
124 CHAPTER III. QUANTUM COMPUTATIONQuantum algorithms 33

Figure 1.19. Quantum circuit implementing Deutsch’s algorithm.

is sent through two Hadamard gates to give

|�1i =
 |0i + |1ip

2

�  |0i � |1ip
2

�
. (1.42)

A little thought shows that if we apply Uf to the state |xi(|0i � |1i)/
p
2 then we obtain

the state (�1)f (x)|xi(|0i � |1i)/
p
2. Applying Uf to |�1i therefore leaves us with one of

two possibilities:

|�2i =

8
����<

����:

±
 |0i + |1ip

2

�  |0i � |1ip
2

�
if f (0) = f (1)

±
 |0i � |1ip

2

�  |0i � |1ip
2

�
if f (0) 6= f (1).

(1.43)

The final Hadamard gate on the first qubit thus gives us

|�3i =

8
����<

����:

±|0i
 |0i � |1ip

2

�
if f (0) = f (1)

±|1i
 |0i � |1ip

2

�
if f (0) 6= f (1).

(1.44)

Realizing that f (0)� f (1) is 0 if f (0) = f (1) and 1 otherwise, we can rewrite this result
concisely as

|�3i = ±|f (0)� f (1)i
 |0i � |1ip

2

�
, (1.45)

so by measuring the first qubit we may determine f (0) � f (1). This is very interesting
indeed: the quantum circuit has given us the ability to determine a global property of
f (x), namely f (0)�f (1), using only one evaluation of f (x)! This is faster than is possible
with a classical apparatus, which would require at least two evaluations.
This example highlights the difference between quantum parallelism and classical

randomized algorithms. Naively, one might think that the state |0i|f (0)i + |1i|f (1)i
corresponds rather closely to a probabilistic classical computer that evaluates f (0) with
probability one-half, or f (1) with probability one-half. The difference is that in a classical
computer these two alternatives forever exclude one another; in a quantum computer it is

Figure III.22: Quantum circuit for Deutsch algorithm. [fig. from Nielsen &
Chuang (2010)]

D Quantum algorithms

D.1 Deutsch-Jozsa algorithm

D.1.a Deutsch’s algorithm

In this section you will encounter your first example of a quantum algorithm
that can compute faster than a classical algorithm for the same problem.
This is a simplified version of Deutsch’s original algorithm, which shows how
it is possible to extract global information about a function by using quantum
parallelism and interference (Fig. III.22).8

Suppose we have a function f : 2 ! 2, as in Sec. C.5. The goal is to
determine whether f(0) = f(1) with a single function evaluation. This is
not a very interesting problem (since there are only four such functions), but
it is a warmup for the Deutsch-Jozsa algorithm. Simple as it is, it could be
expensive to decide on a classical computer. For example, suppose f(0) =
the billionth bit of ⇡ and f(1) = the billionth bit of e. Then the problem is
to decide if the billionth bits of ⇡ and e are the same. It is mathematically
simple, but computationally complex.

To see how we might solve this problem, suppose we have a quantum gate
array Uf for f ; that is, Uf |xi|yi = |xi|y � f(x)i. In particular, Uf |xi|0i =

8This is the 1998 improvement by Cleve et al. to Deutsch’s 1985 algorithm (Nielsen &
Chuang, 2010, p. 59).

D. QUANTUM ALGORITHMS 125

|xi|f(x)i and Uf |xi|1i = |xi|¬f(x)i. Usually we set y = 0 to get the result
|f(x)i, but here you will see an application in which we want y = 1.

Now consider the result of applying Uf to |xi in the data register and to
the superposition |�i = 1

p
2
(|0i � |1i) in the target register.

Uf |xi|�i = 1p
2
|xi|f(x)i � 1p

2
|xi|¬f(x)i = 1p

2
|xi[|f(x)i � |¬f(x)i].

Now the rightmost square bracket is |0i � |1i if f(x) = 0 or |1i � |0i if
f(x) = 1. Therefore, we can write

Uf |xi|�i = 1p
2
|xi(�)f(x)(|0i � |1i) = (�)f(x)|xi|�i. (III.21)

[Here, (�)x is an abbreviation for (�1)x when we want to emphasize that
the sign is all that matters.] Since Uf |xi|�i = (�)f(x)|xi|�i, the result of
applying it to an equal superposition of x = 0 and x = 1 is:

1p
2

X

x22

Uf |xi|�i = 1p
2

X

x22

(�)f(x)|xi|�i.

If f is a constant function, then f(0) = f(1), and the summation is ± 1
p

2
(|0i+

|1i)|�i = ±|+i|�i because both components have the same sign.. On the
other hand, if f(0) 6= f(1), then the summation is ± 1

p
2
(|0i � |1i)|�i =

±|�i|�i because the components have opposite signs. That is, a constant
function gives the |0i and |1i components of the data qubit the same phase,
and otherwise gives them the opposite phase. Therefore, we can determine
whether the function is constant or not by measuring the first qubit in the sign
basis; we get |+i if f(0) = f(1) and |�i otherwise. With this background,
we can state Deutsch’s algorithm.

algorithm Deutsch:

Initial state: Begin with the qubits | 0i
def
= |01i.

Superposition: Transform it to a pair of superpositions

| 1i
def
=

1p
2
(|0i + |1i) ⌦ 1p

2
(|0i � |1i) = | + �i. (III.22)

126 CHAPTER III. QUANTUM COMPUTATION

by a pair of Hadamard gates. Recall that H|0i = 1
p

2
(|0i + |1i) = |+i and

H|1i = 1
p

2
(|0i � |1i) = |�i.

Function application: Next apply Uf to | 1i = | + �i. As we’ve seen,
Uf |xi|0i = |xi|0 � f(x)i = |xi|f(x)i, and Uf |xi|1i = |xi|1 � f(x)i =
|xi|¬f(x)i. Therefore, expand Eq. III.22 and apply Uf :

| 2i
def
= Uf | 1i

= Uf


1p
2
(|0i + |1i) ⌦ 1p

2
(|0i � |1i)

�

=
1

2
[Uf |00i � Uf |01i + Uf |10i � Uf |11i]

=
1

2
[|0, f(0)i � |0,¬f(0)i + |1, f(1)i � |1,¬f(1)i]

There are two cases: f(0) = f(1) and f(0) 6= f(1).

Equal (constant function): If f(0) = f(1), then

| 2i =
1

2
[|0, f(0)i � |0,¬f(0)i + |1, f(0)i � |1,¬f(0)i]

=
1

2
[|0i(|f(0)i � |¬f(0)i) + |1i(|f(0)i � |¬f(0)i)]

=
1

2
(|0i + |1i)(|f(0)i � |¬f(0)i)

= ±1

2
(|0i + |1i)(|0i � |1i)

= ± 1p
2
(|0i + |1i)|�i

= | + �i.

The last line applies because global phase (including ±) doesn’t matter.

Unequal (balanced function): If f(0) 6= f(1), then

| 2i =
1

2
[|0, f(0)i � |0,¬f(0)i + |1,¬f(0)i � |1, f(0)i]

D. QUANTUM ALGORITHMS 127

=
1

2
[|0i(|f(0)i � |¬f(0)i) + |1i(|¬f(0)i � |f(0)i)]

=
1

2
[|0i(|f(0)i � |¬f(0)i) � |1i(|f(0)i � |¬f(0)i)]

=
1

2
(|0i � |1i)(|f(0)i � |¬f(0)i)

= ±1

2
(|0i � |1i)(|0i � |1i)

= ± 1p
2
(|0i � |1i)|�i

= | � �i
Clearly we can discriminate between the two cases by measuring the first
qubit in the sign basis. In particular, note that in the unequal case, the |1i
component has the opposite phase from the |0i component.

Measurement: Therefore we can determine whether f(0) = f(1) or not by
measuring the first bit of | 2i in the sign basis, which we can do with the
Hadamard gate (recall H|+i = |0i and H|�i = |1i):

| 3i
def
= (H ⌦ I)| 2i

=

⇢
±|0i|�i, if f(0) = f(1)
±|1i|�i, if f(0) 6= f(1)

= ±|f(0) � f(1)i|�i.

⇤

Notice that the information we need is in the data register, not the target
register. This technique is called phase kick-back (i.e., kicked back into the
phase of the data register).

In conclusion, we can determine whether or not f(0) = f(1) with a single
evaluation of f , which is quite remarkable. In e↵ect, we are evaluating f on
a superposition of |0i and |1i and determining how the results interfere with
each other. As a result we get a definite (not probabilistic) determination of
a global property with a single evaluation.

This is a clear example where a quantum computer can do something
faster than a classical computer. However, note that Uf has to uncompute

128 CHAPTER III. QUANTUM COMPUTATION
Quantum algorithms 35

Figure 1.20. Quantum circuit implementing the general Deutsch–Jozsa algorithm. The wire with a ‘/’ through it
represents a set of n qubits, similar to the common engineering notation.

evenly weighted superposition of 0 and 1. Next, the function f is evaluated (by Bob)
using Uf : |x, yi ! |x, y � f (x)i, giving

|�2i =
X

x

(�1)f (x)|xip
2n

 |0i � |1ip
2

�
. (1.48)

Alice now has a set of qubits in which the result of Bob’s function evaluation is stored
in the amplitude of the qubit superposition state. She now interferes terms in the super-
position using a Hadamard transform on the query register. To determine the result of
the Hadamard transform it helps to first calculate the effect of the Hadamard transform
on a state |xi. By checking the cases x = 0 and x = 1 separately we see that for a single
qubit H|xi =

P
z(�1)xz|zi/

p
2. Thus

H�n|x1, . . . , xni =
P

z1,...,zn
(�1)x1z1+·· +xnzn |z1, . . . , zni

p
2n

. (1.49)

This can be summarized more succinctly in the very useful equation

H�n|xi =
P

z(�1)x·z|zip
2n

, (1.50)

where x · z is the bitwise inner product of x and z, modulo 2. Using this equation
and (1.48) we can now evaluate |�3i,

|�3i =
X

z

X

x

(�1)x·z+f (x)|zi
2n

 |0i � |1ip
2

�
. (1.51)

Alice now observes the query register. Note that the amplitude for the state |0i�n isP
x(�1)f (x)/2n. Let’s look at the two possible cases – f constant and f balanced – to

discern what happens. In the case where f is constant the amplitude for |0i�n is +1 or
�1, depending on the constant value f (x) takes. Because |�3i is of unit length it follows
that all the other amplitudes must be zero, and an observation will yield 0s for all qubits
in the query register. If f is balanced then the positive and negative contributions to the
amplitude for |0i�n cancel, leaving an amplitude of zero, and a measurement must yield
a result other than 0 on at least one qubit in the query register. Summarizing, if Alice

Figure III.23: Quantum circuit for Deutsch-Jozsa algorithm. [fig. from NC]

f , which takes as much time as computing it, but we will see other cases
(Deutsch-Jozsa) where the speedup is much more than 2⇥.

D.1.b The Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm is a generalization of the Deutsch algorithm to
n bits, which they published it in 1992; here we present the improved version
of Nielsen & Chuang (2010, p. 59).

This is the problem: Suppose we are given an unknown function f : 2n !
2 in the form of a unitary transform Uf 2 L(Hn+1

,H) (Fig. III.23). We are
told only that f is either constant or balanced, which means that it is 0 on
half its domain and 1 on the other half. Our task is to determine into which
class the given f falls.

Consider first the classical situation. We can try di↵erent input bit strings
x. We might (if we’re lucky) discover after the second query of f that it is
not constant. But we might require as many as 2n

/2 + 1 queries to answer
the question. So we’re facing O(2n�1) function evaluations.

algorithm Deutsch-Jozsa:

Initial state: As in the Deutsch algorithm, prepare the initial state | 0i
def
=

|0i⌦n|1i.

D. QUANTUM ALGORITHMS 129

Superposition: Use the Walsh-Hadamard transformation to create a su-
perposition of all possible inputs:

| 1i
def
= (H⌦n ⌦ H)| 0i =

X

x22n

1p
2n

|x,�i.

Claim: Similarly to the single qubit case (Eq. III.21), we can see that
Uf |x,�i = (�)f(x)|xi|�i, where (�)n is an abbreviation for (�1)n. From
the definition of |�i and Uf , Uf |x,�i = |xi 1

p
2
(|f(x)i � |¬f(x)i). Since

f(x) 2 2, 1
p

2
(|f(x)i� |¬f(x)i) = |�i if f(x) = 0, and it = �|�i if f(x) = 1.

This establishes the claim.

Function application: Therefore, you can see that:

| 2i
def
= Uf | 1i =

X

x22n

1p
2n

(�)f(x)|xi|�i. (III.23)

In the case of a constant function, all the components of the data state have
the same phase, otherwise they do not.

To see how we can make use of this information, let’s consider the state
in more detail. For a single bit you can show (Exer. III.46):

H|xi = 1p
2
(|0i + (�)x|1i) = 1p

2

X

z22

(�)xz|zi =
X

z22

1p
2
(�)xz|zi.

(This is just another way of writing H|0i = 1
p

2
(|0i+|1i) and H|1i = 1

p
2
(|0i�

|1i).) Therefore, the general formula for the Walsh transform of n bits is:

H
⌦n|x1, x2, . . . , xni =

1p
2n

X

z1,...,zn22

(�)x1z1+···+xnzn |z1, z2, . . . , zni

=
1p
2n

X

z22n

(�)x·z|zi, (III.24)

where x ·z is the bitwise inner product. (It doesn’t matter if you do addition
or � since only the parity of the result is significant.) Remember this formula!
Combining this and the result in Eq. III.23,

| 3i
def
= (H⌦n ⌦ I)| 2i =

X

z22n

X

x22n

1

2n
(�)x·z+f(x)|zi|�i.

130 CHAPTER III. QUANTUM COMPUTATION

Measurement: Consider the first n qubits and the amplitude of one par-
ticular basis state, z = |0i = |0i⌦n, which we separate from the rest of the
summation:

| 3i =
X

x22n

1

2n
(�)f(x)|0i|�i +

X

z22n�{0}

X

x22n

1

2n
(�)x·z+f(x)|zi|�i

Hence, the amplitude of |0i⌦n, the all-|0i qubit string, is
P

x22n
1
2n (�)f(x).

Recall how in the basic Deutsch algorithm we got a sum of signs (either all
the same or not) for all the function evaluations. The result is similar here,
but we have 2n values rather than just two. We now have two cases:

Constant function: If the function is constant, then all the exponents of
�1 will be the same (either all 0 or all 1), and so the amplitude will be ±1.
Therefore all the other amplitudes are 0 and any measurement must yield 0
for all the qubits (since only |0i⌦n has nonzero amplitude).

Balanced function: If the function is not constant then (ex hypothesi) it
is balanced, but more specifically, if it is balanced, then there must be an
equal number of +1 and �1 contributions to the amplitude of |0i⌦n, so its
amplitude is 0. Therefore, when we measure the state, at least one qubit
must be nonzero (since the all-0s state has amplitude 0).
⇤

The good news about the Deutsch-Jozsa algorithm is that with one quan-
tum function evaluation we have got a result that would require between 2
and O(2n�1) classical function evaluations (exponential speedup!). The bad
news is that the algorithm has no known applications! Even if it were useful,
however, the problem could be solved probabilistically on a classical com-
puter with only a few evaluations of f : for an error probability of ✏, it takes
O(log ✏�1) function evaluations. However, it illustrates principles of quantum
computing that can be used in more useful algorithms.

D. QUANTUM ALGORITHMS 131

D.2 Simon’s algorithm

Simon’s algorithm was first presented in 1994 and can be found in Simon, D.
(1997), “On the power of quantum computation,” SIAM Journ. Computing,
26 (5), pp. 1474–83.9 For breaking RSA we will see that its useful to know
the period of a function: that r such that f(x+ r) = f(x). Simon’s problem
is a warmup for this.

Simon’s Problem: Suppose we are given an unknown function f :
2n ! 2n and we are told that it is two-to-one. This means f(x) = f(y) i↵
x � y = r for some fixed r 2 2n. The vector r can be considered the period
of f , since f(x � r) = f(x). The problem is to determine the period r of a
given unknown f .

Consider first the classical solution. Since we don’t know anything about
f , the best we can do is evaluate it on random inputs. If we are ever lucky
enough to find x and x0 such that f(x) = f(x0), then we have our answer,
r = x�x0. After testingm values, you will have eliminated aboutm(m�1)/2
possible r vectors (namely, x � x0 for every pair of these m vectors). You
will be done when m

2 ⇡ 2n. Therefore, on the average you need to do
2n/2 function evaluations, which is exponential in the size of the input. For
n = 100, it would require about 250 ⇡ 1015 evaluations. “At 10 million
calls per second it would take about three years” (Mermin, 2007, p. 55).
We will see that a quantum computer can determine r with high probability
(> 1 � 10�6) in about 120 evaluations. At 10 million calls per second, this
would take about 12 microseconds!

algorithm Simon:

Input superposition: As before, start by using the Walsh-Hadamard trans-
form to create a superposition of all possible inputs:

| 1i
def
= H

⌦n|0i⌦n =
1

2n/2

X

x22n

|xi.

9The following presentation follows Mermin’s Quantum Computer Science (Mermin,
2007, §2.5, pp. 55–8).

132 CHAPTER III. QUANTUM COMPUTATION

Function evaluation: Suppose that Uf is the quantum gate array imple-
menting f and recall Uf |xi|yi = |xi|y � f(x)i. Therefore:

| 2i
def
= Uf | 1i|0i⌦n =

1

2n/2

X

x22n

|xi|f(x)i.

Therefore we have an equal superposition of corresponding input-output val-
ues.

Output measurement: Measure the output register (in the computational
basis) to obtain some |zi. Since the function is two-to-one, the projection
will have a superposition of two inputs:

1p
2
(|x0i + |x0 � ri)|zi,

where f(x0) = z = f(x0 � r). The information we need is contained in the
input register,

| 3i
def
=

1p
2
(|x0i + |x0 � ri),

but it cannot be extracted directly. If we measure it, we will get either x0

or x0 � r, but not both, and we need both to get r. (We cannot make two
copies, due to the no-cloning theorem.)

Suppose we apply the Walsh-Hadamard transform to this superposition:

H
⌦n| 3i = H

⌦n
1p
2
(|x0i + |x0 � ri)

=
1p
2
(H⌦n|x0i +H

⌦n|x0 � ri).

Now, recall (D.1.b, p. 129) that

H
⌦n|xi = 1

2n/2

X

y22n

(�1)x·y|yi.

(This is the general expression for the Walsh transform of a bit string. The
phase depends on the number of common 1-bits.) Therefore,

H
⌦n| 3i =

1p
2

"
1

2n/2

X

y22n

(�1)x0·y|yi + 1

2n/2

X

y22n

(�1)(x0+r)·y|yi
#

=
1

2(n+1)/2

X

y22n

⇥
(�1)x0·y + (�1)(x0+r)·y

⇤
|yi.

D. QUANTUM ALGORITHMS 133

Note that
(�1)(x0+r)·y = (�1)x0·y(�1)r·y.

Therefore, if r · y = 1, then the bracketed expression is 0 (since the terms
have opposite sign and cancel). However, if r · y = 0, then the bracketed
expression is 2(�1)x0·y (since they don’t cancel). Hence the result of the
Walsh-Hadamard transform is

| 4i = H
⌦n| 3i =

1

2(n�1)/2

X

y s.t. r·y=0

(�1)x0·y|yi.

Measurement: Measuring the input register (in the computational basis)
will collapse it with equal probability into a state |y(1)i such that r·y(1) = 0.

First equation: Since we know y(1), this gives us some information about
r, expressed in the equation:

y
(1)
1 r1 + y

(1)
2 r2 + · · · + y

(1)
n
rn = 0 (mod 2).

Iteration: The quantum computation can be repeated, producing a series
of bit strings y(1)

,y(2)
, . . . such that y(k) · r = 0. From them we can build

up a system of n linearly-independent equations and solve for r. (If you
get a linearly-dependent equation, you have to try again.) Note that each
quantum step (involving one evaluation of f) produces an equation (except
in the unlikely case y(k) = 0 or that it’s linearly dependent), and therefore
determines one of the bits in terms of the other bits. That is, each iteration
reduced the candidates for r by approximately one-half.
⇤

A mathematical analysis (Mermin, 2007, App. G) shows that with n+m

iterations the probability of having enough information to determine r is
> 1 � 1

2m+1 . “Thus the odds are more than a million to one that with
n + 20 invocations of Uf we will learn [r], no matter how large n may be.”

134 CHAPTER III. QUANTUM COMPUTATION

(Mermin, 2007, p. 57) Note that the “extra” evaluations are independent of
n. Therefore Simon’s problem can be solved in linear time on a quantum
computer, but requires exponential time on a classical computer.

D. QUANTUM ALGORITHMS 135

D.3 Shor’s algorithm

If computers that you build are quantum,
Then spies everywhere will all want ’em.
Our codes will all fail,
And they’ll read our email,
Till we get crypto that’s quantum, and daunt ’em.
— Jennifer and Peter Shor (Nielsen & Chuang, 2010, p. 216)

The widely used RSA public-key cryptography system is based on the di�-
culty of factoring large numbers.10 The best classical algorithms are nearly
exponential in the size of the input, m = lnM . Specifically, the best
current (2006) algorithm (the number field sieve algorithm) runs in time
e

O(m1/3 ln2/3
m). This is subexponential but very ine�cient. Shor’s quantum

algorithm is bounded error-probability quantum polynomial time (BQP),
specifically, O(m3). Shor’s algorithm was invented in 1994, inspired by Si-
mon’s algorithm.

Shor’s algorithm reduces factoring to finding the period of a function.
The connection between factoring and period finding can be understood as
follows. Assume you are trying to factor M . Suppose you can find x such
that x2 = 1 (mod M). Then x

2 �1 = 0 (mod M). Therefore (x+1)(x�1) =
0 (mod M). Therefore both x + 1 and x � 1 have common factors with M

(except in the trivial case x = 1, and so long as neither is a multiple of M).
Now pick an a that is coprime (relatively prime) to M . If ar = 1 (mod M)
and r happens to be even, we’re done (since we can find a factor of M as
explained above). (The smallest such r is called the order of a.) This r is
the period of ax (mod M), since a

x+r = a
x
a

r = a
x (mod M).

In summary, if we can find the order of an appropriate a and it is even,
then we can probably factor the number. To accomplish this, we need to
find the period of ax (mod M), which can be determined through a Fourier
transform.

Like the classical Fourier transform, the quantum Fourier transform puts
all the amplitude of the function into multiples of the frequency (reciprocal
period). Therefore, measuring the state yields the period with high proba-
bility.

10These section is based primarily on Rie↵el & Polak (2000).

136 CHAPTER III. QUANTUM COMPUTATION

D.3.a Quantum Fourier transform

Before explaining Shor’s algorithm, it’s necessary to explain the quantum
Fourier transform, and to do so it’s helpful to begin with a review of the
classical Fourier transform.

Let f be a function defined on [0, 2⇡). We know it can be represented as
a Fourier series,

f(x) =
a0

2
+

1X

k=1

(ak cos kx+ bk sin kx) =
A0

2
+

1X

k=1

Ak cos(kx+ �k),

where k = 0, 1, 2, . . . represents the overtone series (natural number multiples
of the fundamental frequency). You know also that the Fourier transform
can be represented in the ciscoid (cosine + i sine) basis, where we define

uk(x)
def
= cis(�kx) = e

�ikx. (The “�” sign is irrelevant, but will be convenient
later.) The uk are orthogonal but not normalized, so we divide them by
2⇡, since

R 2⇡

0 cos2 x + sin2
x dx = 2⇡. The Fourier series in this basis is

f(x) =
P

1

k=�1
f̂k cis(�kx). The Fourier coe�cients are given by f̂k = 1

2⇡ huk |
fi = 1

2⇡

R 2⇡

0 e
ikx

f(x)dx. They give the amplitude and phase of the component
signals uk.

For the discrete Fourier transform (DFT) we suppose that f is repre-

sented by N samples, fj

def
= f(xj), where xj = 2⇡ j

N
, with j 2 N

def
=

{0, 1, . . . , N � 1}. Let f = (f0, . . . , fN�1)T. Note that the xj are the 1/N
segments of a circle. (Realistically, N is big.)

Likewise each of the basis functions is represented by a vector of N sam-

ples: uk

def
= (uk,0, . . . , uk,N�1)T. Thus we have a matrix of all the basis sam-

ples:

ukj

def
= cis(�kxj) = e

�2⇡ikj/N
, j 2 N.

In e
�2⇡ikj/N , note that 2⇡i represents a full cycle, k is the overtone, and j/N

represents the fraction of a full cycle.
Recall that every complex number has N principal N th-roots, and in

particular the number 1 (unity) has N principal N th-roots. Notice that N

samples of the fundamental period correspond to the N principal N th-roots
of unity, that is, !j where (for a particular N) ! = e

2⇡i/N . Hence, ukj = !
�kj.

That is, uk = (!�k·0
,!

�k·1
. . . ,!

�k·(N�1))T. It is easy to show that the vectors
uk are orthogonal, and in fact that uk/

p
N are ON (exercise). Therefore, f

D. QUANTUM ALGORITHMS 137

can be represented by a Fourier series,

f =
1p
N

X

k2N

f̂kuk =
1

N

X

k2N

(u†

k
f)uk.

Define the discrete Fourier transform of the vector f , f̂ = Ff , to be the
vector of Fourier coe�cients, f̂k = u†

k
f/

p
N . Determine F as follows:

f̂ =

0

BBB@

f̂0

f̂1
...

f̂N�1

1

CCCA
=

1p
N

0

BBB@

u†

0f
u†

1f
...

u†

N�1f

1

CCCA
=

1p
N

0

BBB@

u†

0

u†

1
...

u†

N�1

1

CCCA
f .

Therefore let

F
def
=

1p
N

0

BBB@

u†

0

u†

1
...

u†

N�1

1

CCCA
=

1p
N

0

BBBBB@

!
0·0

!
0·1 · · · !

0·(N�1)

!
1·0

!
1·1 · · · !

1·(N�1)

!
2·0

!
2·1 · · · !

2·(N�1)

...
...

. . .
...

!
(N�1)·0

!
(N�1)·1 · · · !

(N�1)·(N�1)

1

CCCCCA
.

(III.25)
That is, Fkj = ukj/

p
N = !

kj
/
p
N for k, j 2 N. Note that the “�” signs in

the complex exponentials were eliminated by the conjugate transpose. F is
unitary transformation (exercise).

The fast Fourier transform (FFT) reduces the number of operations re-
quired from O(N2) to O(N logN).11 It does this with a recursive algorithm
that avoids recomputing values. However, it is restricted to powers of two,
N = 2n.

The quantum Fourier transform (QFT) is even faster, O(log2
N), that is,

O(n2). However, because the spectrum is encoded in the amplitudes of the
quantum state, we cannot get them all. Like the FFT, the QFT is restricted
to powers of two, N = 2n. The QFT transforms the amplitudes of a quantum
state:

UQFT

X

j2N

fj|ji =
X

k2N

f̂k|ki,

11The FFT is O(N log N), but N > M2 = e2m. Therefore the FFT is O(M2 log M2) =
O(M2 log M) = O(me2m)

138 CHAPTER III. QUANTUM COMPUTATION

where f̂
def
= Ff .

Suppose f has period r, and suppose that the period evenly divides the
number of samples, r | N . Then all the amplitude of f̂ should be at multiples
of its fundamental frequency, N/r. If r 6 | N , then the amplitude will be
concentrated near multiples of N/r. The approximation is improved by using
larger n.

The FFT (and QFT) are implemented in terms of additions and multi-
plications by various roots of unity (powers of !). In QFT, these are phase
shifts. In fact, the QFT can be implemented with n(n + 1)/2 gates of two
types: (1) One is Hj, the Hadamard transformation of the jth qubit. (2) The
other is a controlled phase-shift Sj,k, which uses qubit xj to control whether
it does a particular phase shift on the |1i component of qubit xk. That is,
Sj,k|xjxki 7! |xjx

0

k
i is defined by

Sj,k

def
= |00ih00| + |01ih01| + |10ih10| + e

i✓k�j |11ih11|,

where ✓k�j = ⇡/2k�j. That is, the phase shift depends on the indices j and
k.

It can be shown that the QFT can be defined:12

UQFT =
n�1Y

j=0

Hj

n�1Y

k=j+1

Sj,k.

This is O(n2) gates.

D.3.b Shor’s algorithm step by step

Shor’s algorithm depends on many results from number theory, which are
outside of the scope of this course. Since this is not a course in cryptography
or number theory, I will just illustrate the ideas.

algorithm Shor:

12See Rie↵el & Polak (2000) for this, with a detailed explanation in Nielsen & Chuang
(2010, §5.1, pp. 517–21).

D. QUANTUM ALGORITHMS 139

Input: Suppose we are factoring M (and M = 21 will be used for con-
crete examples, but of course the goal is to factor very large numbers). Let

m
def
= dlgMe = 5 in the case M = 21.

Step 1: Pick a random number a < M . If a and M are not coprime (rela-
tively prime), we are done. (Euclid’s algorithm is O(m2) = O(log2

M).) For
our example, suppose we pick a = 11, which is relatively prime with 21.

Modular exponentiation: Let g(x)
def
= a

x (mod M), for x 2 M
def
=

{0, 1, . . . ,M � 1}. This takes O(m3) gates and is the most complex part
of the algorithm! (Reversible circuits typically use m

3 gates for m qubits.)
In our example case, g(x) = 11x (mod 21), so

g(x) = 1, 11, 16, 8, 4, 2,| {z }
period

1, 11, 16, 8, 4, . . .

In order to get a good QFT approximation, pick n such thatM2  2n
< 2M2.

Let N
def
= 2n. Equivalently, pick n such that 2 lgM  n < 2 lgM + 1, that

is, roughly twice as many qubits as in M . Note that although the number
of samples is N = 2n, we need only n qubits (thanks to the tensor product).
This is where quantum computation gets its speedup over classical compu-
tation; M is very large, so N > M

2 is extremely large. The QFT computes
all these in parallel. For our example M = 21, and so we pick n = 9 for
N = 512 since 441  512 < 882. Therefore m = 5.

Step 2 (quantum parallelism): Apply Ug to the superposition

| 0i
def
= H

⌦n|0i⌦n =
1p
N

X

x2N

|xi

to get

| 1i
def
= Ug| 0i|0i⌦m =

1p
N

X

x2N

|x, g(x)i.

For our example problem, 14 qubits are required [n = 9 for x and m = 5 for
g(x)]. The quantum state looks like this (note the periodicity):

| 1i =
1p
512

(|0, 1i + |1, 11i + |2, 16i + |3, 8i + |4, 4i + |5, 2i +

140 CHAPTER III. QUANTUM COMPUTATION

|6, 1i + |7, 11i + |8, 16i + |9, 8i + |10, 4i + |11, 2i + · · ·)

Step 3 (measurement): The function g has a period r, which we want
to transfer to the amplitudes of the state so that we can apply the QFT.
This is accomplished by measuring (and discarding) the result register (as
in Simon’s algorithm).13 Suppose the result register collapses into state g

⇤

(e.g., g⇤ = 8). The input register will collapse into a superposition of all x
such that g(x) = g

⇤. We can write it:

| 2i
def
=

1

Z
X

x2N s.t. g(x)=g⇤

|x, g⇤i = 1

Z
X

x2N

fx|x, g⇤i =
"
1

Z
X

x2N

fx|xi
#

|g⇤i,

where

fx

def
=

⇢
1, if g(x) = g

⇤

0, otherwise
,

and Z def
=
p

|{x | g(x) = g⇤}| is a normalization factor. For example,

| 2i =
1

Z (|3, 8i + |9, 8i + |15, 8i + · · ·)

=
1

Z (|3i + |9i + |15i + · · ·)|8i

Note that the values x for which fx 6= 0 di↵er from each other by the period;
This produces a function f of very strong periodicity. As in Simon’s algo-
rithm, if we could measure two such x, we would have useful information,
but we can’t. Suppose we measure the result register and get g⇤ = 8. Fig.
III.24 shows the corresponding f = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, . . .).

Step 4 (QFT): Apply the QFT to obtain,

| 3i
def
= UQFT

1

Z
X

x2N

fx|xi
!

=
1

Z
X

x̂2N

f̂x̂|x̂i.

13As it turns out, this measurement of the result register can be avoided. This is in
general true for “internal” measurement processes in quantum algorithms (Bernstein &
Vazirani 1997).

D. QUANTUM ALGORITHMS 141
26 · E. Rieffel and W. Polak

0.0

0.0012

0.0024

0.0036

0.0048

0.006

0.0072

0.0084

0.0096

0.0108

0.012

0 64 128 192 256 320 384 448 512

Fig. 2. Probabilities for measuring x when measuring the state C

P
x�X

|x, 8� obtained in Step 2, where
X = {x|211x mod 21 = 8}}

0.0

0.017

0.034

0.051

0.068

0.085

0.102

0.119

0.136

0.153

0.17

0 64 128 192 256 320 384 448 512

Fig. 3. Probability distribution of the quantum state after Fourier Transformation.

where the amplitude is 0 except at multiples of 2m/r. When the period r does not divide
2m, the transform approximates the exact case so most of the amplitude is attached to
integers close to multiples of 2m

r .
Example. Figure 3 shows the result of applying the quantum Fourier Transform to the

state obtained in Step 2. Note that Figure 3 is the graph of the fast Fourier transform of the
function shown in Figure 2. In this particular example the period of f does not divide 2m.
Step 4. Extracting the period. Measure the state in the standard basis for quantum com-

putation, and call the result v. In the case where the period happens to be a power of 2,
so that the quantum Fourier transform gives exactly multiples of 2m/r, the period is easy
to extract. In this case, v = j 2m

r for some j. Most of the time j and r will be relatively

Figure III.24: Example probability distribution |fx|2 for state
Z

�1
P

x2N fx|x, 8i. In this example the period is r = 6 (e.g., at
x = 3, 9, 15, . . .). [fig. source: Rie↵el & Polak (2000)]

26 · E. Rieffel and W. Polak

0.0

0.0012

0.0024

0.0036

0.0048

0.006

0.0072

0.0084

0.0096

0.0108

0.012

0 64 128 192 256 320 384 448 512

Fig. 2. Probabilities for measuring x when measuring the state C

P
x�X

|x, 8� obtained in Step 2, where
X = {x|211x mod 21 = 8}}

0.0

0.017

0.034

0.051

0.068

0.085

0.102

0.119

0.136

0.153

0.17

0 64 128 192 256 320 384 448 512

Fig. 3. Probability distribution of the quantum state after Fourier Transformation.

where the amplitude is 0 except at multiples of 2m/r. When the period r does not divide
2m, the transform approximates the exact case so most of the amplitude is attached to
integers close to multiples of 2m

r .
Example. Figure 3 shows the result of applying the quantum Fourier Transform to the

state obtained in Step 2. Note that Figure 3 is the graph of the fast Fourier transform of the
function shown in Figure 2. In this particular example the period of f does not divide 2m.
Step 4. Extracting the period. Measure the state in the standard basis for quantum com-

putation, and call the result v. In the case where the period happens to be a power of 2,
so that the quantum Fourier transform gives exactly multiples of 2m/r, the period is easy
to extract. In this case, v = j 2m

r for some j. Most of the time j and r will be relatively

Figure III.25: Example probability distribution |f̂x̂|2 of the quantum Fourier
transform of f . The spectrum is concentrated near multiples of N/6 =
512/6 = 85 1/3, that is 85 1/3, 170 2/3, 256, etc. [fig. source: Rie↵el &
Polak (2000)]

142 CHAPTER III. QUANTUM COMPUTATION

(The collapsed result register |g⇤i has been omitted.)
If the period r divides N = 2n, then f̂ will be nonzero only at multiples

of the fundamental frequency N/r. That is, the nonzero components will be
|kN/ri. If it doesn’t divide evenly, then the amplitude will be concentrated
around these |kN/ri. See Fig. III.24 and Fig. III.25 for examples of the
probability distributions |fx|2 and |f̂x̂|2.

Step 5 (period extraction): Measure the state in the computational basis.

Period a power of 2: If r | N , then the resulting state will be v
def
= |kN/ri

for some k 2 N. Therefore k/r = v/N . If k and r are relatively prime, as is
likely, then reducing the fraction v/N to lowest terms will produce r in the
denominator. In this case the period is discovered.

Period not a power of 2: In the case r does not divide N , it’s often pos-
sible to guess the period from a continued fraction expansion of v/N .14 If
v/N is su�ciently close to p/q, then a continued fraction expansion of v/N
will contain the continued fraction expansion of p/q. For example, suppose
the measurement returns v = 427, which is not a power of two. This is the
result of the continued fraction expansion of v/N (in this case, 427/512) (see
IQC):

i ai pi qi ✏i

0 0 0 1 0.8339844
1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 0.5

“which terminates with 6 = q2 < M  q3. Thus, q = 6 is likely to be the
period of f .” [IQC]

Step 6 (finding a factor): The following computation applies however we

14See Rie↵el & Polak (2000, App. B) for an explanation of this procedure and citations
for why it works.

D. QUANTUM ALGORITHMS 143

got the period q in Step 5. If the guess q is even, then a
q/2 + 1 and a

q/2 � 1
are likely to have common factors with M . Use the Euclidean algorithm to
check this. The reason is as follows. If q is the period of g(x) = a

x (mod M),
then a

q = 1 (mod M). This is because, if q is the period, then for all x,
g(x + q) = g(x), that is, aq+x = a

q
a

x = a
x (mod M) for all x. Therefore

a
q � 1 = 0 (mod M). Hence,

(aq/2 + 1)(aq/2 � 1) = 0 (mod M).

Therefore, unless one of the factors is a multiple of M (and hence = 0 mod
M), one of them has a nontrivial common factor with M .

In the case of our example, the continued fraction gave us a guess q = 6, so
with a = 11 we should consider 113+1 = 1332 and 113 �1 = 1330. For M =
21 the Euclidean algorithm yields gcd(21, 1332) = 3 and gcd(21, 1330) = 7.
We’ve factored 21!

Iteration: There are several reasons that the preceding steps might not have
succeeded: (1) The value v projected from the spectrum might not be close
enough to a multiple of N/r (D.3.b). (2) In D.3.b, k and r might not be
relatively prime, so that the denominator is only a factor of the period, but
not the period itself. (3) In D.3.b, one of the two factors turns out to be a
multiple of M . (4) In D.3.b, q was odd. In these cases, a few repetitions of
the preceding steps yields a factor of M .
⇤

D.3.c Recent progress

To read our E-mail, how mean
of the spies and their quantum machine;
be comforted though,
they do not yet know
how to factorize twelve or fifteen.
— Volker Strassen (Nielsen & Chuang, 2010, p. 216)

In this section we review recent progress in hardware implementation of

144 CHAPTER III. QUANTUM COMPUTATION

Figure III.26: Hardware implementation of Shor’s algorithm developed at
UCSB (2012). The Mj are quantum memory elements, B is a quantum
“bus,” and the Qj are phase qubits that can be used to implement qubit
operations between the bus and memory elements. [source: CPF]

Figure III.27: Circuit of hardware implementation of Shor’s algorithm devel-
oped at UCSB. [source: CPF]

D. QUANTUM ALGORITHMS 145

Shor’s algorithm.15 In Aug. 2012 a group at UC Santa Barbara described
a quantum implementation of Shor’s algorithm that correctly factored 15
about 48% of the time (50% being the theoretical success rate). (There have
been NMR hardware factorizations of 15 since 2001, but there is some doubt
if entanglement was involved.) This is a 3-qubit compiled version of Shor’s
algorithm, where “compiled” means that the implementation of modular ex-
ponentiation is for fixed M and a. This compiled version used a = 4 as the
coprime to M = 15. In this case the correct period r = 2. The device (Fig.
III.26) has nine quantum devices, including four phase qubits and five su-
perconducing co-planar waveguide (CPW) microwave resonators. The four
CPWs (Mj) can be used as memory elements and fifth (B) can be used as a
“bus” to mediate entangling operations. In e↵ect the qubits Qj can be read
and written. Radio frequency pulses in the bias coil can be used to adjust the
qubit’s frequency, and gigahertz pulses can be used to manipulate and mea-
sure the qubit’s state. SQUIDs are used for one-shot readout of the qubits.
The qubits Qj can be tuned into resonance with the bus B or memory ele-
ments Mj. The quantum processor can be used to implement the single-qubit
gates X, Y, Z,H, and the two-qubit swap (iSWAP) and controlled-phase (C�)
gates. The entanglement protocol can be scaled to an arbitrary number of
qubits. The relaxation and dephasing times are about 200ns.

Another group has reported the quantum factoring of 21.16 Their pro-
cedure operates by using one qubit instead of the n qubits in the (upper)
control qubits. It does this by doing all the unitaries associated with the
lowest-order control qubit, then for the next control qubit, updating the
work register after each step, for n interations.

15This section is based primarily on Erik Lucero, R. Barends, Y. Chen, J. Kelly, M.
Mariantoni, A. Megrant, P. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, Y.
Yin, A. N. Cleland & John M. Martinis, “Computing prime factors with a Josephson phase
qubit quantum processor.” Nature Physics 8, 719–723 (2012) doi:10.1038/nphys2385
[CPF].

16See Martin-Lópex et al., “Experimental realization of Shor’s quantum factoring algo-
rithm using qubit recycling,” Nature Photonics 6, 773–6 (2012).

146 CHAPTER III. QUANTUM COMPUTATION

D.4 Search problems

D.4.a Overview

Many problems can be formulated as search problems over a solution space
S.17 That is, find the x 2 S such that some predicate P (x) is true. For
example, hard problems such as the Hamiltonian path problem and Boolean
satisfiability can be formulated this way. An unstructured search problem
is a problem that makes no assumptions about the structure of the search
space, or for which there is no known way to make use of it (also called a
needle in a haystack problem). That is, information about a particular value
P (x0) does not give us usable information about another value P (x1). In
contrast, a structured search problem is a problem in which the structure of
the solution space can be used to guide the search, for example, searching an
alphabetized array. In general, unstructured search takes O(M) evaluations,
where M = |S| is the size of the solution space (which is often exponential in
the size of the problem). On the average it will be M/2 (think of searching
an unordered array) to find a solution with 50% probability.

We will see that Grover’s algorithm can do unstructured search on a quan-
tum computer with bounded probability in O(

p
M) time, that is, quadratic

speedup. This is provably more e�cient than any algorithm on a classical
computer, which is good (but not great). Unfortunately, it has been proved
that Grover’s algorithm is optimal for unstructured search. Therefore, to
do better requires exploiting the structure of the solution space. Quantum
computers do not exempt us from understanding the problems we are trying
to solve! Shor’s algorithm is an excellent example of exploiting the structure
of a problem domain. Later we will take a look at heuristic quantum search
algorithms that do make use of problem structure.

D.4.b Grover’s Algorithm

algorithm Grover:

Input: Let M be the size of the solution space and pick n such that 2n � M .

17This section is based primarily on Rie↵el & Polak (2000).

D. QUANTUM ALGORITHMS 147

30 · E. Rieffel and W. Polak

The difficult step is to obtain a useful result from this superposition.
For any x0 such that P (x0) is true, |x0, 1i will be part of the superposition of Eq. 2.

Since the amplitude of such a state is 1�
2n , the probability that a random measurement

of the superposition produces x0 is only 2�n. The trick is to change the quantum state
in Eq. 2 so as to greatly increase the amplitude of vectors |x0, 1i for which P is true and
decrease the amplitude of vectors |x, 0i for which P is false.
Once such a transformation of the quantum state has been performed, one can simply

measure the last qubit of the quantum state which represents P (x). Because of the am-
plitude change, there is a high probability that the result will be 1. If this is the case, the
measurement has projected the state of Eq. 2 onto the subspace 1�

2k

Pk
i=1 |xi, 1i where

k is the number of solutions. Further measurement of the remaining bits will provide one
of these solutions. If the measurement of qubit P (x) yields 0, then the whole process is
started over and the superposition of Eq. 2 must be computed again.
Grover’s algorithm then consists of the following steps:

(1) Prepare a register containing a superposition of all possible values xi 2 [0 . . . 2n � 1].
(2) Compute P (xi) on this register.
(3) Change amplitude aj to �aj for xj such that P (xj) = 1. An efficient algorithm for

changing selected signs is described in section 7.1.2. A plot of the amplitudes after
this step is shown here.

average

0

(4) Apply inversion about the average to increase amplitude of xj with P (xj) = 1. The
quantum algorithm to efficiently perform inversion about the average is given in sec-
tion 7.1.1. The resulting amplitudes look as shown, where the amplitude of all the xi’s
with P (xi) = 0 have been diminished imperceptibly.

average

0

(5) Repeat steps 2 through 4 �
4

p
2n times.

(6) Read the result.

Boyer et.al. [Boyer et al. 1996] provide a detailed analysis of the performance of Grover’s
algorithm. They prove that Grover’s algorithm is optimal up to a constant factor; no quan-
tum algorithm can perform an unstructured search faster. They also show that if there is
only a single x0 such that P (x0) is true, then after �

8

p
2n iterations of steps 2 through 4 the

failure rate is 0.5. After iterating �
4

p
2n times the failure rate drops to 2�n. Interestingly,

additional iterations will increase the failure rate. For example, after �
2

p
2n iterations the

failure rate is close to 1.
There are many classical algorithms in which a procedure is repeated over and over again

for ever better results. Repeating quantum procedures may improve results for a while, but

Figure III.28: Depiction of the result of phase rotation (changing the sign)
of solutions in Grover’s algorithm. [source: Rie↵el & Polak (2000)]

30 · E. Rieffel and W. Polak

The difficult step is to obtain a useful result from this superposition.
For any x0 such that P (x0) is true, |x0, 1i will be part of the superposition of Eq. 2.

Since the amplitude of such a state is 1�
2n , the probability that a random measurement

of the superposition produces x0 is only 2�n. The trick is to change the quantum state
in Eq. 2 so as to greatly increase the amplitude of vectors |x0, 1i for which P is true and
decrease the amplitude of vectors |x, 0i for which P is false.
Once such a transformation of the quantum state has been performed, one can simply

measure the last qubit of the quantum state which represents P (x). Because of the am-
plitude change, there is a high probability that the result will be 1. If this is the case, the
measurement has projected the state of Eq. 2 onto the subspace 1�

2k

Pk
i=1 |xi, 1i where

k is the number of solutions. Further measurement of the remaining bits will provide one
of these solutions. If the measurement of qubit P (x) yields 0, then the whole process is
started over and the superposition of Eq. 2 must be computed again.
Grover’s algorithm then consists of the following steps:

(1) Prepare a register containing a superposition of all possible values xi 2 [0 . . . 2n � 1].
(2) Compute P (xi) on this register.
(3) Change amplitude aj to �aj for xj such that P (xj) = 1. An efficient algorithm for

changing selected signs is described in section 7.1.2. A plot of the amplitudes after
this step is shown here.

average

0

(4) Apply inversion about the average to increase amplitude of xj with P (xj) = 1. The
quantum algorithm to efficiently perform inversion about the average is given in sec-
tion 7.1.1. The resulting amplitudes look as shown, where the amplitude of all the xi’s
with P (xi) = 0 have been diminished imperceptibly.

average

0

(5) Repeat steps 2 through 4 �
4

p
2n times.

(6) Read the result.

Boyer et.al. [Boyer et al. 1996] provide a detailed analysis of the performance of Grover’s
algorithm. They prove that Grover’s algorithm is optimal up to a constant factor; no quan-
tum algorithm can perform an unstructured search faster. They also show that if there is
only a single x0 such that P (x0) is true, then after �

8

p
2n iterations of steps 2 through 4 the

failure rate is 0.5. After iterating �
4

p
2n times the failure rate drops to 2�n. Interestingly,

additional iterations will increase the failure rate. For example, after �
2

p
2n iterations the

failure rate is close to 1.
There are many classical algorithms in which a procedure is repeated over and over again

for ever better results. Repeating quantum procedures may improve results for a while, but

Figure III.29: Depiction of result of inversion about the mean in Grover’s
algorithm. [source: Rie↵el & Polak (2000)]

Let N
def
= 2n and let N

def
= 2n = {0, 1, . . . , N �1}, the set of n-bit strings. We

are given a computable predicate P : N ! 2. Suppose we have a quantum
gate array UP (an oracle) that computes the predicate:

UP |x, yi = |x, y � P (x)i.

Application: Consider what happens if, as usual, we apply the function to
a superposition of all possible inputs | 0i:

UP | 0i|0i = UP

"
1p
N

X

x2N

|x, 0i
#
=

1p
N

X

x2N

|x, P (x)i.

Notice that the components we want, |x, 1i, and the components we don’t
want, |x, 0i, all have the same amplitude, 1

p
N
. So if we measure the state,

the chances of getting a hit are very small, O(2�n). The trick, therefore, is
to amplify the components that we want at the expense of the ones we don’t
want; this is what Grover’s algorithm accomplishes.

148 CHAPTER III. QUANTUM COMPUTATION

Sign-change: To do this, first we change the sign of every solution (a phase
rotation of ⇡). That is, if the state is

P
j
aj|xj, P (xj)i, then we want to

change aj to �aj whenever P (xj) = 1. See Fig. III.28. I’ll get to the
technique in a moment.

Inversion about mean: Next, we invert all the components around their
mean amplitude (which is a little less than the amplitudes of the non-
solutions); the result is shown in Fig. III.29. As a result of this operation,
amplitudes of non-solutions go from a little above the mean to a little below
it, but amplitudes of solutions go from far below the mean to far above it.
This amplifies the solutions.

Iteration: This Grover iteration (the sign change and inversion about the

mean) is repeated ⇡
p

N

4 times. Thus the algorithm is O(
p
N).

Measurement: Measurement yields an x0 for which P (x0) = 1 with high

probability. Specifically, if there is exactly one solution x0 2 S, then ⇡
p

N

8

iterations will yield it with probability 1/2. With ⇡
p

N

4 iterations, the prob-
ability of failure drops to 1/N = 2�n. Unlike with most classical algorithms,
additional iterations will give a worse result! This is because Grover iter-
ations are unitary rotations, and so excessive rotations can rotate past the
solution. Therefore it is critical to know when to stop. Fortunately there
is a quantum technique (Brassard et al. 1998) for determining the optimal
stopping point. Grover’s iteration can be used for a wide variety of problems
as a part of other quantum algorithms.
⇤

In the following geometric analysis, I will suppose that there is just one
answer ↵ such that P (↵) = 1; then |↵i is the desired answer vector. Let
|!i be a uniform superposition of all the other (non-answer) states, and
observe that |↵i and |!i are orthonormal. Therefore, initially the state is

| 0i = 1
p

N
|↵i +

q
N�1

N
|!i. In general, after k iterations the state is | ki =

D. QUANTUM ALGORITHMS 149

â

2â

Figure III.30: Process of inversion about the mean in Grover’s algorithm.
The black lines represent the original amplitudes aj. The red lines represent
2ā � aj, with the arrow heads indicating the new amplitudes a0

j
.

a|↵i + w|!i, for some a, w with |a|2 + |w|2 = 1.
The sign change operation transforms the state as follows:

| ki = a|↵i + w|!i 7! �a|↵i + w|!i = | 0

k
i,

where I’ve called the result | 0

k
i. This is a reflection across the |!i vector,

which means that it will be useful to look at reflections more generally.
Suppose that |�i and |�?i are orthonormal vectors and that | i = a|�?i+

b|�i is an arbitrary vector in the space they span. The reflection of | i across
|�i is | 0i = �a|�?i + b|�i. Since a = h�? | i and b = h� | i, we know
| i = |�ih� | i + |�?ih�? | i, and you can see that | 0i = |�ih� |
 i � |�?ih�? | i. Hence the operator to reflect across |�i is R�

def
= |�ih�| �

|�?ih�?|. Alternate forms of this operator are 2|�ih�| � I and I � 2|�?ih�?|,
that is, subtract twice the perpendicular component.

The sign change can be expressed as a reflection:

R! = |!ih!| � |↵ih↵| = I � 2|↵ih↵|,

which expresses the sign-change of the answer vector clearly. Of course we
don’t know |↵i, which is why we will have to use a di↵erent process to
accomplish this reflection (see p. 150). We also will see that the inversion
about the mean is equivalent to reflecting that state vector across | 0i.

But first, taking this for granted, let’s see the e↵ect of the Grover iteration
(Fig. III.31). Let ✓ be the angle between | 0i and |!i. It’s given by the inner

150 CHAPTER III. QUANTUM COMPUTATION

|ω〉

|α〉

|ψ0〉
θ

|ψ'0〉

|ψ1〉

θ

2θ

Figure III.31: Geometry of first Grover iteration.

product cos ✓ = h 0 | !i =
q

N�1
N

. Therefore the sign change reflects | 0i
from ✓ above |!i into | 0

0i, which is ✓ below it. Inversion about the mean
reflects | 0

0i from 2✓ below | 0i into a state we call | 1i, which is 2✓ above it.
Therefore, in going from | 0i to | 1i the state vector has rotated 2✓ closer
to |↵i.

You can see that after k iterations, the state vector | ki will be (2k+1)✓
above |!i. We can solve (2k + 1)✓ = ⇡/2 to get the required number of
iterations to bring | ki to |↵i. Note that for small ✓, ✓ ⇡ sin ✓ = 1

p
N

(which

is certainly small). Hence, we want (2k+1)/
p
N ⇡ ⇡/2, or 2k+1 ⇡ ⇡

p
N/2.

That is, k ⇡ ⇡
p
N/4 is the required number of iterations. Note that after

⇡
p
N/8 iterations, we are about halfway there (i.e., ⇡/4), so the probability

of success is 50%. In general, the probability of success is about sin2 2k+1
p

N
.

Now for the techniques for changing the sign and inversion about the
mean. Let | ki be the state after k iterations (k � 0). To change the sign,
simply apply UP to | ki|�i. To see the result, let X0 = {x | P (x) = 0} and
X1 = {x | P (x) = 1}, the solution set. Then:

UP | ki|�i

= UP

"
X

x2N

ax|x,�i
#

D. QUANTUM ALGORITHMS 151

= UP

"
1p
2

X

x2N

ax|x, 0i � ax|x, 1i
#

=
1p
2
UP

"
X

x2X0

ax|x, 0i +
X

x2X1

ax|x, 0i �
X

x2X0

ax|x, 1i �
X

x2X1

ax|x, 1i
#

=
1p
2

"
X

x2X0

axUP |x, 0i +
X

x2X1

axUP |x, 0i

�
X

x2X0

axUP |x, 1i �
X

x2X1

axUP |x, 1i
#

=
1p
2

"
X

x2X0

ax|x, 0i +
X

x2X1

ax|x, 1i

�
X

x2X0

ax|x, 1 � 0i �
X

x2X1

ax|x, 1 � 1i
#

=
1p
2

"
X

x2X0

ax|xi|0i +
X

x2X1

ax|xi|1i �
X

x2X0

ax|xi|1i �
X

x2X1

ax|xi|0i
#

=
1p
2

X

x2X0

ax|xi �
X

x2X1

ax|xi
!
(|0i � |1i)

=

X

x2X0

ax|xi �
X

x2X1

ax|xi
!

|�i.

Therefore the signs of the solutions have been reversed (they have been ro-
tated by ⇡). Notice how |�i in the target register can be used to separate
the 0 and 1 results by rotation. This is a useful idea!

It remains to show the connection between inversion about the mean and
reflection across | 0i. This reflection is given by R 0 = 2| 0ih 0| � I. Note
that:

| 0ih 0| =

1p
N

X

x2N

|xi
!

1p
N

X

y2N

hy|
!

=
1

N

X

x2N

X

y2N

|xihy|.

152 CHAPTER III. QUANTUM COMPUTATION

This is the di↵usion matrix:

0

BBB@

1
N

1
N

· · · 1
N

1
N

1
N

· · · 1
N

...
...

. . .
...

1
N

1
N

· · · 1
N

1

CCCA
,

which, as we will see, does the averaging.
To perform inversion about the mean, let ā be the average of the aj (see

Fig. III.30). Inversion about the mean is accomplished by the transformation:

X

j2N

aj|xji 7!
X

j2N

(2ā � aj)|xji.

To see this, write aj = ā ± �j, that is, as a di↵erence from the mean. Then
2ā � aj = 2ā � (ā ± �j) = ā ⌥ �j. Therefore an amplitude �j below the
mean will be transformed to �j above, and vice verse. But an amplitude
that is negative, and thus very far below the mean, will be transformed to
an amplitude much above the mean. This is exactly what we want in order
to amplify the negative components, which correspond to solutions.

Inversion about the mean is accomplished by a “Grover di↵usion trans-
formation” D. To derive the matrix D, consider the new amplitude a

0

j
as a

function of all the others:

a
0

j

def
= 2ā � aj = 2

1

N

N�1X

k=0

ak

!
� aj =

X

k 6=j

2

N
ak +

✓
2

N
� 1

◆
aj.

This matrix has 2
N

� 1 on the main diagonal and 2
N

in the o↵-diagonal
elements:

D =

0

BBB@

2
N

� 1 2
N

· · · 2
N

2
N

2
N

� 1 · · · 2
N

...
...

. . .
...

2
N

2
N

· · · 2
N

� 1

1

CCCA
.

Note that D = 2| 0ih 0|�I = R 0 . It is easy to confirm that DD
† = I (Exer.

III.49), so the matrix is unitary and therefore a possible quantum operation,
but it remains to be seen if it can be implemented e�ciently.

D. QUANTUM ALGORITHMS 153

Figure III.32: Circuit for Grover’s algorithm. The Grover iteration in the
dashed box is repeated ⇡

p
N

4 times.

We claim D = WRW , where W = H
⌦n is the n-qubit Walsh-Hadamard

transform and R is the phase rotation matrix:

R
def
=

0

BBB@

1 0 · · · 0
0 �1 · · · 0
...

...
. . .

...
0 0 · · · �1

1

CCCA
.

To see this, let

R
0 def
= R + I =

0

BBB@

2 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

1

CCCA
.

Then WRW = W (R0 � I)W = WR
0
W � WW = WR

0
W � I. It is easy to

show (Exer. III.50) that:

WR
0
W =

0

BBB@

2
N

2
N

· · · 2
N

2
N

2
N

· · · 2
N

...
...

. . .
...

2
N

2
N

· · · 2
N

1

CCCA
.

It therefore follows that D = WR
0
W � I = WRW . See Fig. III.32 for a

diagram of Grover’s algorithm.

154 CHAPTER III. QUANTUM COMPUTATION

It remains to consider the possibility that there may be several solutions

to the problem. If there are s solutions, then run the Grover iteration
⇡

p
N/s

4

times, which is optimal (Exer. III.51). It can be done in
p

N/s iterations
even if s is unknown.

D.4.c Hogg’s heuristic search algorithms

Many important problems can be formulated as constraint satisfaction prob-
lems, in which we try to find a set of assignments to variables that satisfy

specified constraints. More specifically let V
def
= {v1, . . . , vn} be a set of vari-

ables, and let X
def
= {x1, . . . , xn} be a set of values that can be assigned to

the variables, and let C1, . . . , Cl be the constraints. The set of all possible
assignments of values to variables is V ⇥X. Subsets of this set correspond
to full or partial assignments, including inconsistent assignments. The set of
all such assignments is P(V ⇥X).

The sets of assignments form a lattice under the ✓ partial order (Fig.
III.33). By assigning bits to the elements of V ⇥X, elements of P(V ⇥X)
can be represented by mn-element bit strings (i.e., integers in the set MN =
{0, . . . , 2mn � 1}); see Fig. III.34. Hogg’s algorithms are based on the ob-
servation that if an assignment violates the constraints, then so do all those
assignments above it in the lattice.

algorithm Hogg:

Initialization: The algorithm begins with all the amplitude concentrated
in the bottom of the lattice, |0 · · · 0i (i.e., the empty set of assignments).

Movement: The algorithm proceeds by moving amplitude up the lattice,
while avoiding assignments that violate the constraints; that is, we want
to move amplitude from a set to its supersets. For example, we want to
redistribute the amplitude from |1010i to |1110i and |1011i. Hogg has de-
veloped several methods. One method is based on the assumption that the
transformation has the form WDW , where W = H

⌦mn, the mn-dimensional
Walsh-Hadamard transformation, and D is diagonal. The elements of D

D. QUANTUM ALGORITHMS 155

Introduction to Quantum Computing · 33

�

{v1 = 0} {v1 = 1} {v2 = 0} {v2 = 1}

⇢
v2 = 0
v2 = 1

� ⇢
v1 = 1
v2 = 1

� ⇢
v1 = 0
v2 = 1

� ⇢
v1 = 1
v2 = 0

� ⇢
v1 = 0
v2 = 0

� ⇢
v1 = 0
v1 = 1

�

�
v1 = 1
v2 = 0
v2 = 1

� �
v1 = 0
v2 = 0
v2 = 1

� �
v1 = 0
v1 = 1
v2 = 1

� �
v1 = 0
v1 = 1
v2 = 0

�

8
�<

�:

v1 = 0
v1 = 1
v2 = 0
v2 = 1

�
��

��

���������

�
�

�

�
�

�

���������

������

������

������������

������

������������

������������

������������

������������

������

������

������������

������������

������

������������

������

������������

������������

������

���������

�
�

�

�
�

�

���������

Fig. 4. Lattice of variable assignments in a CSP

=
1p
2n

(|0i + (�1)rn�1 |1i) ⌦ . . . ⌦ (|0i + (�1)r0 |1i)

=
1p
2n

2n�1X

s=0

(�1)sn�1rn�1 |sn�1i ⌦ . . . ⌦ (�1)s0r0 |s0i

=
1p
2n

2n�1X

s=0

(�1)s·r|si.

7.2.2 Overview of Hogg’s algorithms. A constraint satisfaction problem (CSP) has n
variables V = {v1, . . . , vn} which can takem different valuesX = {x1, . . . , xm} subject
to certain constraints C1, . . . , Cl. Solutions to a constraint satisfaction problem lie in the
space of assignments of xi’s to vj’s, V ⇥X . There is a natural lattice structure on this space
given by set containment. Figure 4 shows the assignment space and its lattice structure for
n = 2, m = 2, x1 = 0, and x2 = 1. Note that the lattice includes both incomplete and
inconsistent assignments.
Using the standard correspondence between sets of enumerated elements and binary

sequences, in which a 1 in the nth place corresponds to inclusion of the nth element and a
0 corresponds to exclusion, standard basis vectors for a quantum state space can be put in
one to one correspondence with the sets. For example, Figure 5 shows the lattice of Figure
4 rewritten in ket notation where the elements v1 = 0, v1 = 1, v2 = 0 and v2 = 1 have
been enumerated in that order.
If a state violates a constraint, then so do all states above it in the lattice. The approach

Figure III.33: Lattice of variable assignments. [source: Rie↵el & Polak
(2000)]

156 CHAPTER III. QUANTUM COMPUTATION
34 · E. Rieffel and W. Polak

|0000�

|1000� |0100� |0010� |0001�

|1100� |1010� |1001� |0110� |0101� |0011�

|1110� |1101� |1011� |0111�

|1111�

���������

�
�

�

�
�

�

���������

������

������

������������

������

������������

������������

������������

������������

������

������

������������

������������

������

������������

������

������������

������������

������

���������

�
�

�

�
�

�

���������

Fig. 5. Lattice of variable assignments in ket form

Hogg takes in designing quantum algorithms for constraint satisfaction problems is to be-
gin with all the amplitude concentrated in the |0 . . . 0i state and to iteratively move ampli-
tude up the lattice from sets to supersets and away from sets that violate the constraints.
Note that this algorithm begins differently than Shor’s algorithm and Grover’s algorithm,
which both begin by computing a function on a superposition of all the input values at
once.
Hogg gives two ways [Hogg 1996; Hogg 1998] of constructing a unitary matrix for

moving amplitude up the lattice. We will describe both methods, and then describe how he
moves amplitude away from bad sets.
Moving amplitude up: Method 1. There is an obvious transformation that moves

amplitude from sets to supersets. Any amplitude associated to the empty set is evenly
distributed among all sets with a single element. Any amplitude associated to a set with a
single element is evenly distributed among all two element sets which contain that element
and so on. For the lattice of a three element set

|111i

����� �����
|011i |101i |110i

���������� ����������

|001i |010i |100i
����� �����

|000i

We want to transform

|000i ! 1/
p

3(|001i + |010i + |100i

Figure III.34: Lattice of binary strings corresponding to all subsets of a 4-
element set. [source: Rie↵el & Polak (2000)]

depend on the size of the sets. Recall (D.1.b, p. 129) that

W |xi = 1p
2mn

X

z2MN

(�)x·z|zi.

As shown in Sec. A.2.c (p. 70), we can derive a matrix representation for W :

Wjk = hj | W | ki

= hj| 1p
2mn

X

z2MN

(�)k·z|zi

=
1p
2mn

X

z2MN

(�)k·zhj | zi

=
1p
2mn

(�1)k·j
.

Note that k · j = |k \ j|, where on the right-hand side we interpret the bit
strings as sets.
⇤

D. QUANTUM ALGORITHMS 157

The general approach is to try to steer amplitude away from sets that
violate the constraints, but the best technique depends on the particular
problem. One technique is to invert the phase on bad subsets so that they
tend to cancel the contribution of good subsets to supersets. This could be
done by a process like Grover’s algorithm using a predicate that tests for
violation of constraints. Another approach is to assign random phases to
bad sets.

It is di�cult to analyze the probability that an iteration of a heuristic
algorithm will produce a solution, and so its e�ciency is usually evaluated
empirically, but empirical tests will be di�cult to apply to quantum heuristic
search until larger quantum computers are available, since classical computers
require exponential time to simulate quantum systems. Small simulations,
however, indicate that Hogg’s algorithms may provide polynomial speedup
over Grover’s algorithm.

158 CHAPTER III. QUANTUM COMPUTATION

Figure III.35: E↵ects of decoherence on a qubit. On the left is a qubit |yi that
is mostly isoloated from its environment |⌦i. On the right, a weak interaction
between the qubit and the environment has led to a possibly altered qubit
|xi and a correspondingly (slightly) altered environment |⌦xyi.

D.5 Quantum error correction

D.5.a Motivation

Quantum coherence is very di�cult to maintain for long.18 Even weak inter-
actions with the environment can a↵ect the quantum state, and we’ve seen
that the amplitudes of the quantum state are critical to quantum algorithms.
On classical computers, bits are represented by very large numbers of parti-
cles (but that is changing). On quantum computers, qubits are represented
by atomic-scale states or objects (photons, nuclear spins, electrons, trapped
ions, etc.). They are very likely to become entangled with computationally
irrelevant states of the computer and its environment, which are out of our
control. Quantum error correction is similar to classical error correction in
that additional bits are introduced, creating redundancy that can be used to
correct errors. It is di↵erent from classical error correction in that: (a) We
want to restore the entire quantum state (i.e., the continuous amplitudes),
not just 0s and 1s. Further, errors are continuous and can accumulate. (b)
It must obey the no-cloning theorem. (c) Measurement destroys quantum
information.

18This section follows Rie↵el & Polak (2000).

D. QUANTUM ALGORITHMS 159

D.5.b Effect of decoherence

Ideally the environment |⌦i, considered as a quantum system, does not inter-
act with the computational state. But if it does, the e↵ect can be categorized
as a unitary transformation on the environment-qubit system. Consider de-
coherence operator D describing a bit flip error in a single qubit (Fig. III.35):

D :

⇢
|⌦i|0i =) |⌦00i|0i + |⌦10i|1i
|⌦i|1i =) |⌦01i|0i + |⌦11i|1i

.

In this notation the state vectors |⌦xyi are not normalized, but incorporate
the amplitudes of the various outcomes. In the case of no error, |⌦00i =
|⌦11i = |⌦i and |⌦01i = |⌦10i = 0. If the entanglement with the environment
is small, then k⌦01k, k⌦10k ⌧ 1 (small exchange of amplitude).

Define decoherence operators Dxy|⌦i def
= |⌦xyi, for x, y 2 2, which describe

the e↵ect of the decoherence on the environment. (These are not unitary, but
are the products of scalar amplitudes and unitary operators for the various
outcomes.) Then the evolution of the joint system is defined by the equations:

D|⌦i|0i = (D00 ⌦ I +D10 ⌦ X)|⌦i|0i,
D|⌦i|1i = (D01 ⌦ X +D11 ⌦ I)|⌦i|1i.

Alternately, we can define it:

D = D00 ⌦ |0ih0| +D10 ⌦ |1ih0| +D01 ⌦ |0ih1| +D11 ⌦ |1ih1|.

Now, it’s easy to show (Exer. III.19):

|0ih0| = 1

2
(I + Z), |0ih1| = 1

2
(X � Y), |1ih0| = 1

2
(X + Y), |1ih1| = 1

2
(I � Z),

where Y =

✓
0 �1
1 0

◆
. Therefore

D =
1

2
[D00 ⌦ (I + Z) +D01 ⌦ (X � Y) +

D10 ⌦ (X + Y) +D11 ⌦ (I � Z)]

=
1

2
[(D00 +D11) ⌦ I + (D10 +D01) ⌦ X +

(D10 � D01) ⌦ Y + (D00 � D11) ⌦ Z].

160 CHAPTER III. QUANTUM COMPUTATION

Therefore the bit flip error can be described as a linear combination of the
Pauli matrices. It is generally the case that the e↵ect of decoherence on a
single qubit can be described by a linear combination of the Pauli matrices,
which is important, since qubits are subject to various errors beside bit flips.
This is a distinctive feature about quantum errors: they have a finite basis,
and because they are unitary, they are therefore invertible. In other words,
single-qubit errors can be characterized in terms of a linear combination
of the Pauli matrices (which span the space of 2 ⇥ 2 self-adjoint unitary
matrices: C.2.a, p. 105): I (no error), X (bit flip error), Y (phase error), and
Z = Y X (bit flip phase error). Therefore a single qubit error is represented
by e0�0+e1�1+e2�2+e3�3 =

P3
j=0 ej�j, where the �j are the Pauli matrices

(Sec. C.2.a, p. 105).

D.5.c Correcting the quantum state

We consider a basis set of unitary “error operators” Ej, so that the error

transformation is a superposition E
def
=
P

j
ejEj. In the more general case

of quantum registers, the Ej a↵ect the entire register, not just a single qubit.

algorithm quantum error correction:

Encoding: An n-bit register is encoded in n+m bits, where the extra bits

are used for error correction. Let y
def
= C(x) 2 2m+n be the n +m bit code

for x 2 2n. As in classical error correcting codes, we embed the message in
a space of higher dimension.

Error process: Suppose ỹ 2 2m+n is the result of error type k, ỹ = Ek(y).

Syndrome: Let k = S(ỹ) be a function that determines the error syndrome,
which identifies the error Ek from the corrupted code. That is, S(Ek(y)) = k.

Correction: Since the errors are unitary, and the syndrome is known, we
can invert the error and thereby correct it: y = E

�1
S(ỹ)(ỹ).

D. QUANTUM ALGORITHMS 161

Figure III.36: Circuit for quantum error correction. | i is the n-qubit quan-
tum state to be encoded by C, which adds m error-correction qubits to yield
the encoded state |�i. E is a unitary superposition of error operators Ej,
which alter the quantum state to |�̃i. S is the syndrome extraction operator,
which computes a superposition of codes for the errors E. The syndrome
register is measured, to yield a particular syndrome code j⇤, which is used to
select a corresponding inverse error transformation E

�1
j⇤ to correct the error.

Quantum case: Now consider the quantum case, in which the state | i is a
superposition of basis vectors, and the error is a superposition of error types,
E =

P
j
ejEj. This is an orthogonal decomposition of E (see Fig. III.36).

Encoding: The encoded state is |�i def
= C| i|0i. There are several require-

ments for a useful quantum error correcting code. Obviously, the codes for
orthogonal inputs must be orthogonal; that is, if h | 0i = 0, then C| ,0i
and C| 0

,0i are orthogonal: h ,0|C†
C| 0

,0i = 0. Next, if |�i and |�0i are
the codes of distinct inputs, we do not want them to be confused by the error
processes, so h�|E†

j
Ek|�0i = 0 for all i, j. Finally, we require that for each

pair of error indices j, k, there is a number mjk such that h�|E†

j
Ek|�i = mjk

for every code |�i. This means that the error syndromes are independent of
the codes, and therefore the syndromes can be measured without collapsing
superpositions in the codes, which would make them useless for quantum
computation.

Error process: Let |�̃i def
= E|�i be the code corrupted by error.

162 CHAPTER III. QUANTUM COMPUTATION

428 Quantum error-correction

the logical |0⟩ and logical |1⟩ states, not the physical zero and one states. A circuit
performing this encoding is illustrated in Figure 10.2.

• •

⊕

⊕

|ψ⟩

|0⟩

|0⟩
Figure 10.2. Encoding circuit for the three qubit bit flip code. The data to be encoded enters the circuit on the top
line.

Exercise 10.1: Verify that the encoding circuit in Figure 10.2 works as claimed.

Suppose the initial state a|0⟩ + b|1⟩ has been perfectly encoded as a|000⟩ + b|111⟩.
Each of the three qubits is passed through an independent copy of the bit flip channel.
Suppose a bit flip occurred on one or fewer of the qubits. There is a simple two stage
error-correction procedure which can be used to recover the correct quantum state in
this case:

(1) Error-detection or syndrome diagnosis: We perform a measurement which tells us
what error, if any, occurred on the quantum state. The measurement result is called
the error syndrome. For the bit flip channel there are four error syndromes,
corresponding to the four projection operators:

P0 ≡ |000⟩⟨000| + |111⟩⟨111| no error (10.5)

P1 ≡ |100⟩⟨100| + |011⟩⟨011| bit flip on qubit one (10.6)

P2 ≡ |010⟩⟨010| + |101⟩⟨101| bit flip on qubit two (10.7)

P3 ≡ |001⟩⟨001| + |110⟩⟨110| bit flip on qubit three. (10.8)

Suppose for example that a bit flip occurs on qubit one, so the corrupted state is
a|100⟩ + b|011⟩. Notice that ⟨ψ|P1|ψ⟩ = 1 in this case, so the outcome of the
measurement result (the error syndrome) is certainly 1. Furthermore, the syndrome
measurement does not cause any change to the state: it is a|100⟩ + b|011⟩ both
before and after syndrome measurement. Note that the syndrome contains only
information about what error has occurred, and does not allow us to infer anything
about the value of a or b, that is, it contains no information about the state being
protected. This is a generic feature of syndrome measurements, since to obtain
information about the identity of a quantum state it is in general necessary to
perturb that state.

(2) Recovery: We use the value of the error syndrome to tell us what procedure to use
to recover the initial state. For example, if the error syndrome was 1, indicating a
bit flip on the first qubit, then we flip that qubit again, recovering the original state
a|000⟩ + b|111⟩ with perfect accuracy. The four possible error syndromes and the
recovery procedure in each case are: 0 (no error) – do nothing; 1 (bit flip on first
qubit) – flip the first qubit again; 2 (bit flip on second qubit) – flip the second qubit

Figure III.37: Quantum encoding circuit for triple repetition code. [source:
NC]

Syndrome extraction: Apply the syndrome extraction operator to the
encoded state, augmented with enough extra qubits to represent the set of
syndromes. This yields a superposition of syndromes:

S|�̃,0i = S

X

j

ejEj|�i
!

⌦ |0i =
X

j

ej(SEj|�i|0i) =
X

j

ej(Ej|�i|ji).

Measurement: Measure the syndrome register to obtain some j
⇤ and the

collapsed state Ej⇤ |�i|j⇤i.19

Correction: Apply E
�1
j⇤ to correct the error.

⇤

Note the remarkable fact that although there was a superposition of er-
rors, we only have to correct one of them to get the original state back. This
is because measurement of the error syndrome collapses into a state a↵ected
by just that one error.

D.5.d Example

We’ll work through an example to illustrate the error correction process. For
an example, suppose we use a simple triple redundancy code that assigns

19As we mentioned the discussion of in Shor’s algorithm (p. 140), it is not necessary to
actually perform the measurement; the same e↵ect can be obtained by unitary operations.

D. QUANTUM ALGORITHMS 163

|0i 7! |000i and |1i 7! |111i. This is accomplished by a simple quantum gate
array:

C|0i|00i = |000i, C|1i|00i = |111i.
This is not a sophisticated code! It’s called a repetition code. The three-qubit
codes are called logical zero and logical one (See Fig. III.37). This code can
correct single bit flips (by majority voting); the errors are represented by the
operators:

E0 = I ⌦ I ⌦ I

E1 = I ⌦ I ⌦ X

E2 = I ⌦ X ⌦ I

E3 = X ⌦ I ⌦ I.

The following works as a syndrome extraction operator:

S|x3, x2, x1, 0, 0, 0i
def
= |x3, x2, x1, x1 � x2, x1 � x3, x2 � x3i.

The �s compare each pair of bits, and so the � will be zero if the two bits
are the same (the majority). The following table shows the bit flipped (if
any), the corresponding syndrome, and the operator to correct it (which is
the same as the operator that caused the error):

bit flipped syndrome error correction
none |000i I ⌦ I ⌦ I

1 |110i I ⌦ I ⌦ X

2 |101i I ⌦ X ⌦ I

3 |011i X ⌦ I ⌦ I

(Note that the correction operators need not be the same as the error oper-
ators, although they are in this case.)

For an example, suppose we want to encode the state | i = 1
p

2
(|0i� |1i).

Its code is |�i = 1
p

2
(|000i � |111i). Suppose the following error occurs:

E = 4
5X ⌦ I ⌦ I + 3

5I ⌦X ⌦ I (that is, the bit 3 flips with probability 16/25,
and bit 2 with probability 9/25). The resulting error state is

|�̃i = E|�i

=

✓
4

5
X ⌦ I ⌦ I +

3

5
I ⌦ X ⌦ I

◆
1p
2
(|000i � |111i)

164 CHAPTER III. QUANTUM COMPUTATION

=
4

5
p
2
X ⌦ I ⌦ I(|000i � |111i) + 3

5
p
2
I ⌦ X ⌦ I(|000i � |111i)

=
4

5
p
2
(|100i � |011i) + 3

5
p
2
(|010i � |101i).

Applying the syndrome extraction operator yields:

S|�̃, 000i = S


4

5
p
2
(|100000i � |011000i) + 3

5
p
2
(|010000i � |101000i)

�

=
4

5
p
2
(|100011i � |011011i) + 3

5
p
2
(|010101i � |101101i)

=
4

5
p
2
(|100i � |011i) ⌦ |011i + 3

5
p
2
(|010i � |101i) ⌦ |101i

Measuring the syndrome register yields either |011i (representing an error in
bit 3) or |101i (representing an error in bit 2). Suppose we get |011i. The
state collapses into:

1p
2
(|100i � |011i) ⌦ |011i.

Note that we have projected into a subspace for just one of the two bit-flip
errors that occurred (the flip in bit 3). The measured syndrome |011i tells
us to apply X ⌦ I ⌦ I to the first three bits, which restores |�i:

(X ⌦ I ⌦ I)
1p
2
(|100i � |011i) = 1p

2
(|000i � |111i) = |�i.

We can do something similar to correct single phase flip (Z) errors by using
the encoding |0i 7! |+++i, |1i 7! | � ��i (Exer. III.54). To see this, recall
that Z in the sign basis is the analog of X is the computational basis.

D.5.e Discussion

There is a nine-qubit code, called the Shor code, that can correct arbitrary
errors on a single qubit, even replacing the entire qubit by garbage (Nielsen
& Chuang, 2010, §10.2). The essence of this code is that triple redundancy
is used to correct X errors, and triple redundancy again to correct Z errors,
thus requiring nine code qubits for each logical qubut. Since Y = ZX and
the Pauli matrices are a basis, this code is able to correct all errors.

Quantum error correction is remarkable in that an entire continuum of
errors can be corrected by correcting only a discrete set of errors. This

D. QUANTUM ALGORITHMS 165

works in quantum computation, but not classical analog computing. The
general goal in syndrome extraction is to separate the syndrome information
from the computational information in such a way that the syndrome can
be measured without collapsing any of the computational information. Since
the syndrome is unitary, it can be inverted to correct the error.

What do we do about noise in the gates that do the encoding and decod-
ing? It is possible to do fault-tolerant quantum computation. “Even more
impressively, fault-tolerance allow us to perform logical operations on en-
coded quantum states, in a manner which tolerates faults in the underlying
gate operations.” (Nielsen & Chuang, 2010, p. 425) Indeed, “provided the
noise in individual quantum gates is below a certain constant threshold it
is possible to e�ciently perform an arbitrarily large quantum computation.”
(Nielsen & Chuang, 2010, p. 425)20

20See Nielsen & Chuang (2010, §10.6.4).

