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H Exercises

Exercise III.1 Compute the probability of measuring |0i and |1i for each
of the following quantum states:
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Exercise III.2 Compute the probability of the four states if the following
are measured in the computational basis:
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Exercise III.3 Suppose that a two-qubit register is in the state
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1. Suppose we measure just the first qubit. Compute the probability of
measuring a |0i or a |1i and the resulting register state in each case.

2. Do the same, but supposing instead that we measure just the second
qubit.

Exercise III.4 Prove that projectors are idempotent, that is, P 2 = P .

Exercise III.5 Prove that a normal matrix is Hermitian if and only if it has
real eigenvalues.
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Exercise III.6 Prove that U(t)
def
= exp(�iHt/~) is unitary.

Exercise III.7 Use spectral decomposition to show that K = �i log(U) is
Hermitian for any unitary U , and thus U = exp(iK) for some Hermitian K.

Exercise III.8 Show that the commutators ([L,M ] and {L,M}) are bilin-
ear (linear in both of their arguments).

Exercise III.9 Show that [L,M ] is anticommutative, i.e., [M,L] = �[L,M ],
and that {L,M} is commutative.

Exercise III.10 Show that LM = [L,M ]+{L,M}

2 .

Exercise III.11 Show that the four Bell states are orthonormal (i.e., both
orthogonal and normalized).

Exercise III.12 Prove that |�11i is entangled.

Exercise III.13 Prove that 1
p

2
(|000i + |111i) is entangled.

Exercise III.14 What is the e↵ect of Y (imaginary definition) on the com-
putational basis vectors? What is its e↵ect if you use the real definition
(C.2.a, p. 105)?

Exercise III.15 Prove that I,X, Y , and Z are unitary. Use either the imag-
inary or real definition of Y (C.2.a, p. 105).

Exercise III.16 What is the matrix for H in the sign basis?

Exercise III.17 Show that the X, Y, Z and H gates are Hermitian (their
own inverses) and prove your answers. Use either the imaginary or real
definition of Y (C.2.a, p. 105).

Exercise III.18 Prove the following useful identities:

HXH = Z,HY H = �Y,HZH = X.

Exercise III.19 Show (using the real definition of Y , C.2.a, p. 105):
|0ih0| = 1

2(I + Z), |0ih1| = 1
2(X � Y ), |1ih0| = 1

2(X + Y ), |1ih1| = 1
2(I � Z).
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Exercise III.20 Prove that the Pauli matrices span the space of 2⇥ 2 ma-
trices.

Exercise III.21 Prove |�xyi = (P ⌦ I)|�00i, where xy = 00, 01, 11, 10 for
P = I,X, Y, Z, respectively.

Exercise III.22 Suppose that P is one of the Pauli operators, but you don’t
know which one. However, you are able to pick a 2-qubit state | 0i and
operate on it, | 1i = (P ⌦ I)| 0i. Further, you are able to select a unitary
operation U to apply to | 1i, and to measure the 2-qubit result, | 2i = U | 1i,
in the computational basis. Select | 0i and U so that you can determine with
certainty the unknown Pauli operator P .

Exercise III.23 What is the matrix for CNOT in the standard basis? Prove
your answer.

Exercise III.24 Show that CNOT does not violate the No-cloning Theorem
by showing that, in general, CNOT| i|0i 6= | i| i. Under what conditions
does the equality hold?

Exercise III.25 What quantum state results from

CNOT(H ⌦ I)
1

2
(c00|00i + c01|01i + c10|10i + c11|11i)?

Express the result in the computational basis.

Exercise III.26 Compute (Y ⌦ I)CNOT(H ⌦ I)|00i. Show your work.

Exercise III.27

1. Compute (H ⌦ I ⌦ I)(CNOT ⌦ I)[(4
5 |0i +

3
5 |1i) ⌦ |�00i.

2. Give the probabilities and resulting states for measuring the first two
qubits in the computational basis.

3. Apply Z to the state resulting from measuring |10i.

Exercise III.28 What is the matrix for CCNOT in the standard basis?
Prove your answer.
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Exercise III.29 Use a single To↵oli gate to implement each of NOT, NAND,
and XOR.

Exercise III.30 Use To↵oli gates to implement FAN-OUT. FAN-OUT would
seem to violate the No-cloning Theorem, but it doesn’t. Explain why.

Exercise III.31 Design a quantum circuit to transform |000i into the en-
tangled state 1

p
2
(|000i + |111i).

Exercise III.32 Show that |+i, |�i is an ON basis.

Exercise III.33 Prove:

|0i =
1p
2
(|+i + |�i),

|1i =
1p
2
(|+i � |�i).

Exercise III.34 What are the possible outcomes (probabilities and result-
ing states) of measuring a|+i + b|�i in the computational basis (of course,
|a|2 + |b|2 = 1)?

Exercise III.35 Prove that Z|+i = |�i and Z|�i = |+i.

Exercise III.36 Prove:

H(a|0i + b|1i) = a|+i + b|�i,
H(a|+i + b|�i) = a|0i + b|1i.

Exercise III.37 Prove H = (X + Z)/
p
2.

Exercise III.38 Prove Eq. III.18 (p. 111).

Exercise III.39 Show that three successive CNOTs, connected as in Fig.
III.11 (p. 110), will swap two qubits.

Exercise III.40 Recall the conditional selection between two operators (C.3,
p. 111): |0ih0| ⌦ U0 + |1ih1| ⌦ U1. Suppose the control bit is a superposition
|�i = a|0i + b|1i. Show that:

(|0ih0| ⌦ U0 + |1ih1| ⌦ U1)|�, i = a|0, U0 i + b|1, U1 i.
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Exercise III.41 Show that the 1-bit full adder (Fig. III.15, p. 113) is cor-
rect.

Exercise III.42 Show that the operator Uf is unitary:

Uf |x, yi
def
= |x, y � f(x)i,

Exercise III.43 Verify the remaining superdense encoding transformations
in Sec. C.6.a (p. 117).

Exercise III.44 Verify the remaining decoding cases for quantum telepor-
tation Sec. C.6.b (p. 121).

Exercise III.45 Confirm the quantum teleportation circuit in Fig. III.21
(p. 122).

Exercise III.46 Complete the following step from the derivation of the
Deutsch-Jozsa algorithm (Sec. D.1, p. 129):

H|xi =
X

z22

1p
2
(�1)xz|zi.

Exercise III.47 Show that CNOT(H ⌦ I) = (I ⌦ H)CZH
⌦2, where CZ is

the controlled-Z gate.

Exercise III.48 Show that the Fourier transform matrix (Eq. III.25, p. 137,
Sec. D.3.a) is unitary.

Exercise III.49 Prove the claim on page 152 (Sec. D.4.b) that D is unitary.

Exercise III.50 Prove the claim on page 152 (Sec. D.4.b) that
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Exercise III.51 Show that if there are s solutions x such that P (x) = 1,

then
⇡

p
N/s

4 is the optimal number of iterations in Grover’s algorithm.



H. EXERCISES 197

Exercise III.52 Design a quantum gate array for the following syndrome
extraction operator (Sec. D.5.d, p. 162):

S|x3, x2, x1, 0, 0, 0i
def
= |x3, x2, x1, x1 � x2, x1 � x3, x2 � x3i.

Exercise III.53 Design a quantum gate array to apply the appropriate error
correction for the extracted syndrome as given in Sec. D.5.d, p. 162:

bit flipped syndrome error correction
none |000i I ⌦ I ⌦ I

1 |110i I ⌦ I ⌦ X

2 |101i I ⌦ X ⌦ I

3 |011i X ⌦ I ⌦ I

Exercise III.54 Design encoding, syndrome extraction, and error correc-
tion quantum circuits for the code |0i 7! | + ++i, |1i 7! | � ��i to correct
single phase flip (Z) errors.

Exercise III.55 Prove that AaAa = 1 (Sec. F.1.b).

Exercise III.56 Prove that Aab,c = 1+a
†
ab

†
b(c+c

†�1) = 1+NaNb(Ac�1)
is a correct definition of CCNOT by showing how it transforms the quantum
register |a, b, ci (Sec. F.1.b).

Exercise III.57 Show that the following definition of Feynman’s switch is
unitary (Sec. F.1.b):

q
†
cp+ r

†
c
†
p+ p

†
c
†
q + p

†
cr.


