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A.
The Hopfield Network
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Typical Artificial Neuron
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Typical Artificial Neuron

linear activation
Q 51 combination function
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Equations

Local field:

New neural state:
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Hoptield Network

* Symmetric weights: w;; = w;,

e No self-action: w;; =0

e Zero threshold (bias): 6 =0

e Bipolar states (spins): s;

e {-1,+1}

e Discontinuous bipolar activation function:

o(h)=sgn(h) =-
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Positive Coupling

e Positive sense (sign)

e Large strength
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Negative Coupling

 Negative sense (sign)
e Large strength
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Weak Coupling

e Either sense (sign)
o Little strength
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11111111

State = —1 & Local Field < 0



11111111

State = —1 & Local Field > 0



11111111

State Reverses



11111111

State = +1 & Local Field > 0



11111111

State = +1 & Local Field < O



11111111

State Reverses
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NetLogo Demonstration of
Hopftield State Updating

Run Hopfield-update.nlogo
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../NetLogo%20Simulations/Hopfield-update.nlogo

Hopftield Net as Soft Constraint
Satistaction System

e States of neurons as yes/no decisions

* Weights represent soft constraints between
decisions
— hard constraints must be respected
— soft constraints have degrees of importance

e Decisions change to better respect
constraints

* Is there an optimal set of decisions that best
respects all constraints?
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Demonstration of Hopfield Net
Dynamics I

Run Hoptield-dynamics.nlogo
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../NetLogo%20Simulations/Hopfield-dynamics.nlogo

Convergence

* Does such a system converge to a stable
state?

 Under what conditions does it converge”?

* There 1s a sense in which each step relaxes
the “tension” in the system

e But could a relaxation of one neuron lead to
greater tension 1n other places?
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Quantifying “Tension”

* If w;>0,then s; and s5; want to have the same sign
(Si Sj — +1)

* If w; <0, then s; and s; want to have opposite signs
(s;8,=-1)

* If w; =0, their signs are independent

* Strength of interaction varies with lw,|

* Define “tension” T}; between neurons i and j:

Tij = Si Wij Sj

T,<0 = they are happy
T;;>0 = they are unhappy
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Total Energy of System

The “energy” of the system 1s the total
“tension” 1n it:
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Another View of Energy

The energy measures the disharmony of the
neurons’ states with their local fields (1.e. of
opposite sign):
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Do State Changes Decrease Energy?

e Suppose that neuron k changes state
* Change of energy:

AE = E{s'} - E{s}

L / /

(if) (if)

!

j=k j=k
- /
j=k
=-As.h,

<0
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Energy Does Not Increase

* In each step in which a neuron 1s considered
for update:
E{s(t+ 1)} —E{s(t)} <0

* Energy cannot increase
* Energy decreases if any neuron changes
 Must 1t stop?
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Conclusion

e If we do asynchronous updating, the
Hoptield net must reach a stable, minimum
energy state 1n a finite number of updates

e This does not imply that it 1s a global
minimum

10/11/19
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B.
Hopftield Network for
Task Assignment Problem

(and the continuous Hoptield network)

10/11/19

26



Task Assignment Problem

e Six tasks to be done (I, 11, ..., VI)
e Six agents to do tasks (A, B, ..., F)

* They can do tasks at various rates
_ A(10,5,4,6,5,1)
— B (6,4,9,7,3,2)

— etc

* What 1s the optimal assignment of tasks to
agents’’
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Continuous Hoptield Net

U;
U; = ]l Vi + By — —
= O'(U) e (0,1)
Energy function:
Ba— —EZ;;VJUV]- — ; V. B; VIJv - B'V
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Derivation of k-out-of-n Rule
e Suppose we want exactly k of n neurons = 1

— Thatis, Y, j=, V; = k
* Therefore, minimize E, = [k — X 1-, V;]*
 Want values of V; to be integral O or 1
» Therefore, minimize E, = )i, V;(1 = V)
. Minimize total energy function:

= [k =X VilP+ XL V(1 = W)

. Rearrange to get

ZV( 2)V, — ZV(Zk—l)

ll]

]-'/—'l
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k-out-of-n Rule

2k—1

2k—1

Competitive
Network
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k-out-of-n Competitive Network

With equal bias, it 1s essentially random
which k will win

With unequal bias, the £ with strongest
Input win

To bias neurons, make sure the inputs
average to 2k—1

For k=1 1t 1s a winner-takes-all network

Macrocolumns 1n cortex seem to be k-out-
of-n competitive feature detectors
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Task Assignment Problem

e Six different tasks (I to VI)
e Six different agents (A to F)
e Agents can perform tasks at different rates

 What 1s the optimal assignment of tasks to
agents (maximum rate)?
(one task per agent, one agent per task)
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Network tor Task Assignment
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NetLogo Implementation of
Task Assignment Problem

Run TaskAssignment.nlogo
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(=
Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum

o
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Escape from Local Minimum

o
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Motivation

e Idea: with low probability, go against the local
field

— move up the energy surface
11 7 . o o
— make the wrong microdecision

e Potential value for optimization: escape from local
optima
e Potential value for associative memory: escape

from spurious states
— because they have higher energy than imprinted states
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The Stochastic Neuron

Deterministic neuron: s, = sgn(/,)
o(h)

Pr{s,=+1} =0 (hll)
Pr{s/=-1}=1-0(h,) - f

Stochastic neuron : |

Pr(s = +1} = o(h,)
Pr{s/ = -1} =1-0(h,) J

0

1
1+exp(-2h/T)

Logistic sigmoid: o(h) =
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Properties of Logistic Sigmoid

/& o(h) = —
/

0

e Ash — +o,c(h) > 1
e Ash— —xo,c(h)—>0
e 5(0)=1/2

10/11/19
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Pseudo-Temperature

 Temperature = measure of thermal energy (heat)
e Thermal energy = vibrational energy of molecules
e A source of random motion

e Pseudo-temperature = a measure of nondirected
(random) change

e Logistic sigmoid gives same equilibrium
probabilities as Boltzmann-Gibbs distribution
e Thermodynamic perk or coldness: f = 1/T
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Transition Probability

Recall, change in energy AE =—-As, h,
=2s.h,

Pr{s,'C = il‘Sk = 11} =o(xh,)=o(-s,.h,)

1
1+ exp(2s,.h, /T)
" 1
1+ exp(AE/T)

Pr{sk T —sk} =
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Stability

* Are stochastic Hopfield nets stable?
 Thermal noise prevents absolute stability

* But with symmetric weights average values
(s;) become time-invariant
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DA
Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma

* In the early stages of search, we want a high
temperature, so that we will explore the
space and find the basins of the global
minimum

* In the later stages we want a low
temperature, so that we will relax into the
global minimum and not wander away from
it

* Solution: decrease the temperature
gradually during search
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Quenching vs. Annealing

* Quenching:
— rapid cooling of a hot material
— may result in defects & brittleness
— local order but global disorder
— locally low-energy, globally frustrated

 Annealing:

— slow cooling (or alternate heating & cooling)
— reaches equilibrium at each temperature

— allows global order to emerge
— achieves global low-energy state
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Effect of Moderate Temperature

Energy
A+

10/11/19 (fig. from Anderson Intr. Neur. Comp.)
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Effect of High Temperature
(Low Perk)

(fig. from Anderson Intr. Neur. Comp.)
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Effect of Low Temperature
(High Perk)

AE/T high

(fig. from Anderson Intr. Neur. Comp.)
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Annealing Schedule

* Controlled decrease of temperature

e Should be sufticiently slow to allow
equilibrium to be reached at each
temperature

* With sufficiently slow annealing, the global
minimum will be found with probability 1

* Design of schedules 1s a topic of research
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Typical Practical
Annealing Schedule

e Initial temperature 7|, sufficiently high so all
transitions allowed
 Exponential cooling: T, = a7,
= typical 0.8 < a <0.99
* fixed number of trials at each temp.
= expect at least 10 accepted transitions

* Final temperature: three successive
temperatures without required number of
accepted transitions
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Summary

* Non-directed change (random motion)
permits escape from local optima and
spurious states

* Pseudo-temperature can be controlled to
adjust relative degree of exploration and
exploitation

10/11/19
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5
Quantum Annealing
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Quantum Annealing

e Often quicker to go
Thermaldump through than go over

Start in disordered
quantum state

Slowly evolve to state
that minimizes energy

Can be simulated
(inefficiently) on
classical computer

Configuration
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Hamiltonian Quantum Mechanics

e Schrodinger’s equation:
i) = HOY(©)

e H(t) is a Hamiltonian matrix, which is Hermitian
and can be diagonalized:

H(t) = Z E; |Ei)(E;]
i
e where eigenvalues E; are energies of eigenstates
|E;)

* The smallest E,; defines the ground state ‘Eg>
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Problem Hamiltonian

e For problem P, determine J and b such
Ep'=h—>si]s—b"s
is minimized for solution s € {—1, +1}"
(examples later)

e Define problem Hamiltonian:

Z]”(Z ®Z;) — Zb Z;

(ij)
e Note: Z;|0) = Z;|T) = +1]|T),
Z,11) =7Z;1) = —1l)

10/11/19
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Disordering Hamiltonian

e For example:

HD — _le

l
e Since X;|+) = 0|+) and X;|—) = —1|-),
the ground state is |+)®"

* Note [+) == (|0) + 1)) = = (1) + )

1 1
7z 7z
e Hj does not commute with Hp
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Quantum Annealing Algorithm

e Define the time-dependent Hamiltonian:
H(t) = Hp + T'(t)Hp

e ['(t) is the transverse field coefficient

e ['(t) starts large and I'(t) > 0ast —» 0

e Typical annealing schedule:

['(k) =

(k + 1)c/m
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F.
Adiabatic Quantum Computing
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