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III. Quantum Annealing
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A.
The Hopfield Network
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Typical Artificial Neuron
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Equations
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Hopfield Network
• Symmetric weights: wij = wji

• No self-action: wii = 0
• Zero threshold (bias): ! = 0
• Bipolar states (spins): si ∈ {–1, +1}
• Discontinuous bipolar activation function:

€ 

σ h( ) = sgn h( ) =
−1, h < 0
+1, h > 0
$ 
% 
& 
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Positive Coupling

• Positive sense (sign)
• Large strength
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Negative Coupling

• Negative sense (sign)
• Large strength
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Weak Coupling
• Either sense (sign)
• Little strength
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State = –1 & Local Field < 0

h < 0
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State = –1 & Local Field > 0

h > 0



10/11/19 12

State Reverses

h > 0
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State = +1 & Local Field > 0

h > 0
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State = +1 & Local Field < 0

h < 0
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State Reverses

h < 0
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NetLogo Demonstration of 
Hopfield State Updating

Run Hopfield-update.nlogo

../NetLogo%20Simulations/Hopfield-update.nlogo
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Hopfield Net as Soft Constraint 
Satisfaction System

• States of neurons as yes/no decisions
• Weights represent soft constraints between 

decisions
– hard constraints must be respected
– soft constraints have degrees of importance

• Decisions change to better respect 
constraints

• Is there an optimal set of decisions that best 
respects all constraints?
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Demonstration of Hopfield Net 
Dynamics I

Run Hopfield-dynamics.nlogo

../NetLogo%20Simulations/Hopfield-dynamics.nlogo
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Convergence

• Does such a system converge to a stable 
state?

• Under what conditions does it converge?
• There is a sense in which each step relaxes 

the “tension” in the system
• But could a relaxation of one neuron lead to 

greater tension in other places?
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Quantifying “Tension”
• If wij > 0, then si and sj want to have the same sign 

(si sj = +1)
• If wij < 0, then si and sj want to have opposite signs 

(si sj = –1)
• If wij = 0, their signs are independent
• Strength of interaction varies with |wij|
• Define “tension” Tij between neurons i and j:

Tij = – si wij sj
Tij < 0  ⇒ they are happy
Tij > 0  ⇒ they are unhappy
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Total Energy of System
The “energy” of the system is the total 

“tension” in it:

! " = ∑ %& '%&
= −∑ %& )%*%&)&
= −+

, ∑- ∑./- 0-1-.0.
= −+

, ∑- ∑. 0-1-.0., if 2%& = 0
= −+

,"
45"
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Another View of Energy
The energy measures the disharmony of the 

neurons’ states with their local fields (i.e. of 
opposite sign):
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Do State Changes Decrease Energy?
• Suppose that neuron k changes state
• Change of energy:

€ 

ΔE = E # s { }− E s{ }

= − # s iwij # s j + siwijs j
ij
∑

ij
∑

€ 

= − # s kwkj
j≠k
∑ s j + skwkjs j

j≠k
∑

€ 

= − # s k − sk( ) wkjs j
j≠k
∑

€ 

= −Δskhk

€ 

< 0
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Energy Does Not Increase

• In each step in which a neuron is considered 
for update:
E{s(t + 1)} – E{s(t)} ≤ 0

• Energy cannot increase
• Energy decreases if any neuron changes
• Must it stop?
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Conclusion

• If we do asynchronous updating, the 
Hopfield net must reach a stable, minimum 
energy state in a finite number of updates

• This does not imply that it is a global 
minimum
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B.
Hopfield Network for

Task Assignment Problem
(and the continuous Hopfield network)
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Task Assignment Problem

• Six tasks to be done (I, II, …, VI)
• Six agents to do tasks (A, B, …, F)
• They can do tasks at various rates

– A (10, 5, 4, 6, 5, 1)
– B (6, 4, 9, 7, 3, 2)
– etc

• What is the optimal assignment of tasks to 
agents?



Continuous Hopfield Net
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Energy function:
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Derivation of k-out-of-n Rule
• Suppose we want exactly k of n neurons = 1

– That is, ∑"#$% &" = (
• Therefore, minimize )* = ( − ∑"#$% &" ,
• Want values of &" to be integral 0 or 1
• Therefore, minimize )- = ∑"#$% &" 1 − &"
• Minimize total energy function:
) = ( − ∑"#$% &" ,+ ∑"#$% &" 1 − &"

• Rearrange to get:

) = −120
"#$

%
0
1#$
12"

%
&" −2 &1 −0

"#$

%
&"(2( − 1)
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k-out-of-n Rule
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k-out-of-n Competitive Network
• With equal bias, it is essentially random 

which k will win
• With unequal bias, the k with strongest 

input win
• To bias neurons, make sure the inputs 

average to 2k–1
• For k=1 it is a winner-takes-all network
• Macrocolumns in cortex seem to be k-out-

of-n competitive feature detectors
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Task Assignment Problem

• Six different tasks (I to VI)
• Six different agents (A to F)
• Agents can perform tasks at different rates
• What is the optimal assignment of tasks to 

agents (maximum rate)?
(one task per agent, one agent per task)
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Network for Task Assignment
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C

III

2 biased by rate
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NetLogo Implementation of
Task Assignment Problem

Run TaskAssignment.nlogo

../NetLogo%20Simulations/TaskAssignment.nlogo
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C.
Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum
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Escape from Local Minimum
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Motivation

• Idea: with low probability, go against the local 
field
– move up the energy surface
– make the �wrong� microdecision

• Potential value for optimization: escape from local 
optima

• Potential value for associative memory: escape 
from spurious states
– because they have higher energy than imprinted states
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The Stochastic Neuron

€ 

Deterministic neuron :  " s i = sgn hi( )
Pr " s i = +1{ } =Θ hi( )
Pr " s i = −1{ } =1−Θ hi( )

€ 

Stochastic neuron :  
Pr " s i = +1{ } =σ hi( )
Pr " s i = −1{ } =1−σ hi( )

€ 

Logistic sigmoid :  σ h( ) =
1

1+ exp −2h T( )

h

s(h)
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Properties of Logistic Sigmoid

• As h® +¥, s(h) ® 1
• As h® –¥, s(h) ® 0
• s(0) = 1/2

€ 

σ h( ) =
1

1+ e−2h T
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Pseudo-Temperature

• Temperature = measure of thermal energy (heat)
• Thermal energy = vibrational energy of molecules
• A source of random motion
• Pseudo-temperature = a measure of nondirected

(random) change
• Logistic sigmoid gives same equilibrium 

probabilities as Boltzmann-Gibbs distribution
• Thermodynamic perk or coldness: ! = 1/%
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Transition Probability

€ 

Recall, change in energy ΔE = −Δskhk
= 2skhk

  

€ 

Pr " s k = ±1sk = 1{ } =σ ±hk( ) =σ −skhk( )

€ 

Pr sk →−sk{ } =
1

1+ exp 2skhk T( )

=
1

1+ exp ΔE T( )
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Stability

• Are stochastic Hopfield nets stable?
• Thermal noise prevents absolute stability
• But with symmetric weights average values 
!" become time-invariant
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D.
Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma
• In the early stages of search, we want a high 

temperature, so that we will explore the 
space and find the basins of the global 
minimum

• In the later stages we want a low 
temperature, so that we will relax into the 
global minimum and not wander away from 
it

• Solution: decrease the temperature 
gradually during search
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Quenching vs. Annealing
• Quenching:

– rapid cooling of a hot material
– may result in defects & brittleness
– local order but global disorder
– locally low-energy, globally frustrated

• Annealing:
– slow cooling (or alternate heating & cooling)
– reaches equilibrium at each temperature
– allows global order to emerge
– achieves global low-energy state
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Effect of Moderate Temperature

(fig. from Anderson Intr. Neur. Comp.)
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Effect of High Temperature
(Low Perk)

(fig. from Anderson Intr. Neur. Comp.)
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Effect of Low Temperature
(High Perk)

(fig. from Anderson Intr. Neur. Comp.)
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Annealing Schedule

• Controlled decrease of temperature
• Should be sufficiently slow to allow 

equilibrium to be reached at each 
temperature

• With sufficiently slow annealing, the global 
minimum will be found with probability 1

• Design of schedules is a topic of research
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Typical Practical
Annealing Schedule

• Initial temperature T0 sufficiently high so all 
transitions allowed

• Exponential cooling: Tk+1 = aTk
§ typical 0.8 < a < 0.99
§ fixed number of trials at each temp.
§ expect at least 10 accepted transitions

• Final temperature: three successive 
temperatures without required number of 
accepted transitions
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Summary

• Non-directed change (random motion) 
permits escape from local optima and 
spurious states

• Pseudo-temperature can be controlled to 
adjust relative degree of exploration and 
exploitation
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E.
Quantum Annealing



Quantum Annealing

• Often quicker to go 
through than go over

• Start in disordered 
quantum state

• Slowly evolve to state 
that minimizes energy

• Can be simulated 
(inefficiently) on 
classical computer
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Hamiltonian Quantum Mechanics
• Schrödinger’s equation:

! "#
#$|&(() = +(() ⟩|&(()

• +(() is a Hamiltonian matrix, which is Hermitian 
and can be diagonalized:

+ ( =.
/
0/ ⟩0/ 10/

• where eigenvalues 0/ are energies of eigenstates 
"20/

• The smallest 03 defines the ground state 4503
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Problem Hamiltonian
• For problem P, determine J and b such

!" = −%&'()' − *('
is minimized for solution ' ∈ −1,+1 /

(examples later)
• Define problem Hamiltonian:

0" = −1
23
423 52⨂53 −1

2
7252

• Note: 52 ⟩|0 = 52 ⟩|↑ = +1 ⟩|↑ ,
52 ⟩|1 = 52 ⟩|↓ = −1 ⟩|↓
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Disordering Hamiltonian
• For example:

!" = −%
&
'&

• Since '& ⟩|+ = 0 ⟩|+ and '& ⟩|− = −1 ⟩|− , 
the ground state is ⟩|+ ⨂.

• Note ⟩|+ = /
0 ( ⟩|0 + ⟩|1 ) = /

0 ( ⟩|↑ + ⟩|↓ )
• !" does not commute with !7
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Quantum Annealing Algorithm

• Define the time-dependent Hamiltonian:
! " = !$ + Γ " !'

• Γ " is the transverse field coefficient 
• Γ " starts large and Γ " → 0 as " → 0
• Typical annealing schedule:

Γ + = ,
(+ + 1)0/2
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F.
Adiabatic Quantum Computing


