and programming.

C.4 Characteristics of analog computation
C.4.a PRECISION

Analog computation is evaluated in terms of both accuracy and precision,
but the two must be distinguished carefully (Ashley 1963, pp. 25-8, Weyrick
1969, pp. 12-13, Small 2001, pp. 257-61). Accuracy refers primarily to the
relationship between a simulation and the primary system it is simulating
or, more generally, to the relationship between the results of a computation
and the mathematically correct result. Accuracy is a result of many factors,
including the mathematical model chosen, the way it is set up on a computer,
and the precision of the analog computing devices. Precision, therefore, is a
narrower notion, which refers to the quality of a representation or computing
device. In analog computing, precision depends on resolution (fineness of op-
eration) and stability (absence of drift), and may be measured as a fraction
of the represented value. Thus a precision of 0.01% means that the represen-
tation will stay within 0.01% of the represented value for a reasonable period
of time. For purposes of comparing analog devices, the precision is usually
expressed as a fraction of full-scale variation (i.e., the difference between the
maximum and minimum representable values).

It is apparent that the precision of analog computing devices depends
on many factors. One is the choice of physical process and the way it is
utilized in the device. For example a linear mathematical operation can be
realized by using a linear region of a nonlinear physical process, but the
realization will be approximate and have some inherent imprecision. Also,
associated, unavoidable physical effects (e.g., loading, and leakage and other
losses) may prevent precise implementation of an intended mathematical
function. Further, there are fundamental physical limitations to resolution



254 CHAPTER V. ANALOG COMPUTATION

(e.g., quantum effects, diffraction). Noise is inevitable, both intrinsic (e.g.,
thermal noise) and extrinsic (e.g., ambient radiation). Changes in ambient
physical conditions, such as temperature, can affect the physical processes
and decrease precision. At slower time scales, materials and components
age and their physical characteristics change. In addition, there are always
technical and economic limits to the control of components, materials, and
processes in analog device fabrication.

The precision of analog and digital computing devices depend on very
different factors. The precision of a (binary) digital device depends on the
number of bits, which influences the amount of hardware, but not its quality.
For example, a 64-bit adder is about twice the size of a 32-bit adder, but can
made out of the same components. At worst, the size of a digital device might
increase with the square of the number of bits of precision. This is because
binary digital devices only need to represent two states, and therefore they
can operate in saturation. The fabrication standards sufficient for the first bit
of precision are also sufficient for the 64th bit. Analog devices, in contrast,
need to be able to represent a continuum of states precisely. Therefore, the
fabrication of high-precision analog devices is much more expensive than low-
precision devices, since the quality of components, materials, and processes
must be much more carefully controlled. Doubling the precision of an analog
device may be expensive, whereas the cost of each additional bit of digital
precision is incremental; that is, the cost is proportional to the logarithm of
the precision expressed as a fraction of full range.

The forgoing considerations might seem to be a convincing argument for
the superiority of digital to analog technology, and indeed they were an im-
portant factor in the competition between analog and digital computers in
the middle of the twentieth century (Small, 2001, pp. 257-61). However, as
was argued at that time, many computer applications do not require high pre-
cision. Indeed, in many engineering applications, the input data are known
to only a few digits, and the equations may be approximate or derived from
experiments. In these cases the very high precision of digital computation
is unnecessary and may in fact be misleading (e.g., if one displays all 14
digits of a result that is accurate to only three). Furthermore, many appli-
cations in image processing and control do not require high precision. More
recently, research in artificial neural networks (ANNs) has shown that low-
precision analog computation is sufficient for almost all ANN applications.
Indeed, neural information processing in the brain seems to operate with very
low precision — perhaps less than 10% (McClelland et al., 1986, p. 378) —



C. FUNDAMENTALS OF ANALOG COMPUTING 255

for which it compensates with massive parallelism. For example, by coarse
coding a population of low-precision devices can represent information with
relatively high precision (Rumelhart et al. 1986, pp. 91-6, Sanger 1996).

C.4.b ScCALING

An important aspect of analog computing is scaling, which is used to adjust a
problem to an analog computer. First is time scaling, which adjusts a problem
to the characteristic time scale at which a computer operates, which is a
consequence of its design and the physical processes by which it is realized
(Peterson 1967, pp. 37-44, Rogers & Connolly 1960, pp. 262-3, Weyrick
1969, pp. 241-3). For example, we might want a simulation to proceed on
a very different time scale from the primary system. Thus a weather or
economic simulation should proceed faster than real time in order to get
useful predictions. Conversely, we might want to slow down a simulation of
protein folding so that we can observe the stages in the process. Also, for
accurate results it is necessary to avoid exceeding the maximum response rate
of the analog devices, which might dictate a slower simulation speed. On the
other hand, too slow a computation might be inaccurate as a consequence of
instability (e.g., drift and leakage in the integrators).

Time scaling affects only time-dependant operations such as integration.
For example, suppose ¢, time in the primary system or “problem time,” is
related to 7, time in the computer, by 7 = (t. Therefore, an integration
u(t) = f(f v(t')dt’ in the primary system is replaced by the integration u(7) =
Bt fOTv(T’ )d7" on the computer. Thus time scaling may be accomplished
simply by decreasing the input gain to the integrator by a factor of 5.

Fundamental to analog computation is the representation of a continuous
quantity in the primary system by a continuous quantity in the computer. For
example, a displacement x in meters might be represented by a potential V' in
volts. The two are related by an amplitude or magnitude scale factor, V = azx,
(with units volts/meter), chosen to meet two criteria (Ashley 1963, pp. 103-6,
Peterson 1967, ch. 4, Rogers & Connolly 1960, pp. 127-8, Weyrick 1969, pp.
233-40). On the one hand, a must be sufficiently small so that the range of
the problem variable is accommodated within the range of values supported
by the computing device. Exceeding the device’s intended operating range
may lead to inaccurate results (e.g., forcing a linear device into nonlinear
behavior). On the other hand, the scale factor should not be too small, or
relevant variation in the problem variable will be less than the resolution of



256 CHAPTER V. ANALOG COMPUTATION

the device, also leading to inaccuracy. (Recall that precision is specified as a
fraction of full-range variation.)

In addition to the explicit variables of the primary system, there are im-
plicit variables, such as the time derivatives of the explicit variables, and scale
factors must be chosen for them too. For example, in addition to displace-
ment z, a problem might include velocity @ and acceleration Z. Therefore,
scale factors «, o/, and o must be chosen so that ax, o'z, and o”% have an
appropriate range of variation (neither too large nor too small).

Once a scale factor has been chosen, the primary system equations are
adjusted to obtain the analog computing equations. For example, if we have
scaled u = ax and v = /%, then the integration z(t) = fot z(t")dt’ would be
computed by scaled equation:

This is accomplished by simply setting the input gain of the integrator to
ald.

In practice, time scaling and magnitude scaling are not independent
(Rogers & Connolly, 1960, p. 262). For example, if the derivatives of a
variable can be large, then the variable can change rapidly, and so it may
be necessary to slow down the computation to avoid exceeding the high-
frequency response of the computer. Conversely, small derivatives might
require the computation to be run faster to avoid integrator leakage etc. Ap-
propriate scale factors are determined by considering both the physics and
the mathematics of the problem (Peterson, 1967, pp. 40-4). That is, first,
the physics of the primary system may limit the ranges of the variables and
their derivatives. Second, analysis of the mathematical equations describing
the system can give additional information on the ranges of the variables. For
example, in some cases the natural frequency of a system can be estimated
from the coefficients of the differential equations; the maximum of the nth
derivative is then estimated as the n power of this frequency (Peterson 1967,
p. 42, Weyrick 1969, pp. 238-40). In any case, it is not necessary to have
accurate values for the ranges; rough estimates giving orders of magnitude
are adequate.

It is tempting to think of magnitude scaling as a problem unique to ana-
log computing, but before the invention of floating-point numbers it was also
necessary in digital computer programming. In any case it is an essential as-
pect of analog computing, in which physical processes are more directly used



D. ANALOG COMPUTATION IN NATURE 257

for computation than they are in digital computing. Although the necessity
of scaling has been a source of criticism, advocates for analog computing
have argued that it is a blessing in disguise, because it leads to improved
understanding of the primary system, which was often the goal of the com-
putation in the first place (Bissell 2004, Small 2001, ch. 8). Practitioners of
analog computing are more likely to have an intuitive understanding of both
the primary system and its mathematical description (see Sec. G).

D Analog Computation in Nature

Computational processes—that is to say, information processing and control—
occur in many living systems, most obviously in nervous systems, but also
in the self-organized behavior of groups of organisms. In most cases natural
computation is analog, either because it makes use of continuous natural pro-
cesses, or because it makes use of discrete but stochastic processes. Several
examples will be considered briefly.

D.1 Neural computation

In the past neurons were thought of binary computing devices, something like
digital logic gates. This was a consequence of the “all or nothing” response of
a neuron, which refers to the fact that it does or does not generate an action
potential (voltage spike) depending, respectively, on whether its total input
exceeds a threshold or not (more accurately, it generates an action potential
if the membrane depolarization at the axon hillock exceeds the threshold and
the neuron is not in its refractory period). Certainly some neurons (e.g., so-
called “command neurons”) do act something like logic gates. However, most
neurons are analyzed better as analog devices, because the rate of impulse
generation represents significant information. In particular, an amplitude
code, the membrane potential near the axon hillock (which is a summation
of the electrical influences on the neuron), is translated into a rate code
for more reliable long-distance transmission along the axons. Nevertheless,
the code is low precision (about one digit), since information theory shows
that it takes at least N milliseconds (and probably more like 5N msec.)
to discriminate N values (MacLennan, 1991). The rate code is translated
back to an amplitude code by the synapses, since successive impulses release
neurotransmitter from the axon terminal, which diffuses across the synaptic



258 CHAPTER V. ANALOG COMPUTATION

cleft to receptors. Thus a synapse acts as a leaky integrator to time-average
the impulses.

As previously discussed (Sec. C.1), many artificial neural net models have
real-valued neural activities, which correspond to rate-encoded axonal signals
of biological neurons. On the other hand, these models typically treat the
input connections as simple real-valued weights, which ignores the analog
signal processing that takes place in the dendritic trees of biological neurons.
The dendritic trees of many neurons are complex structures, which often
have tens of thousands of synaptic inputs. The binding of neurotransmitters
to receptors causes minute voltage fluctuations, which propagate along the
membrane, and ultimately cause voltage fluctuations at the axon hillock,
which influence the impulse rate. Since the dendrites have both resistance
and capacitance, to a first approximation the signal propagation is described
by the “cable equations,” which describe passive signal propagation in cables
of specified diameter, capacitance, and resistance (Anderson, 1995, ch. 1).
Therefore, to a first approximation, a neuron’s dendritic net operates as an
adaptive linear analog filter with thousands of inputs, and so it is capable
of quite complex signal processing. More accurately, however, it must be
treated as a nonlinear analog filter, since voltage-gated ion channels introduce
nonlinear effects. The extent of analog signal processing in dendritic trees is
still poorly understood.

In most cases, then, neural information processing is treated best as
low-precision analog computation. Although individual neurons have quite
broadly tuned responses, accuracy in perception and sensorimotor control is
achieved through coarse coding, as already discussed (Sec. C.4). Further,
one widely used neural representation is the cortical map, in which neurons
are systematically arranged in accord with one or more dimensions of their
stimulus space, so that stimuli are represented by patterns of activity over
the map. (Examples are tonotopic maps, in which pitch is mapped to cortical
location, and retinotopic maps, in which cortical location represents retinal
location.) Since neural density in the cortex is at least 146 000 neurons per
square millimeter (Changeux, 1985, p. 51), even relatively small cortical maps
can be treated as fields and information processing in them as analog field
computation. Overall, the brain demonstrates what can be accomplished
by massively parallel analog computation, even if the individual devices are
comparatively slow and of low precision.



D. ANALOG COMPUTATION IN NATURE 259

D.2 Adaptive self-organization in social insects

Another example of analog computation in nature is provided by the self-
organizing behavior of social insects, microorganisms, and other populations
(Camazine et al., 2001). Often such organisms respond to concentrations, or
gradients in the concentrations, of chemicals produced by other members of
the population. These chemicals may be deposited and diffuse through the
environment. In other cases, insects and other organisms communicate by
contact, but may maintain estimates of the relative proportions of different
kinds of contacts. Because the quantities are effectively continuous, all these
are examples of analog control and computation.

Self-organizing populations provide many informative examples of the use
of natural processes for analog information processing and control. For ex-
ample, diffusion of pheromones is a common means of self-organizzation in
insect colonies, facilitating the creation of paths to resources, the construction
of nests, and many other functions (Camazine et al., 2001). Real diffusion
(as opposed to sequential simulations of it) executes, in effect, a massively
parallel search of paths from the chemical’s source to its recipients and al-
lows the identification of near-optimal paths. Furthermore, if the chemical
degrades, as is generally the case, then the system will be adaptive, in effect
continually searching out the shortest paths, so long as source continues to
function (Camazine et al., 2001). Simulated diffusion has been applied to
robot path planning (Khatib, 1986; Rimon & Koditschek, 1989).

D.3 Genetic circuits

Another example of natural analog computing is provided by the genetic reg-
ulatory networks that control the behavior of cells, in multicellular organisms
as well as single-celled ones (Davidson, 2006). These networks are defined by
the mutually interdependent regulatory genes, promoters, and repressors that
control the internal and external behavior of a cell. The interdependencies
are mediated by proteins, the synthesis of which is governed by genes, and
which in turn regulate the synthesis of other gene products (or themselves).
Since it is the quantities of these substances that is relevant, many of the
regulatory motifs can be described in computational terms as adders, sub-
tracters, integrators, etc. Thus the genetic regulatory network implements
an analog control system for the cell (Reiner, 1968).

It might be argued that the number of intracellular molecules of a par-



260 CHAPTER V. ANALOG COMPUTATION

ticular protein is a (relatively small) discrete number, and therefore that it
is inaccurate to treat it as a continuous quantity. However, the molecular
processes in the cell are stochastic, and so the relevant quantity is the prob-
ability that a regulatory protein will bind to a regulatory site. Further, the
processes take place in continuous real time, and so the rates are generally the
significant quantities. Finally, although in some cases gene activity is either
on or off (more accurately: very low), in other cases it varies continuously
between these extremes (Hartl, 1994, pp. 388-90).

Embryological development combines the analog control of individual cells
with the sort of self-organization of populations seen in social insects and
other colonial organisms. Locomotion of the cells and the expression of spe-
cific genes is controlled by chemical signals, among other mechanisms (David-
son, 2006; Davies, 2005). Thus PDEs have proved useful in explaining some
aspects of development; for example reaction-diffusion equations have been
used to describe the formation of hair-coat patterns and related phenomena
(Camagzine et al., 2001; Maini & Othmer, 2001; Murray, 1977). Therefore
the developmental process is governed by naturally occurring analog compu-
tation.

D.4 Is everything a computer?

It might seem that any continuous physical process could be viewed as analog
computation, which would make the term almost meaningless. As the ques-
tion has been put, is it meaningful (or useful) to say that the solar system
is computing Kepler’s laws? In fact, it is possible and worthwhile to make a
distinction between computation and other physical processes that happen
to be described by mathematical laws (MacLennan, 1994a,c, 2001, 2004).

If we recall the original meaning of analog computation (Sec. A), we see
that the computational system is used to solve some mathematical problem
with respect to a primary system. What makes this possible is that the com-
putational system and the primary system have the same, or systematically
related, abstract (mathematical) structures. Thus the computational system
can inform us about the primary system, or be used to control it, etc. Al-
though from a practical standpoint some analogs are better than others, in
principle any physical system can be used that obeys the same equations as
the primary system.

Based on these considerations we may define computation as a physical
process the purpose of which is the abstract manipulation of abstract objects



E. GENERAL-PURPOSE ANALOG COMPUTATION 261

(i.e., information processing); this definition applies to analog, digital, and
hybrid computation (MacLennan, 1994a,c, 2001, 2004). Therefore, to deter-
mine if a natural system is computational we need to look to its purpose or
function within the context of the living system of which it is a part. One
test of whether its function is the abstract manipulation of abstract objects is
to ask whether it could still fulfill its function if realized by different physical
processes, a property called multiple realizability. (Similarly, in artificial sys-
tems, a simulation of the economy might be realized equally accurately by a
hydraulic analog computer or an electronic analog computer (Bissell, 2004).)
By this standard, the majority of the nervous system is purely computational;
in principle it could be replaced by electronic devices obeying the same dif-
ferential equations. In the other cases we have considered (self-organization
of living populations, genetic circuits) there are instances of both pure com-
putation and computation mixed with other functions (for example, where
the specific substances used have other—e.g. metabolic—roles in the living
system).

E General-purpose analog computation

E.1 The importance of general-purpose computers

Although special-purpose analog and digital computers have been developed,
and continue to be developed, for many purposes, the importance of general-
purpose computers, which can be adapted easily for a wide variety of pur-
poses, has been recognized since at least the nineteenth century. Babbage’s
plans for a general-purpose digital computer, his analytical engine (1835),
are well known, but a general-purpose differential analyzer was advocated
by Kelvin (Thomson, 1876). Practical general-purpose analog and digital
computers were first developed at about the same time: from the early 1930s
through the war years. General-purpose computers of both kinds permit the
prototyping of special-purpose computers and, more importantly, permit the
flexible reuse of computer hardware for different or evolving purposes.

The concept of a general-purpose computer is useful also for determin-
ing the limits of a computing paradigm. If one can design—theoretically
or practically—a universal computer, that is, a general-purpose computer
capable of simulating any computer in a relevant class, then anything un-
computable by the universal computer will also be uncomputable by any



262 CHAPTER V. ANALOG COMPUTATION

computer in that class. This is, of course, the approach used to show that
certain functions are uncomputable by any Turing machine because they
are uncomputable by a universal Turing machine. For the same reason, the
concept of general-purpose analog computers, and in particular of universal
analog computers are theoretically important for establishing limits to analog
computation.

E.2 General-purpose electronic analog computers

Before taking up these theoretical issues, it is worth recalling that a typ-
ical electronic GPAC would include linear elements, such as adders, sub-
tracters, constant multipliers, integrators, and differentiators; nonlinear ele-
ments, such as variable multipliers and function generators; other computa-
tional elements, such as comparators, noise generators, and delay elements
(Sec. B.1.b). These are, of course, in addition to input/output devices, which
would not affect its computational abilities.

E.3 Shannon’s analysis

Claude Shannon did an important analysis of the computational capabil-
ities of the differential analyzer, which applies to many GPACs (Shannon,
1941, 1993). He considered an abstract differential analyzer equipped with an
unlimited number of integrators, adders, constant multipliers, and function
generators (for functions with only a finite number of finite discontinuities),
with at most one source of drive (which limits possible interconnections be-
tween units). This was based on prior work that had shown that almost
all the generally used elementary functions could be generated with addition
and integration. We will summarize informally a few of Shannon’s results;
for details, please consult the original paper.

First Shannon offers proofs that, by setting up the correct ODEs, a GPAC
with the mentioned facilities can generate any function if and only if is not
hypertranscendental (Theorem II); thus the GPAC can generate any function
that is algebraic transcendental (a very large class), but not, for example,
Euler’'s gamma function and Riemann’s zeta function. He also shows that
the GPAC can generate functions derived from generable functions, such as
the integrals, derivatives, inverses, and compositions of generable functions
(Thms. III, IV). These results can be generalized to functions of any number



E. GENERAL-PURPOSE ANALOG COMPUTATION 263

of variables, and to their compositions, partial derivatives, and inverses with
respect to any one variable (Thms. VI, VII, IX, X).

Next Shannon shows that a function of any number of variables that
is continuous over a closed region of space can be approximated arbitrarily
closely over that region with a finite number of adders and integrators (Thms.
V, VIII).

Shannon then turns from the generation of functions to the solution of
ODEs and shows that the GPAC can solve any system of ODEs defined in
terms of non-hypertranscendental functions (Thm. XI).

Finally, Shannon addresses a question that might seem of limited interest,
but turns out to be relevant to the computational power of analog computers
(see Sec. F below). To understand it we must recall that he was investigating
the differential analyzer—a mechanical analog computer—but similar issues
arise in other analog computing technologies. The question is whether it is
possible to perform an arbitrary constant multiplication, v = kv, by means of
gear ratios. He show that if we have just two gear ratios a and b (a,b # 0, 1),
such that b is not a rational power of a, then by combinations of these gears
we can approximate k arbitrarily closely (Thm. XII). That is, to approximate
multiplication by arbitrary real numbers, it is sufficient to be able to multiply
by a, b, and their inverses, provided a and b are not related by a rational
power.

Shannon mentions an alternative method of constant multiplication, which
uses integration, kv = fov kdv, but this requires setting the integrand to the
constant function k. Therefore, multiplying by an arbitrary real number re-
quires the ability to input an arbitrary real as the integrand. The issue of
real-valued inputs and outputs to analog computers is relevant both to their
theoretical power and to practical matters of their application (see Sec. F.3).

Shannon’s proofs, which were incomplete, were eventually refined by
Pour-El (1974a) and finally corrected by Lipshitz & Rubel (1987). Rubel
(1988) proved that Shannon’s GPAC cannot solve the Dirichlet problem for
Laplace’s equation on the disk; indeed, it is limited to initial-value problems
for algebraic ODEs. Specifically, the Shannon—Pour-El Thesis is that the
outputs of the GPAC are exactly the solutions of the algebraic differential
equations, that is, equations of the form

Pla,y(z), ' (x),y" (), ...y (x)] =0,

where P is a polynomial that is not identically vanishing in any of its vari-
ables (these are the differentially algebraic functions) (Rubel, 1985). (For



264 CHAPTER V. ANALOG COMPUTATION

details please consult the cited papers.) The limitations of Shannon’s GPAC
motivated Rubel’s definition of the Extended Analog Computer.

E.4 Rubel’s Extended Analog Computer

The combination of Rubel’s (1985) conviction that the brain is an analog
computer together with the limitations of Shannon’s GPAC led him to pro-
pose the Extended Analog Computer (EAC) (Rubel, 1993).

Like Shannon’s GPAC (and the Turing machine), the EAC is a concep-
tual computer intended to facilitate theoretical investigation of the limits of
a class of computers. The EAC extends the GPAC in a number of respects.
For example, whereas the GPAC solves equations defined over a single vari-
able (time), the EAC can generate functions over any finite number of real
variables. Further, whereas the GPAC is restricted to initial-value problems
for ODEs, the EAC solves both initial- and boundary-value problems for a
variety of PDEs.

The EAC is structured into a series of levels, each more powerful than the
ones below it, from which it accepts inputs. The inputs to the lowest level
are a finite number of real variables (“settings”). At this level it operates on
real polynomials, from which it is able to generate the differentially algebraic
functions. The computation on each level is accomplished by conceptual
analog devices, which include constant real-number generators, adders, mul-
tipliers, differentiators, “substituters” (for function composition), devices for
analytic continuation, and inverters, which solve systems of equations de-
fined over functions generated by the lower levels. Most characteristic of the
EAC is the “boundary-value-problem box,” which solves systems of PDEs
and ODEs subject to boundary conditions and other constraints. The PDEs
are defined in terms of functions generated by the lower levels. Such PDE
solvers may seem implausible, and so it is important to recall field-computing
devices for this purpose were implemented in some practical analog comput-
ers (see Sec. B.1) and more recently in Mills’ EAC (Mills et al., 2006). As
Rubel observed, PDE solvers could be implemented by physical processes
that obey the same PDEs (heat equation, wave equation, etc.). (See also
Sec. H.1 below.)

Finally, the EAC is required to be “extremely well-posed,” which means
that each level is relatively insensitive to perturbations in its inputs; thus
“all the outputs depend in a strongly deterministic and stable way on the
initial settings of the machine” (Rubel, 1993).



F. ANALOG COMPUTATION AND THE TURING LIMIT 265

Rubel (1993) proves that the EAC can compute everything that the
GPAC can compute, but also such functions as the gamma and zeta, and
that it can solve the Dirichlet problem for Laplace’s equation on the disk, all
of which are beyond the GPAC’s capabilities. Further, whereas the GPAC
can compute differentially algebraic functions of time, the EAC can compute
differentially algebraic functions of any finite number of real variables. In
fact, Rubel did not find any real-analytic (C*°) function that is not com-
putable on the EAC, but he observes that if the EAC can indeed generate
every real-analytic function, it would be too broad to be useful as a model
of analog computation.

F Analog computation and the Turing limit

F.1 Introduction

The Church-Turing Thesis asserts that anything that is effectively com-
putable is computable by a Turing machine, but the Turing machine (and
equivalent models, such as the lambda calculus) are models of discrete com-
putation, and so it is natural to wonder how analog computing compares in
power, and in particular whether it can compute beyond the “Turing limit.”
Superficial answers are easy to obtain, but the issue is subtle because it de-
pends upon choices among definitions, none of which is obviously correct,
it involves the foundations of mathematics and its philosophy, and it raises
epistemological issues about the role of models in scientific theories. This is
an active research area, but many of the results are apparently inconsistent
due to the differing assumptions on which they are based. Therefore this
section will be limited to a mention of a few of the interesting results, but
without attempting a comprehensive, systematic, or detailed survey; Siegel-
mann (1999) can serve as an introduction to the literature.

F.2 A sampling of theoretical results
F.2.a CONTINUOUS-TIME MODELS

Orponen’s (1997) survey of continuous-time computation theory is a good
introduction to the literature as of that time; here we give a sample of these
and more recent results.



266 CHAPTER V. ANALOG COMPUTATION

There are several results showing that—under various assumptions—
analog computers have at least the power of Turing machines (TMs). For
example, Branicky (1994) showed that a TM could be simulated by ODEs,
but he used non-differentiable functions; Bournez et al. (2006) provide an
alternative construction using only analytic functions. They also prove that
the GPAC computability coincides with (Turing-)computable analysis, which
is surprising, since the gamma function is Turing-computable but, as we have
seen, the GPAC cannot generate it. The paradox is resolved by a distinction
between generating a function and computing it, with the latter, broader no-
tion permitting convergent computation of the function (that is, as t — 00).
However, the computational power of general ODEs has not been determined
in general (Siegelmann, 1999, p. 149). M. B. Pour-El and I. Richards exhibit
a Turing-computable ODE that does not have a Turing-computable solution
(Pour-El & Richards, 1979, 1982). Stannett (1990) also defined a continuous-
time analog computer that could solve the halting problem.

Moore (1996) defines a class of continuous-time recursive functions over
the reals, which includes a zero-finding operator x. Functions can be classified
into a hierarchy depending on the number of uses of i, with the lowest level
(no us) corresponding approximately to Shannon’s GPAC. Higher levels can
compute non-Turing-computable functions, such as the decision procedure
for the halting problem, but he questions whether this result is relevant in
the physical world, which is constrained by “noise, quantum effects, finite
accuracy, and limited resources.” Bournez & Cosnard (1996) have extended
these results and shown that many dynamical systems have super-Turing
power.

Omohundro (1984) showed that a system of ten coupled nonlinear PDEs
could simulate an arbitrary cellular automaton, which implies that PDEs
have at least Turing power. Further, D. Wolpert and B. J. MacLennan
(Wolpert, 1991; Wolpert & MacLennan, 1993) showed that any TM can be
simulated by a field computer with linear dynamics, but the construction
uses Dirac delta functions. Pour-El and Richards exhibit a wave equation
in three-dimensional space with Turing-computable initial conditions, but
for which the unique solution is Turing-uncomputable (Pour-El & Richards,
1981, 1982).



F. ANALOG COMPUTATION AND THE TURING LIMIT 267

F.2.b SEQUENTIAL-TIME MODELS

We will mention a few of the results that have been obtained concerning the
power of sequential-time analog computation.

Although the BSS model has been investigated extensively, its power
has not been completely determined (Blum et al., 1998, 1988). It is known
to depend on whether just rational numbers or arbitrary real numbers are
allowed in its programs (Siegelmann, 1999, p. 148).

A coupled map lattice (CML) is a cellular automaton with real-valued
states; it is a sequential-time analog computer, which can be considered a
discrete-space approximation to a simple sequential-time field computer. Or-
ponen & Matamala (1996) showed that a finite CML can simulate a universal
Turing machine. However, since a CML can simulate a BSS program or a
recurrent neural network (see Sec. F.2.c below), it actually has super-Turing
power (Siegelmann, 1999, p. 149).

Recurrent neural networks are some of the most important examples of
sequential analog computers, and so the following section is devoted to them.

F.2.c RECURRENT NEURAL NETWORKS

With the renewed interest in neural networks in the mid-1980s, many in-
vestigators wondered if recurrent neural nets have super-Turing power. M.
Garzon and S. Franklin showed that a sequential-time net with a countable
infinity of neurons could exceed Turing power (Franklin & Garzon, 1990; Gar-
zon & Franklin, 1989, 1990). Indeed, Siegelmann & Sontag (1994b) showed
that finite neural nets with real-valued weights have super-Turing power, but
Maass & Sontag (1999b) showed that recurrent nets with Gaussian or sim-
ilar noise had sub-Turing power, illustrating again the dependence on these
results on assumptions about what is a reasonable mathematical model of
analog computing.

For recent results on recurrent neural networks, we will restrict our at-
tention of the work of Siegelmann (1999), who addresses the computational
power of these network in terms of the classes of languages they can rec-
ognize. Without loss of generality the languages are restricted to sets of
binary strings. A string to be tested is fed to the network one bit at a time,
along with an input that indicates when the end of the input string has been
reached. The network is said to decide whether the string is in the language if
it correctly indicates whether it is in the set or not, after some finite number



268 CHAPTER V. ANALOG COMPUTATION

of sequential steps since input began.

Siegelmann shows that, if exponential time is allowed for recognition,
finite recurrent neural networks with real-valued weights (and saturated-
linear activation functions) can compute all languages, and thus they are
more powerful than Turing machines. Similarly, stochastic networks with
rational weights also have super-Turing power, although less power than the
deterministic nets with real weights. (Specifically, they compute P/POLY
and BPP /log™ respectively; see Siegelmann 1999, chs. 4, 9 for details.) She
further argues that these neural networks serve as a “standard model” of
(sequential) analog computation (comparable to Turing machines in Church-
Turing computation), and therefore that the limits and capabilities of these
nets apply to sequential analog computation generally.

Siegelmann (1999, p 156) observes that the super-Turing power of recur-
rent neural networks is a consequence of their use of non-rational real-valued
weights. In effect, a real number can contain an infinite number of bits of
information. This raises the question of how the non-rational weights of a net-
work can ever be set, since it is not possible to define a physical quantity with
infinite precision. However, although non-rational weights may not be able
to be set from outside the network, they can be computed within the network
by learning algorithms, which are analog computations. Thus, Siegelmann
suggests, the fundamental distinction may be between static computational
models, such as the Turing machine and its equivalents, and dynamically
evolving computational models, which can tune continuously variable param-
eters and thereby achieve super-Turing power.

F.2.d DISSIPATIVE MODELS

Beyond the issue of the power of analog computing relative to the Tur-
ing limit, there are also questions of its relative efficiency. For example,
could analog computing solve NP-hard problems in polynomial or even lin-
ear time? In traditional computational complexity theory, efficiency issues
are addressed in terms of the asymptotic number of computation steps to
compute a function as the size of the function’s input increases. One way to
address corresponding issues in an analog context is by treating an analog
computation as a dissipative system, which in this context means a system
that decreases some quantity (analogous to energy) so that the system state
converges to an point attractor. From this perspective, the initial state of
the system incorporates the input to the computation, and the attractor



F. ANALOG COMPUTATION AND THE TURING LIMIT 269

represents its output. Therefore, H. T. Sieglemann, S. Fishman, and A.
Ben-Hur have developed a complexity theory for dissipative systems, in both
sequential and continuous time, which addresses the rate of convergence in
terms of the underlying rates of the system (Ben-Hur et al., 2002; Siegelmann
et al., 1999). The relation between dissipative complexity classes (e.g., Py,
NP,) and corresponding classical complexity classes (P, NP) remains unclear
(Siegelmann, 1999, p. 151).

F.3 Real-valued inputs, output, and constants

A common argument, with relevance to the theoretical power of analog com-
putation, is that an input to an analog computer must be determined by
setting a dial to a number or by typing a number into digital-to-analog con-
version device, and therefore that the input will be a rational number. The
same argument applies to any internal constants in the analog computation.
Similarly, it is argued, any output from an analog computer must be mea-
sured, and the accuracy of measurement is limited, so that the result will
be a rational number. Therefore, it is claimed, real numbers are irrelevant
to analog computing, since any practical analog computer computes a func-
tion from the rationals to the rationals, and can therefore be simulated by a
Turing machine.?

There are a number of interrelated issues here, which may be considered
briefly. First, the argument is couched in terms of the input or output of
digital representations, and the numbers so represented are necessarily ratio-
nal (more generally, computable). This seems natural enough when we think
of an analog computer as a calculating device, and in fact many historical
analog computers were used in this way and had digital inputs and outputs
(since this is our most reliable way of recording and reproducing quantities).

However, in many analog control systems, the inputs and outputs are con-
tinuous physical quantities that vary continuously in time (also a continuous
physical quantity); that is, according to current physical theory, these quan-
tities are real numbers, which vary according to differential equations. It is
worth recalling that physical quantities are neither rational nor irrational;
they can be so classified only in comparison with each other or with respect
to a unit, that is, only if they are measured and digitally represented. Fur-
thermore, physical quantities are neither computable nor uncomputable (in

2See related arguments by Martin Davis (2004, 2006).



270 CHAPTER V. ANALOG COMPUTATION

a Church-Turing sense); these terms apply only to discrete representations
of these quantities (i.e., to numerals or other digital representations).

Therefore, in accord with ordinary mathematical descriptions of physical
processes, analog computations can can be treated as having arbitrary real
numbers (in some range) as inputs, outputs, or internal states; like other
continuous processes, continuous-time analog computations pass through all
the reals in some range, including non-Turing-computable reals. Paradox-
ically, however, these same physical processes can be simulated on digital
computers.

F.4 The issue of simulation by Turing machines and
digital computers

Theoretical results about the computational power, relative to Turing ma-
chines, of neural networks and other analog models of computation raise
difficult issues, some of which are epistemological rather than strictly tech-
nical. On the one hand, we have a series of theoretical results proving the
super-Turing power of analog computation models of various kinds. On the
other hand, we have the obvious fact that neural nets are routinely simulated
on ordinary digital computers, which have at most the power of Turing ma-
chines. Furthermore, it is reasonable to suppose that any physical process
that might be used to realize analog computation—and certainly the known
processes—could be simulated on a digital computer, as is done routinely in
computational science. This would seem to be incontrovertible proof that
analog computation is no more powerful than Turing machines. The crux
of the paradox lies, of course, in the non-Turing-computable reals. These
numbers are a familiar, accepted, and necessary part of standard mathe-
matics, in which physical theory is formulated, but from the standpoint of
Church-Turing (CT) computation they do not exist. This suggests that the
the paradox is not a contradiction, but reflects a divergence between the
goals and assumptions of the two models of computation.

F.5 The problem of models of computation

These issues may be put in context by recalling that the Church-Turing (CT)
model of computation is in fact a model, and therefore that it has the limita-
tions of all models. A model is a cognitive tool that improves our ability to



F. ANALOG COMPUTATION AND THE TURING LIMIT 271

understand some class of phenomena by preserving relevant characteristics
of the phenomena while altering other, irrelevant (or less relevant) charac-
teristics. For example, a scale model alters the size (taken to be irrelevant)
while preserving shape and other characteristics. Often a model achieves
its purposes by making simplifying or idealizing assumptions, which facili-
tate analysis or simulation of the system. For example, we may use a linear
mathematical model of a physical process that is only approximately linear.
For a model to be effective it must preserve characteristics and make sim-
plifying assumptions that are appropriate to the domain of questions it is
intended to answer, its frame of relevance (MacLennan, 2004). If a model
is applied to problems outside of its frame of relevance, then it may give
answers that are misleading or incorrect, because they depend more on the
simplifying assumptions than on the phenomena being modeled. Therefore
we must be especially cautious applying a model outside of its frame of rel-
evance, or even at the limits of its frame, where the simplifying assumptions
become progressively less appropriate. The problem is aggravated by the fact
that often the frame of relevance is not explicitly defined, but resides in a
tacit background of practices and skills within some discipline.

Therefore, to determine the applicability of the CT model of computa-
tion to analog computing, we must consider the frame of relevance of the
CT model. This is easiest if we recall the domain of issues and questions
it was originally developed to address: issues of effective calculability and
derivability in formalized mathematics. This frame of relevance determines
many of the assumptions of the CT model, for example, that information is
represented by finite discrete structures of symbols from a finite alphabet,
that information processing proceeds by the application of definite formal
rules at discrete instants of time, and that a computational or derivational
process must be completed in a finite number of these steps.> Many of these
assumptions are incompatible with analog computing and with the frames of
relevance of many models of analog computation.

F.6 Relevant issues for analog computation

Analog computation is often used for control. Historically, analog computers
were used in control systems and to simulate control systems, but contempo-

3See MacLennan (2003, 2004) for a more detailed discussion of the frame of relevance
of the CT model.



272 CHAPTER V. ANALOG COMPUTATION

rary analog VLSI is also frequently applied in control. Natural analog com-
putation also frequently serves a control function, for example, sensorimotor
control by the nervous system, genetic regulation in cells, and self-organized
cooperation in insect colonies. Therefore, control systems delimit one frame
of relevance for models of analog computation.

In this frame of relevance real-time response is a critical issue, which mod-
els of analog computation, therefore, ought to be able to address. Thus it
is necessary to be able to relate the speed and frequency response of analog
computation to the rates of the physical processes by which the computa-
tion is realized. Traditional methods of algorithm analysis, which are based
on sequential time and asymptotic behavior, are inadequate in this frame
of relevance. On the one hand, the constants (time scale factors), which
reflect the underlying rate of computation are absolutely critical (but ig-
nored in asymptotic analysis); on the other hand, in control applications the
asymptotic behavior of algorithm is generally irrelevant, since the inputs are
typically fixed in size or of a limited range of sizes.

The CT model of computation is oriented around the idea that the pur-
pose of a computation is to evaluate a mathematical function. Therefore
the basic criterion of adequacy for a computation is correctness, that is, that
given a precise representation of an input to the function, it will produce (af-
ter finitely many steps) a precise representation of the corresponding output
of the function. In the context of natural computation and control, however,
other criteria may be equally or even more relevant. For example, robustness
is important: how well does the system respond in the presence of noise,
uncertainty, imprecision, and error, which are unavoidable in physical nat-
ural and artificial control systems, and how well does it respond to defects
and damage, which arise in many natural and artificial contexts. Since the
real world is unpredictable, flexibility is also important: how well does an
artificial system respond to inputs for which it was not designed, and how
well does a natural system behave in situations outside the range of those to
which it is evolutionarily adapted. Therefore, adaptability (through learning
and other means) is another important issue in this frame of relevance.*

4See MacLennan (2003, 2004) for a more detailed discussion of the frames of relevance
of natural computation and control.



G. ANALOG THINKING 273

F.7 Transcending Turing computability

Thus we see that many applications of analog computation raise different
questions from those addressed by the CT model of computation; the most
useful models of analog computing will have a different frame of relevance.
In order to address traditional questions such as whether analog computers
can compute “beyond the Turing limit,” or whether they can solve NP-hard
problems in polynomial time, it is necessary to construct models of analog
computation within the CT frame of relevance. Unfortunately, constructing
such models requires making commitments about many issues (such as the
representation of reals and the discretization of time), that may affect the
answers to these questions, but are fundamentally unimportant in the frame
of relevance of the most useful applications of the concept of analog compu-
tation. Therefore, being overly focused on traditional problems in the theory
of computation (which was formulated for a different frame of relevance) may
distract us from formulating models of analog computation that can address
important issues in its own frame of relevance.

G Analog thinking

It will be worthwhile to say a few words about the cognitive implications of
analog computing, which are a largely forgotten aspect of analog vs. digital
debates of the late 20th century. For example, it was argued that analog
computing provides a deeper intuitive understanding of a system than the
alternatives do (Bissell 2004, Small 2001, ch. 8). On the one hand, analog
computers afforded a means of understanding analytically intractable sys-
tems by means of “dynamic models.” By setting up an analog simulation, it
was possible to vary the parameters and explore interactively the behavior
of a dynamical system that could not be analyzed mathematically. Digital
simulations, in contrast, were orders of magnitude slower and did not permit
this kind of interactive investigation. (Performance has improved sufficiently
in contemporary digital computers so that in many cases digital simulations
can be used as dynamic models, sometimes with an interface that mimics an
analog computer; see Bissell 2004.)

Analog computing is also relevant to the cognitive distinction between
knowing how (procedural knowledge) and knowing that (declarative knowl-
edge) (Small, 2001, ch. 8). The latter (“know-that”) is more characteristic of



274 CHAPTER V. ANALOG COMPUTATION

scientific culture, which strives for generality and exactness, often by design-
ing experiments that allow phenomena to be studied in isolation, whereas the
former (“know-how”) is more characteristic of engineering culture; at least
it was so through the first half of the twentieth century, before the develop-
ment of “engineering science” and the widespread use of analytic techniques
in engineering education and practice. Engineers were faced with analyt-
ically intractable systems, with inexact measurements, and with empirical
relationships (characteristic curves, etc.), all of which made analog comput-
ers attractive for solving engineering problems. Furthermore, because ana-
log computing made use of physical phenomena that were mathematically
analogous to those in the primary system, the engineer’s intuition and un-
derstanding of one system could be transferred to the other. Some commen-
tators have mourned the loss of hands-on intuitive understanding resulting
from the increasingly scientific orientation of engineering education and the
disappearance of analog computers (Bissell, 2004; Lang, 2000; Owens, 1986;
Puchta, 1996).

I will mention one last cognitive issue relevant to the differences between
analog and digital computing. As already discussed Sec. C.4, it is generally
agreed that it is less expensive to achieve high precision with digital tech-
nology than with analog technology. Of course, high precision may not be
important, for example when the available data are inexact or in natural
computation. Further, some advocates of analog computing argue that high
precision digital results are often misleading (Small, 2001, p. 261). Precision
does not imply accuracy, and the fact that an answer is displayed with 10
digits does not guarantee that it is accurate to 10 digits; in particular, engi-
neering data may be known to only a few significant figures, and the accuracy
of digital calculation may be limited by numerical problems. Therefore, on
the one hand, users of digital computers might fall into the trap of trusting
their apparently exact results, but users of modest-precision analog comput-
ers were more inclined to healthy skepticism about their computations. Or
so it was claimed.



H. FUTURE DIRECTIONS 275

H Future directions

H.1 Post-Moore’s Law computing

Certainly there are many purposes that are best served by digital technology;
indeed there is a tendency nowadays to think that everything is done better
digitally. Therefore it will be worthwhile to consider whether analog com-
putation should have a role in future computing technologies. I will argue
that the approaching end of Moore’s Law (Moore, 1965), which has predicted
exponential growth in digital logic densities, will encourage the development
of new analog computing technologies.

Two avenues present themselves as ways toward greater computing power:
faster individual computing elements and greater densities of computing el-
ements. Greater density increases power by facilitating parallel computing,
and by enabling greater computing power to be put into smaller packages.
Other things being equal, the fewer the layers of implementation between the
computational operations and the physical processes that realize them, that
is to say, the more directly the physical processes implement the computa-
tions, the more quickly they will be able to proceed. Since most physical pro-
cesses are continuous (defined by differential equations), analog computation
is generally faster than digital. For example, we may compare analog addi-
tion, implemented directly by the additive combination of physical quantities,
with the sequential process of digital addition. Similarly, other things being
equal, the fewer physical devices required to implement a computational ele-
ment, the greater will be the density of these elements. Therefore, in general,
the closer the computational process is to the physical processes that realize
it, the fewer devices will be required, and so the continuity of physical law
suggests that analog computation has the potential for greater density than
digital. For example, four transistors can realize analog addition, whereas
many more are required for digital addition. Both considerations argue for
an increasing role of analog computation in post-Moore’s Law computing.

From this broad perspective, there are many physical phenomena that are
potentially usable for future analog computing technologies. We seek phe-
nomena that can be described by well-known and useful mathematical func-
tions (e.g., addition, multiplication, exponential, logarithm, convolution).
These descriptions do not need to be exact for the phenomena to be useful
in many applications, for which limited range and precision are adequate.
Furthermore, in some applications speed is not an important criterion; for



276 CHAPTER V. ANALOG COMPUTATION

example, in some control applications, small size, low power, robustness,
etc. may be more important than speed, so long as the computer responds
quickly enough to accomplish the control task. Of course there are many
other considerations in determining whether given physical phenomena can
be used for practical analog computation in a given application (MacLen-
nan, 2009). These include stability, controllability, manufacturability, and
the ease of interfacing with input and output transducers and other devices.
Nevertheless, in the post-Moore’s Law world, we will have to be willing to
consider all physical phenomena as potential computing technologies, and in
many cases we will find that analog computing is the most effective way to
utilize them.

Natural computation provides many examples of effective analog com-
putation realized by relatively slow, low-precision operations, often through
massive parallelism. Therefore, post-Moore’s Law computing has much to
learn from the natural world.



