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Classical CA- e Conceived in 1950s by von Neumann and Ulam.
History

e Loose work continued into early 1980s but
lacked serious formal analysis and applicability.

e This changed with Stephen Wolfram's
“Statistical Mechanics of Cellular Automata” in
1983




- . e Requirements:
C].aSS].C a.]. CA. o Alattice of cells (potentially infinite, but discrete)

o o, o o  Adiscrete state localized to a cell
Def].n]_tlon o Arule (function) that maps state of local region

about a cell to a new center cell state.
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Classical CA:
Motivations

Many physical phenomena occur locally which

makes CA intuitive models of physical reality.
o  Diffusion, percolation, phase transitions

Complex phenomena emerge from simple local
interactions making CA a useful tool in the

study of complex systems.
o  Chaos, pattern formation
o  Excitable media, biological systems

Inherent parallelism implies physical
implementations with minimal control



Quantum CA:
Motivations

CA have been an enormously useful tool to
understand complex behavior in physical
systems it is natural to assume quantum CAs
would do the same.

Local quantum control is perhaps the most
significant barrier to scalable and practical
quantum computing.



Quantum CA:
Considerations

Quantum states exist in a Hilbert space

Entangled states are spatially non-local and
local interactions are in general non-abelian

Time translation occurs via unitary operators
generated by local interactions (i.e. reversible)

A QCA definition should be satisfying at both an
axiomatic and physical level.



Quantum CA:
Early development

First exploration of QCA was by Grossing and

Zielenger in 1988
o  Motivated by exploring the limit of a physically
implemented cellular automata.

The definition turned out to be non-physical due
to their use of non-unitary evolution and global
normalization scheme.

Mathematically interesting and demonstrated
that a satisfying QCA definition might be

nontrivial.
o  Properties of this model were investigated quite
thoroughly for ~6 years



Quantum CA:
Early development




e In 1995 Watrous proposed a 1D QCA that he
proved to be equivalent to a quantum turing

Quantum CA:

Further machine (constant slowdown).
Development

e The definition utilized a cell-partitioning scheme
to enable local operations and reversibility.
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Quantum CA:
Axiomatic
Approach

The first axiomatic approach to QCA was by

Schumacher and Werner in 2004
o  Made use of the Heisenberg formalism of QM
o  The update rule is a homomorphism on a local
operator algebra

Used a lattice-partitioning scheme:
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Quantum CA:
Other approaches

Many alternative definitions have been
proposed for QCA:

@)

O
@)
O

Block-partitioned QCA (2003)
Local Unitary QCA (2007)
Hamiltonian QCA (2008)
Partitioned Unitary QCA (2018)

A sequence of papers by Arrighi et al. approach
QCA using a similar operator focused
formalism. (2008-2012)

o

Demonstrated proofs for n-dimensional QCA that
are computationally universal.

Showed that all previous QCA were equivalent
Believed that cell-partitioned QCA are the most
natural.



Quantum CA:
Relation to other
models

Quantum Lattice Gases:

@)

Choose a rule that describes particle motion on a
lattice

Take a continuous limit in time and space

Can be used to derive Schrodinger and Dirac
equations

Quantum Walks

@)

o

Quantum analogs of classical random walks
Many useful graph algorithms have been
described recently and it is a very active research
area

It has been shown that all QW algorithms are
inherited by QCA, but not vice versa.



e Chain of endohedral fullerene nanoparticles:

BReeeE

e Uses ESR and NMR techniques to locally
address each nuclear spin.

Physical
Realizations

e Drawbacks include lack of projective readout
and some scaling issues.




The power of classical CAs were easily
demonstrated due to their computational
simplicity which helped drive their popularity.
o  Lattice-partitioned models might prove useful to
model on circuit based quantum hardware

Potentially useful to explore exotic matter and
quantum phase transitions, quantum gravity, or
particle interactions.
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