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Classical CA:
History

● Conceived in 1950s by von Neumann and Ulam. 

● Loose work continued into early 1980s but 
lacked serious formal analysis and applicability. 

● This changed with Stephen Wolfram’s 
“Statistical Mechanics of Cellular Automata” in 
1983



Classical CA:
Definition

● Requirements:
○ A lattice of cells (potentially infinite, but discrete)
○ A discrete state localized to a cell
○ A rule (function) that maps state of local region 

about a cell to a new center cell state. 
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Classical CA:
Motivations

● Many physical phenomena occur locally which 
makes CA intuitive models of physical reality. 

○ Diffusion, percolation, phase transitions

● Complex phenomena emerge from simple local 
interactions making CA a useful tool in the 
study of complex systems. 

○ Chaos, pattern formation
○ Excitable media, biological systems

● Inherent parallelism implies physical 
implementations with minimal control 



Quantum CA:
Motivations

● CA have been an enormously useful tool to 
understand complex behavior in physical 
systems it is natural to assume quantum CAs 
would do the same. 

● Local quantum control is perhaps the most 
significant barrier to scalable and practical 
quantum computing.



Quantum CA:
Considerations

● Quantum states exist in a Hilbert space

● Entangled states are spatially non-local and 
local interactions are in general non-abelian

● Time translation occurs via unitary operators 
generated by local interactions (i.e. reversible)

● A QCA definition should be satisfying at both an 
axiomatic and physical level. 



Quantum CA:
Early development

● First exploration of QCA was by Grössing and 
Zielenger  in 1988

○ Motivated by exploring the limit of a physically 
implemented cellular automata. 

● The definition turned out to be non-physical due 
to their use of non-unitary evolution and global 
normalization scheme. 

● Mathematically interesting and demonstrated 
that a satisfying QCA definition might be 
nontrivial. 

○ Properties of this model were investigated quite 
thoroughly for ~6 years



Quantum CA:
Early development



Quantum CA:
Further 
Development

● In 1995 Watrous proposed a 1D QCA that he 
proved to be equivalent to a quantum turing 
machine (constant slowdown).

● The definition utilized a cell-partitioning scheme 
to enable local operations and reversibility. 



Quantum CA:
Axiomatic 
Approach

● The first axiomatic approach to QCA was by 
Schumacher and Werner in 2004

○ Made use of the Heisenberg formalism of QM
○ The update rule is a homomorphism on a local 

operator algebra

● Used a lattice-partitioning scheme:



Quantum CA:
Other approaches

● Many alternative definitions have been 
proposed for QCA:

○ Block-partitioned QCA (2003)
○ Local Unitary QCA (2007)
○ Hamiltonian QCA (2008)
○ Partitioned Unitary QCA (2018)

● A sequence of papers by Arrighi et al. approach 
QCA using a similar operator focused 
formalism. (2008-2012)

○ Demonstrated proofs for n-dimensional QCA that 
are computationally universal.

○ Showed that all previous QCA were equivalent
○ Believed that cell-partitioned QCA are the most 

natural. 



Quantum CA:
Relation to other 
models

● Quantum Lattice Gases:
○ Choose a rule that describes particle motion on a 

lattice
○ Take a continuous limit in time and space
○ Can be used to derive Schrödinger and Dirac 

equations

● Quantum Walks
○ Quantum analogs of classical random walks
○ Many useful graph algorithms have been 

described recently and it is a very active research 
area

○ It has been shown that all QW algorithms are 
inherited by QCA, but not vice versa. 



Physical 
Realizations

● Chain of endohedral fullerene nanoparticles:

● Uses ESR and NMR techniques to locally 
address each nuclear spin. 

● Drawbacks include lack of projective readout 
and some scaling issues. 



Outlook ● The power of classical CAs were easily 
demonstrated due to their computational 
simplicity which helped drive their popularity. 

○ Lattice-partitioned models might prove useful to 
model on circuit based quantum hardware

● Potentially useful to explore exotic matter and 
quantum phase transitions, quantum gravity, or 
particle interactions. 
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