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C Formal models

C.1 Sticker systems

C.1.a Basic operations

The sticker model was developed by Rosweis et al. in the mid-1990s. It
depends primarily on separation by means of hybridization and makes no
use of strand extension and enzymes. It implements a sort of random-access
binary memory. Each bit position is represented by a substrand of length
m. A memory strand comprises k contiguous substrands, and so has length
n = km and can store k bits. Sticker strands or stickers are strands that are
complementary to substrands representing bits. When a sticker is bound to
a bit, it represents 1, and if no sticker is bound, the bit is 0. Such a strand,
which is partly double and partly single, is called a complex strand.

Computations begin with a prepared library of strings. A (k, l) library
uses the first l  k bits as inputs to the algorithm, and the remaining k�l for
output and working storage. Therefore, the last k � l are initially 0. There
are four basic operations, which act on multi-sets of binary strings:

Merge: Creates the union of two tubes (multi-sets).
Separate: The operation separate(N, i) separates a tube N into two

tubes: +(N, i) contains all strings in which bit i is 1, and �(N, i) contains
all strings in which bit i is 0.

Set: The operation set(N, i) produces a tube in which every string from
N has had its ith bit set to 1.

Clear: The operation clear(N, i) produces a tube in which every string
from N has had its ith bit cleared to 0.

C.1.b Set cover problem

The set cover problem is a classic NP-complete problem. Given a finite
set of p objects S, and a finite collection of subsets of S (C1, . . . , Cq ⇢ S)
whose union is S, find the smallest collection of these subsets whose union
is S. For an example, consider S = {1, 2, 3, 4, 5} and C1 = {3, 4, 5}, C2 =
{1, 3, 4}, C3 = {1, 2, 5}, C4 = {3, 4}. In this case there are three minimal
solutions: {C1, C3}, {C3, C4}, {C2, C3}.
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algorithm Minimum Set Cover:

Data representation: The memory strands are of size k = p + q. Each
strand represents a collection of subsets, and the first q bits encode which
subsets are in the collection; call them subset bits. For example 1011 rep-
resents {C1, C3, C4} and 0010 represents {C3}. Eventually, the last p bits
will represent the union of the collection, that is, the elements of S that are
contained in at lease one subset in the collection; call them element bits. For
example, 0101 10110 represents {C2, C4} {1, 3, 4}.

Library: The algorithm begins with the (p + q, q) library, which must be
initialized to reflect the subsets’ members.

Step 1 (initialization): For all strands, if the i subset bit is set, then set
the bits for all the elements of that subset. Call the result tube N0. This is
accomplished by the following code:

Initialize (p+ q, q) library in N0

for i = 1 to q do
separate(+(N0, i),�(N0, i)) //separate those with subset i
for j = 1 to |Ci| do
set(+(N0, i), q + c

j

i
) //set bit for jth element of set i

end for
N0  merge(+(N0, i),�(N0, i)) //recombine

end for

Step 2 (retain covers): Retain only the strands that represent collections
that cover the set. To do this, retain in N0 only the strands whose last p bits
are set.

for i = q + 1 to q + p do
N0  +(N0, i) //retain those with element i

end for



C. FORMAL MODELS 225
3.2 Filtering Models 59

(1,3)

(1,2,3,4)(3,4)
(2,3)(1,3,4)

(2,3,4)

(1,2,3)

(1,3)

(1,2,3,4)(2,3,4)

(1,2,3)(1,3,4)

(1,3)

(2,3,4)

(3,4), (2,3),
(1,3,4), (1,2,3)

(1,2,3,4)

(1,3,4), (1,2,3)
(2,3,4), (1,3),
(3,4), (2,3),

(1,2,3,4)

Separate on 1

Separate on 2

(1,2,3)

(1,2,3,4)
(2,3)

(2,3,4)

(1,3)
(1,3,4)

(3,4)

Separate on 3

Separate on 4

(3,4) (2,3)

N N NN N0 1 2 3 4

Fig. 3.4. Sorting procedure

and so on until we find a tube that contains a covering. In this case, tube
N2 contains three coverings, each using two bags. The algorithm is formally
expressed within the sticker model as follows.

(1) Initialize (p,q) library in tube N0

(2) for i = 1 to q do begin
(3) N0 ← separatei(+(N0, i),−(N0, i))
(4) for j = 1 to | Ci |
(5) set(+(N0, i), q + cj

i )
(6) end for
(7) N0 ← merge(+(N0, i),−(N0, i))
(8) end for

This section sets the object identifying substrands. Note that cj
i denotes the

jth element of set Ci. We now separate out for further use only those memory
complexes where each of the last p substrands is set to on.

(1) for i = q + 1 to q + p do begin
(2) N0 ← +(N0, i)
(3) end for

Figure IV.11: Sorting of covers by repeated separations. [source: Amos, Fig.
3.4]

Step 3 (isolate minimum covers): Tube N0 now holds all covers, so we
have to somehow sort its contents to find the minimum cover(s). Set up a
row of tubes N0, N1, . . . , Nq. We will arrange things so that Ni contains the
covers of size i; then we just have to find the first tube with some DNA in it.

Sorting: For i = 1, . . . , q, “drag” to the right all collections containing Ci,
that is, for which bit i is set (see Fig. IV.11). This is accomplished by the
following code:10

for i = 0 to q � 1 do
for j = i down to 0 do
separate(+(Nj, i+ 1),�(Nj, i+ 1)) //those that do & don’t have i

10Corrected from Amos p. 60.
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Nj+1  merge(+(Nj, i+ 1), Nj+1) //move those that do to Nj+1

Nj  �(Nj, i+ 1) //leave those that don’t in Nj

end for
end for

Detection: Find the minimum i such that Ni contains DNA; Ni contains
the minimum covers.
⇤

The algorithm is O(pq).

C.2 Splicing systems

It has been argued that the full power of a TM requires some sort of string
editing operation. Therefore, beginning with Tom Head (1987), a number of
splcing systems have been defined. The splicing operations takes two strings
S = S1S2 and T = T1T2 and performs a “crossover” at a specified location,
yielding S1T2 and T1S2. Finite extended splicing systems have been shown
to be computationally universal (1996).

The Parallel Associative Memory (PAM) Model was defined by Reif in
1995. It is based on a restricted splicing operation called parallel associative
matching (PA-Match) operation, which is named Rsplice. Suppose S = S1S2

and T = T1T2. Then,

Rsplice(S, T ) = S1T2, if S2 = T1,

and is undefined otherwise. The PAM model can simulate nondeterministic
TMs and parallel random access machines.
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Figure IV.12: The fokI restriction enzyme bound to DNA. [source: wikipedia]

D Enzymatic computation

The molecular computation processes that we have seen so far are externally
controlled by a person or conventional automatic controller sequencing the
chemical operations.11 In autonomous molecular computation the chemical
processes sequence themselves so that they do not require external control.
This is also called “one-pot” molecular computation; that is, you put all the
reactants in one pot, and the molecular processes do the rest. Autonomous
molecular computation is essential for, example, controlling drug delivery in
the body.

Shapiro and his colleagues have demonstrated how to implement finite
state machines (FSMs) by autonomous molecular computation. In addition
to DNA, it uses a restriction enzyme, ligase, and ATP (for fuel).

The implementation is based on the fokI restriction enzyme. “Once the

11This section is based primarily on: (1) Yaakov Benenson, Tamar Paz-Elizur, Rivka
Adar, Ehud Keinan, Zvi Livneh, and Ehud Shapiro. Programmable and autonomous
computing machine made of biomolecules. Nature, 414:430–434, 2001.
(2) Yaakov Benenson, Rivka Adam, Tamar Paz-Livneh, and Ehud Shapiro. DNA molecule
provides a computing machine with both data and fuel. Proceedings of the National
Academies of Science, 100(5):2191–2196, 2003.
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protein is bound to duplex DNA via its DNA-binding domain at the 50-
GGATG-30 : 50-CATCC-30 recognition site, the DNA cleavage domain is
activated and cleaves, without further sequence specificity, the first strand
9 nucleotides downstream and the second strand 13 nucleotides upstream of
the nearest nucleotide of the recognition site.”12 It leaves 4-nucleotide sticky
ends. That is, the restriction enzyme cuts the DNA as follows:

GGATGNNNNNNNNN NNNNNNNNNN
CCTACNNNNNNNNNNNNN NNNNNN

The ‘N’s can be any nucleotides (respecting Watson-Crick complementarity,
of course).

Both the current state of the FSM and the input string are represented
by a double DNA strand. fokI operates at the beginning of this string and
leaves a sticky end that encodes both the current state and the next input
symbol (see p. 229 below). The state transitions of the FSM are encoded
in transition molecules, which have sticky ends complementary to the state-
symbol code at the beginning of the string. The rest of a transition molecule
ensures that the string properly encodes the new state, including adding a
new recognition site for the enzyme. A matching transition molecule binds
to the string’s sticky end, providing a new opportunity for fokI to operate,
and so the process continues.

A state transition (q, s1)! q
0 can be represented:

[q, s1]s2s3 · · · snt =) [q0
, s2]s3 · · · snt

where [q, s] represents a DNA sequence encoding both state q and symbol
s, and t is a terminator for the string. The fokI enzyme cleaves o↵ [q, s1] in
such a way that a transition molecule can bind to the sticky end in a way
that encodes [q0

, s2]. A special terminator symbol marks the end of the input
string.

As an example we will consider a two-state FSM on {a, b} that accepts
strings with an even number of ‘b’s. Ignoring the terminator, DNA codes are
assigned to the two symbols ‘a’ and ‘b’ as follows:

a 7! AA↵↵aa

b 7! BB��bb

12wikipedia, s.v. fokI.
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where A,↵, a, B, �, b are unspecified (by me) bases.13 The bases are selected
in such a way that either the first four bases (AA↵↵, BB��) or the last four
bases (↵↵aa, ��bb) encode the symbol. These alternatives represent the two
machine states.

The transition molecules are constructed so that the distance between
the recognition site (for fokI) and the next symbol depends on new state. As
a consequence, when fokI operates it cleaves the next symbol code at a place
that depends on the state. Therefore the sticky end encodes the state in the
way that it represents the next symbol:

[q0, a] 7! ↵↵aa

[q1, a] 7! AA↵↵

[q0, b] 7! ��bb

[q1, b] 7! BB��

The transition molecules are:

(q0, a)! q0 GGATGNNN

CCTACNNN↵↵aa

(q1, a)! q1 GGATGNNN

CCTACNNNAA↵↵

(q0, b)! q1 GGATGNNNNN

CCTACNNNNN��bb

(q1, b)! q0 GGATGN

CCTACNBB��

The Ns represent any bases as before. They are used as spacers to adjust
the restriction site to represent the new state.

After transition to the new state the sense strand will look like this (for
convenience assuming the next symbol is ‘a’):

q0 GGATGNXXY Y yyAA.↵↵aa

q1 GGATGNNNXXY Y yy.AA↵↵aa

This is after attachment of the transition molecule but before restriction.
Here XX represents either spacers or the first two bases of the previous first
symbol, and Y Y yy represents the last four bases of this symbol. The cleavage
site is indicated by a period.

13Note that repeated letters might refer to di↵erent bases.
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The longest strings processed in the PNAS experiments were 12.14 Op-
eration required about 20 seconds per step. However, the parallel speed was
about 6.6 ⇥ 1010 ops/s/µl. Energy consumption was about 34kT per tran-
sition, which is only about 50⇥ the von Neumann-Landauer limit (kT ln 2).
The authors note, “Reaction rates were surprisingly insensitive to tempera-
ture and remained similar over the range of 2–20�C.” This implementation
also handles nondeterministic FSMs (just put in all the transition molecules),
but the yield decreases exponentially (due to following out all the nondeter-
ministic paths, breadth-first). Therefore it doesn’t seem to be practical for
nondeterministic machines.

14Benenson et al., PNAS 100 (5), March 4, 2003.


