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Sources
● Based on a dynamical system for solving k-SAT by M.

Ercsey-Ravasz and colleagues:
– B. Molnár and M. Ercsey-Ravasz, “Asymmetric continuous-time

neural networks without local traps for solving constraint
satisfaction problems,” PLoS ONE, vol. 8, no. 9, p. e73400, 2013.

– R. Sumi, B. Molnár, and M. Ercsey-Ravasz, “Robust optimization
with transiently chaotic dynamical systems,” EPL (Europhysics
Letters), vol. 106, p. 40002, 2014.

● Analog algorithm and circuit implementation in:

Brasford, D., Smith, J. M., Connor, R. J., MacLennan, B. J.,
Holleman, J. “The Impact of Analog Computational Error on
an Analog Boolean Satisfiability Solver,” IEEE International
Symposium for Circuits and Systems 2016, Montreal,
Canada, May 2016.
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Example k-SAT Problem

● N = 5 variables, M = 3 clauses, k = 3 literals in
each

● Constraint density a = M/N 
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Variables
● Solution variables, si ∈ [–1, 1]

– Negative values represent Boolean 0

– Positive values represent Boolean 1

● Auxiliary variables, am ∈ [0, 1]

– Indicate “urgency” of satisfying a clause

● Constraint matrix, cmi ∈ {–1, 0, 1}

– cmi = 1, if Xi positive in clause m

– cmi = –1, if Xi negative in clause m

– cmi = 0, if Xi not in clause m

● Note that we want ∑i cmi si to be positive
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Solution Squashing Function

● Keeps solution variables bounded
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Auxiliary Squashing Function

● Keeps auxiliary variables bounded
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Dynamics of Solution Variables

● A is self-coupling parameter

● Summation tends to force si to solution,
weighted by urgency
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Dynamics of Auxiliary Variables

● B is a self-coupling parameter

● am decreases to the extent clause m is satisfied
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Asymptotic Behavior

● Molnár and Ercsey-Ravasz prove: the only
stable fixed points of the system are solutions
to the problem

● They give numerical evidence that there are no
limit cycles
– provided A and B are in appropriate range

● Hard instances exhibit transient chaotic
behavior
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Bounds on Variables

● provided they are initially in appropriate ranges:

|si(0)| ≤ 1, and 0 ≤ am(0) ≤ 1

● Important for analog implementation
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Pseudo-Energy Function

● Increases with number of unsatisfied clauses

● Bracketed expression is 0 in satisfied clauses

● Not a Lyapunov function (does not decrease
monotonically)
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Analog Algorithm

● M integrators for am

● N integrators for si

● Instance programmed
by setting cmi and 
–cmi connections

● Dotted cell reproduced
MN times

● Integrators initialized to
small values to start
computation
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Schematic of g(a) Cell
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Evolution of Solution Variables

N = 10, k = 4, a = 4
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Evolution of Auxiliary Variables

N = 10, k = 4, a = 4
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Evolution of Pseudo-Energy

N = 10, k = 4, a = 4
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Observations

● This particular algorithm has exponential
analog-time perfomance
– other similar analog algorithms are much more

efficient (Ercsey-Ravasz & Toroczkai, 2011)

● Deep theoretical connection between chaotic
dynamical systems and hard instances of SAT
– Turbulence and computational intractability

● One of many examples of analog solutions of
discrete problems
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