100 CHAPTER III. QUANTUM COMPUTATION
C Quantum information

C.1  Qubits
C.1l.a SINGLE QUBITS

Just as the bits 0 and 1 are represented by distinct physical states in a conven-
tional computer, so the quantum bits (or qubits) |0) and |1) are represented
by distinct quantum states. We call |0) and |1) the computational or stan-
dard measurement basis. What distinguishes qubits from classical bits is that
they can be in a superposition of states, ag|0) + a1|1), for ag,a; € C, where
lag|? +]a]|? = 1. If we measure this state in the computational basis, we will
observe |0) with probability |ag|? and likewise for |1); after measurement the
qubit is in the observed state. This applies, of course, to measurement in
any basis. I will depict the measurement possibilities this way:

lao|?

aol0) + a1[1) — |0),
a1l?
aol0) + 1) 9 1),

The following sign basis is often useful:

) 0+ 1), (1.s)

det 1
=) = E(|0>—|1>)- (IIL.9)

Notice that |[+) is “halfway” between |0) and |1), and likewise |—) is halfway
between |0) and —|1). Draw them to be sure you see this. As a consequence
(Exer. I11.34):

Sl

0) =

-

() + 1))
1

n = SlH=1=)

&l

To remember this, think (+z) + (—z) = 0 and (+z) — (—z) = (+2z), which
is nonzero (this is just a mnemonic).



C. QUANTUM INFORMATION 101

classical channel

quantum ch/a{me]

Figure II1.6: Quantum key distribution [from Rieffel & Polak (2000)].

Alice's random bit 0 1 1 0 1 0 0 1
Alice's random sending basis + =+ b ¢ =+ b ¢ > b ¢ +
Photon polarization Alice sends 1 — N 1 N Va Va —
Bob's random measuring basis + > b4 > —+ > —+ +
Photon polarization Bob measures| | Vs N / — Ve — —
PUBLIC DISCUSSION OF BASIS
Shared secret key 0 1 0 1

Figure I11.7: Example if QKD without interference. [fig. from wikipedial
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Alice's random bit 0 1 1 o] 1 0 0 1

Alice's random sending basis + + hod + b4 5 5 +
Photon polarization Alice sends T — N T N ) 2 —
Eve's random measuring basis =+ » + + x + ™ =+
Polarization Eve measures and sends T Ve — T N — Ve —
Bob's random measuring basis —+ X = = + ™ + =+
Photon polarization Bob measures T Ve Ve N — /' T —

PUBLIC DISCUSSION OF BASIS
Shared secret key 0 0 0 1
Errors in key ¥ x v v

Figure I11.8: Example if QKD with eavesdropping. [fig. from wikipedia]

C.1.b QUANTUM KEY DISTRIBUTION

In 1984 Bennett and Brassard showed how sequences of qubits could be used
to distribute an encryption key securely.* This is called the “BB84 protocol.”
[ronically, the idea was proposed initially by Stephen Wiesner in the 1970s,
but he couldn’t get it published.

We are supposing that Alice is transmitting a key to Bob over two chan-
nels, one classical and one quantum. Eve may eavesdrop on both channels
and even replace the signals in them. Over the quantum channel Alice will
send the photons to Bob that encode the key bits in two different bases, ei-
ther {[1),|—)}, which T'll call the “+ basis,” or {| /), | \\)} (the “Xx basis”)
(respectively 0, 1 in each basis). Alice chooses randomly the basis in which
to encode her bits (see Fig. I11.7). Bob will measure the photons according
to these two bases, also chosen randomly and independently of Alice. After
the transmission, Alice and Bob will communicate over the classical channel
and compare their random choices; where they picked the same basis, they
will keep the bit, otherwise they will discard it. (They will have agreed on
about 50% of the choices.)

Suppose Eve is eavesdropping on the quantum channel, measuring the
qubits and retransmitting them to Bob (see Fig. II1.8). About 50% of the
time, she will guess the wrong basis, and will also resend it in this same
incorrect basis. If this is one of the times Alice and Bob chose the same
basis, the bit will nevertheless be incorrect about half of the time (the times

4This section is based on Rieffel & Polak (2000), which is also the source for otherwise
unattributed quotes.
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Eve chose the wrong basis). That is, about 50% of the time Eve picks the
same basis as Alice, so she reads the bit correctly and transmits it to Bob
correctly. About 50% of the time Eve guesses the wrong basis. She will
know this, if she is listening in on the classical channel, but she has already
transmitted it to Bob in the wrong basis. If this is a case in which Alice and
Bob used the same basis (and so Bob should get it correct), he will get it
incorrect 50% of the time, since Eve transmitted it in the other basis. So
25% of the bits that should be correct will be wrong. This high error rate
will be apparent to Alice and Bob if they have been using an error-detecting
code for the key. (In effect Eve is introducing significant, detectable noise
into the channel.) Furthermore, Eve’s version of the key will be about 25%
incorrect. Therefore Bob knows that the key was not transmitted securely
and Eve gets an incorrect key.

This is only the most basic technique, and it has some vulnerabilities, and
so other techniques have been proposed, but they are outside the scope of this
book. “The highest bit rate system currently demonstrated exchanges secure
keys at 1 Mbit/s (over 20 km of optical fibre) and 10 kbit/s (over 100 km
of fibre)”5 “As of March 2007 the longest distance over which quantum key
distribution has been demonstrated using optic fibre is 148.7 km, achieved
by Los Alamos National Laboratory/NIST using the BB84 protocol.” In
Aug. 2015 keys were distributed over a 307 km optical cable, with 12.7 kbps
key generation rate. “The distance record for free space QCD [quantum
key distribution] is 144 km between two of the Canary Islands, achieved
by a European collaboration using entangled photons (the Ekert scheme)
in 2006,[7] and using BB84 enhanced with decoy states[8] in 2007.]9] The
experiments suggest transmission to satellites is possible, due to the lower
atmospheric density at higher altitudes.” At least three companies offer
commercial QKD. “Quantum encryption technology provided by the Swiss
company Id Quantique was used in the Swiss canton (state) of Geneva to
transmit ballot results to the capitol in the national election occurring on
October 21, 2007.” Four QKD networks have been in operation since mid-
late 2000s. Among them,

[tJhe world’s first computer network protected by quantum key
distribution was implemented in October 2008, at a scientific
conference in Vienna. The name of this network is SECOQC
(Secure Communication Based on Quantum Cryptography) and

Shttps://en.wikipedia.org/wiki/Quantum key distribution (accessed 12-09-18).
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EU funded this project. The network used 200 km of standard
fibre optic cable to interconnect six locations across Vienna and
the town of St Poelten located 69 km to the west.

C.1.c Multiple qubits

We can combine multiple qubits into a quantum register. By Postulate 4, if
H is the state space of one qubit, then the tensor power H®" will be the state

space of an n-qubit quantum register. The computational basis of this space

is the set of all vectors |biby - --b,) with by € 2. (I define 2 o {0,1} to be

the set of bits, and in general I use a boldface integer N for the set integers
{0,1,..., N — 1}.) Therefore the dimension of the space H®" is 2", and the
set of states is the set of normalized vectors in C?". For 10 qubits we are
dealing with 1024-dimensional complex vectors (because each of the 2'° basis
vectors has its own complex amplitude). This is a huge space, exponentially
larger than the 2" classical n-bit strings. This is part of the origin of quantum
parallelism, because we can compute on all of these qubit strings in parallel.
Consider a quantum computer with 500 qubits; it could be very small (e.g.,
500 atoms), but it is computing in a space of 2°%° complex numbers. Note
that 2°%° is more than the number of particles in the universe times the age
of the universe in femtoseconds! That is, a 500-qubit quantum computer is
equivalent to a universe-sized computer working at high speed since the Big
Bang.

Whereas an ordinary direct product has dimension dim(S X 7') = dim S+
dim 7', a tensor product has dimension dim(S ® T') = dim S x dim7". Hence
if dim S = 2, dim S®" = 2",

Measuring some of the qubits in a register causes partial collapse of the
quantum state. Suppose we have a composite state

V) = ago|00) + ao1|01) + a10|10) + a1,|11),

and we measure just the first bit. We will get 0 with probability |ago|? + |ao; |2
and it will collapse into the state ao|00) + ap1|01), but we must renormalize

1t:
a00’00> + a01]01)

W) = :
V laoo|* + |ao:[?

Do this by striking out all terms in |¢)) that have 1 in the first qubit.
(100‘00> + (101‘01>

V |aoo|* + |ao: |2 .

ao|2+|ao1|?
|’¢> | OO'i)O | (100|00> + a01|01) =~
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Figure I11.9: Left: classical gates. Right: controlled-NOT gate. [from Nielsen
& Chuang (2010, Fig. 1.6)]

C.2 Quantum gates

Quantum gates are analogous to ordinary logic gates (the fundamental build-
ing blocks of circuits), but they must be unitary transformations (see Fig.
II1.9, left, for ordinarty logic gates). Fortunately, Bennett, Fredkin, and
Toffoli have already shown how all the usual logic operations can be done
reversibly. In this section you will learn the most important quantum gates.

C.2.a SINGLE-QUBIT GATES

The NOT gate is simple because it is reversible: NOT|0) = |1), NOT|1) =
|0). Its desired behavior can be represented:

NOT: [0) — |1)
1) = 10).

Note that defining it on a basis defines it on all quantum states. Therefore
it can be written as a sum of dyads (outer products):

NOT = [1Y0] + [0)1].

You can read this, “return |1) if the input is |0), and return |0) if the input
is [1).” Recall that in the standard basis [0) = (1 0)* and [1) = (0 1)T.
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Therefore NOT can be represented in the standard basis by computing the
outer products:

or- (D)o (o= (1) (1) (2 1)

The first column represents the result for |0), which is |1), and the second
represents the result for |1), which is |0).

Although NOT is defined in terms of the computational basis vectors, it
applies to any qubit, in particular to superpositions of |0) and |1):

NOT(a|0) + b|1)) = aNOT|0) + bBNOT]|1) = a|1) + b|0) = b|0) + a|1).

Therefore, NOT exchanges the amplitudes of |0) and |1).

In quantum mechanics, the NOT transformation is usually called X. It
is one of four useful unitary operations, called the Pauli matrices, which are
worth remembering. In the standard basis:

ef ef 1 0
[ %o, & < 01 ) (111.10)
Xy &y < 01 ) (IT1.11)
10
def def def 0 7
Y=0,=0, = : (II1.12)
—1 0
7z, Ly & < é _01 > (I11.13)

We have seen that X is NOT, and [ is obviously the identity gate. Z leaves |0)
unchanged and maps [1) to —|1). It is called the phase-flip operator because
it flips the phase of the |1) component by 7 relative to the |0) component.
(Recall that global/absolute phase doesn’t matter.) The Pauli matrices span
the space of 2 x 2 complex matrices (Exer. I11.21).

Note that Z|+) = |—) and Z|—) = |+). It is thus the analog in the sign
basis of X (NOT) in the computational basis. What is the effect of Y on the
computational basis vectors? (Exer. I11.15)

Note that there is an alternative definition of Y that differs only in global

phase:
def 0 1
y ( ol )
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This is a 90° = 7/2 counterclockwise rotation: Y (a|0) + b|1)) = b|0) — a|1).
Draw a diagram to make sure you see this.

Note that the Pauli operations apply to any state, not just basis states.
The X, Y, and Z operators get their names from the fact that they reflect
state vectors along the x,y, z axes of the Bloch-sphere representation of a
qubit, which we will not use in this book. Since they are reflections, they are
Hermitian (their own inverses).

C.2.b MULTIPLE-QUBIT GATES

We know that any logic circuit can be built up from NAND gates. Can we
do the same for quantum logic, that is, is there a universal quantum logic
gate? We can’t use NAND, because it’s not reversible, but we will see that
there are universal sets of quantum gates.

The controlled-NOT or CNOT gate has two inputs: the first determines
what it does to the second (negate it or not).

CNOT: |00
01
110
11

— |00
— |01
— |11
—  |10).

)
)
)
)

Its first argument is called the control and its second is called the target,
controlled, or data qubit. It is a simple example of conditional quantum
computation. CNOT can be translated into a sum-of-dyads representation
(Sec. A.2.d), which can be written in matrix form (Ex. III.24, p. 196):

CNOT = |00)00|
+ |o1)01
+ [11)10|
+ [10¥11]

We can also define it (for z,y € 2), CNOT|zy) = |zz), where z = z @ y,
the exclusive OR of z and y. That is, CNOT|z,y) = |z,z @ y) CNOT is
the only non-trivial 2-qubit reversible logic gate. Note that CNOT is unitary
since obviously CNOT = CNOT' (which you can show using its dyadic
representation or its matrix representation, Ex. I11.24, p. 196). See the right
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o

I
l

Figure I11.10: Diagram for CCNOT or Toffoli gate [fig. from Nielsen &
Chuang (2010)]. Sometimes the x is replaced by & because CCNOT|zyz) =
|, y, 1y © 2).

panel of Fig. II1.9 (p. 105) for the matrix and note the diagram notation for
CNOT.
CNOT can be used to produce an entangled state:

CNOT | (10} + 1)) [0) = CNOT—(00}+10)) = -

V2 V2 V2

Note also that CNOT|z,0) = |z, z), that is, FAN-OUT, which would seem
to violate the No-cloning Theorem, but it works as expected only for x € 2.
In general CNOT|¢)|0) # |1)|¢) (Exer. I11.25).

Another useful gate is the three-input/output Toffoli gate or controlled-
controlled-NOT. It negates the third qubit if and only if the first two qubits
are both 1. For z,y, z € 2,

(100)+[11)) = |Boo)-

CONOT|1,1,2) % 1,1, -2),
CCNOT|z,y, 2) dof |z,y,z), otherwise.

That is, CCNOT|z,y, z) = |z, y,xy @ z). All the Boolean operations can be
implemented (reversibly!) by using Toffoli gates (Exer. I11.30). For example,
CCNOT|z,y,0) = |z,y,z Ay). Thus it is a universal gate for quantum logic.

In Jan. 2009 CCNOT was implemented successfully using trapped ions.’

6Monz, T.; Kim, K.; Hansel, W.; Riebe, M.; Villar, A. S.; Schindler, P.; Chwalla, M.;
Hennrich, M. et al. (Jan 2009). “Realization of the Quantum Toffoli Gate with Trapped
Tons.” Phys. Rev. Lett. 102 (4): 040501. arXiv:0804.0082.
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C.2.c WALSH-HADAMARD TRANSFORMATION

Recall that the sign basis is defined |+) = o 12(|0> + 1)) and |—) o (|O>
|1)). The Hadamard transformation or gate is defined:

H10) +), (I11.14)
oy -, (IT1.15)

def

In sum-of-dyads form: H < |+)(O| + |—JX1|. In matrix form (with respect to

the standard basis):
def 1 1 1
H \/5< L > (IIL.16)

Note that H is self-adjoint, H? = I (since H' = H). H can be defined also
in terms of the Pauli matrices: H = (X + Z)/v/2 (Exer. 111.38).

The H transform can be used to transform the computational basis into
the sign basis and back (Exer. I11.37):

H(al0) +0[1)) = al+)+b|-),
H(a|+) +b|-)) = al0)+ b1).

Alice and Bob could use this in quantum key distribution.

When applied to a |0), H generates an (equal-amplitude) superposition of
the two bit-values, H|0) = |O> f|1> This is a useful way of generating a
superposition of both pOSSlble input bits, and the Walsh transform, a tensor

power of H, can be applied to a quantum register to generate a superposition
of all possible register values. Consider the n = 2 case:

H®,¢) = (H® H)(|¢) ® o))
(H|v)) ® (H|9))

In particular,
H®|00) = (H|0)) ® (H|0))
= )

50+ |1>>]®2

1 2
_ (ﬁ) (10) +11)((0) + 1))

(|00> +[01) + |10) + [11)).

-5
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Notice that this is an equal superposition of all possible values of the 2-qubit
register. (I wrote the amplitude in a complicated way, 1/v22, to help you
see the general case.) In general,

OO = (10} + 1)

[\~

n
A\

= =0+ me(0+1)e-- o0+ 1)

— (|00...00) + [00...01) + -+ + [11...11))

—_

- =3
2" xe2n
2n—1

— \/Q_HZ|X

Note that “2™—1" represents a string of n 1-bits, and that 2 = {0, 1}. Hence,
H®"|0)®" generates an equal superposition of all the 2" possible values of the
n-qubit register. We often write W,, = H®™ for the Walsh transformation.

An linear operation applied to such a superposition state in effect applies
the operation simultaneously to all 2" possible input values. This is expo-
nential quantum parallelism and suggests that quantum computation might
be able to solve exponential problems much more efficiently than classical
computers. To see this, suppose U|x) = |f(z)). Then:

U(H®"|0)%") =

2m—1 ] 2" —1 2" —1

Z| \/—Z \/2—712\10

This is a superposition of the function values f(x) for all of the 2" possible
values of x; it is computed by one pass through the operator U.
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-1

Figure II1.11: Diagram for swap [from Nielsen & Chuang (2010)].

C.3 Quantum circuits

A quantum circuit is a sequential series of quantum transformations on a
quantum register. The inputs are usually computational basis states (all |0)
unless stated otherwise). Quantum circuit diagrams are drawn with time go-
ing from left to right, with the quantum gates crossing one or more “wires”
(qubits) as appropriate. The circuit represents a sequence of unitary opera-
tions on a quantum register rather than physical wires.

These “circuits” are different in several respects from ordinary sequential
logic circuits. First, loops (feedback) are not allowed, but you can apply
transforms repeatedly. Second, FAN-IN (equivalent to OR) is not allowed,
since it it not reversible or unitary. FAN-OUT is also not allowed, because
it would violate the No-cloning Theorem. (N.B.: This does not contradict
the universality of the Toffoli or Fredkin gates, which are universal only with
respect to logical or classical states.)

Fig. I11.9 (right) on page 105 shows the symbol for CNOT and its effect.

The swap operation is defined |zy) — |yz), or explicitly

SWAP = Z lyxfxy|.

x,yc2

We can put three CNOTS in series to swap two qubits (Exer. I11.40). Swap
has a special symbol as shown in Fig. III.11.

In general, any unitary operator U (on any number of qubits) can be
conditionally controlled (see Fig. I11.12); this is the quantum analogue of
an if-then statement. If the control bit is 0, this operation does nothing,
otherwise it does U. This is implemented by |[0X0|® I+ |1X1|®@U. Effectively,
the operators are entangled.

Suppose the control bit is in superposition, |x) = a|0) + b|1). The effect
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U

Figure 1.8. Controlled-U gate.

Figure II1.12: Diagram for controlled-U [from Nielsen & Chuang (2010)].

of the conditional operation is:

(10X0l @ I + [1}1] @ U)[x, ¥)
= (00l I + [1{1] © U)(al0) + b[1)) @ |¢))
= |0X0[(al0) +b[1)) @ I|¢) + [1X1[(al0) +b[1)) @ Ul¢)
= al0) @ [p) +b[1) @ Uly)
= al0,¥) + 0|1, Us).

The result is a superposition of entangled outputs. Notice that CNOT is a
special case of this construction, a controlled X.

We also have a quantum analogue for an if-then-else construction. If U
and U; are unitary operators, then we can make the choice between them
conditional on a control bit as follows:

10Y0] ® Up + |1X1] @ U;.

For example,
CNOT = |0Y0| ® I + [1)1]| ® X. (I11.17)

In quantum circuit diagrams, the symbol for the CCNOT gate is show in
Fig. I11.10, or with e for top two connections and @ for bottom, suggesting
CCNOT|z,y, z) = |z,y,zy @ z). Alternately, put “CCNOT” in a box. Other
operations may be shown by putting a letter or symbol in a box, for example
“H” for the Hadamard gate.

The Hadamard gate can be used to generate Bell states (Exer. I11.39):

CNOT(H ® I)|xy) = |Bay)- (II1.18)
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In Out

00) | (00) * 11)/vZ = /o) —

oy | gy +nopva=iay L

10) | (00} — [11)/vZ = [31) [Bay)
1) | (01— [10)/v2 = [8a) Y

Figure II1.13: Quantum circuit for generating Bell states. [from Nielsen &
Chuang (2010, fig. 1.12)]

) — =

Figure I11.14: Symbol for measurement of a quantum state (from Nielsen &
Chuang (2010)).

The circuit for generating Bell states (Eq. I11.18) is shown in Fig. II1.13.
It’s also convenient to have a symbol for quantum state measurement,
such as Fig. I11.14.

C.4 Quantum gate arrays

Fig. I11.15 shows a quantum circuit for a 1-bit full adder. As we will
see (Sec. C.7), it is possible to construct reversible quantum gates for any
classically computable function. In particular the Fredkin and Toffoli gates
are universal.

Because quantum computation is a unitary operator, it must be re-
versible. You know that an irreversible computation = +— f(x) can be em-
bedded in a reversible computation (z,c) — (g(x), f(x)), where ¢ are suit-
able ancillary constants and g(z) represents the garbage qubits. Note that
throwing away the garbage qubits (dumping them into the environment) will
collapse the quantum state (equivalent to measurement) by entangling them
in the many degrees of freedom of the environment. Typically these garbage
qubits will be entangled with other qubits in the computation, collapsing
them as well, and interfering with the computation. Therefore the garbage
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Figure II1.15: Quantum circuit for 1-bit full adder [from Rieffel & Polak
(2000)]. “x and y are the data bits, s is their sum (modulo 2), ¢ is the
incoming carry bit, and ¢ is the new carry bit.”

|
|
X:—> X » ——:—»X
[ p— g(x) g(x), >0 |
' 0 ® ot 0|
—> > > >
| f(x) CNOT fix) |
y —> > ————» yof(x)
, y yefix) !
B . " ] |
Us

Figure I11.16: Quantum gate array for reversible quantum computation.




C. QUANTUM INFORMATION 115

must be produced in a standard state independent of . This is accomplished
by uncomputing, as we did in classical reversible computing (Ch. II, Sec. C.6,
p. 58).

Since NOT is reversible, each 1 bit in ¢ can be replaced by a 0 bit followed
by a NOT, so we need only consider computations of the form (z,0)
(g(x), f(z)); that is, all the constant bits can be zero.

Therefore, we begin by embedding our irreversible computation of f in a
reversible computation ®, which we get by providing 0 constants and gen-
erating garbage g(x); see Fig. I11.16. That is, ® will perform the following
computation on four registers (data, workspace, result, target):

(2,0,0,y) = (z,g(x), f(z),y).

The result f(z) is in the result register and the garbage g(x) is in the
workspace register. Notice that 2 and y (data and target) are passed through.
Now use CNOTs between corresponding places in the result and target reg-
isters to compute y @ f(x), where @ represents bitwise exclusive-or, in the
target register. Thus we have computed:

(2,0,0,9) = (2, 9(x), f(x),y @ f(2)).

Now we uncompute with ®~!, but since the data and target registers are
passed through, we get (2,0,0,y @ f(x)) in the registers. We have restored
the data, workspace, and result registers to their initial values and have
y @ f(x) in the target register. Ignoring the result and workspace registers,
we write

(z,y) = (z,y ® f(x)).

This is the standard approach we will use for embedding a classical compu-
tation in a quantum computation.

Therefore, for any computable f : 2™ — 2" there is a reversible quantum
gate array Uy : H™T™ — H™*" such that for x € 2™ and y € 27",

Uslz,y) = |2,y @ f(z)),

See Fig. II1.17. In particular, Us|z,0) = |z, f(x)). The first m qubits are
called the data register and the last n are called the target register.
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z) — — [2)

ly) —— — |y @ f(x))

Figure I11.17: Computation of function by quantum gate array (Rieffel &
Polak, 2000).

C.5 Quantum parallelism

Since Uy is linear, if it is applied to a superposition of bit strings, it will
produce a superposition of the results of applying f to them in parallel (i.e.,
in the same time it takes to compute it on one input):

Uf(Cl|X1> + CQ|X2> + -+ Ck|Xk>) = ClUf|X1> + CgUf’X2> + 4 Cka|Xk>.

For example, if we have a superposition of the inputs x; and xs,

Uy (?\xl) + %\Xg)) ®10) = ?!th(xl» + %\Xm f(x2)).

The amplitude of a result y will be the sum of the amplitudes of all x such
that y = f(z).

If we apply Uy to a superposition of all possible 2™ inputs, it will compute
a superposition of all the corresponding outputs in parallel (i.e., in the same
time as required for one function evaluation)! The Walsh-Hadamard trans-
formation can be used to produce this superposition of all possible inputs:

Wn|00...0) = ——(]00...0)+[00...1) +--- +[11...1))
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In the last line we are obviously interpreting the bit strings as natural num-
bers. Hence, for f:2™ — 2",

Us (W [0)*™)0)>" = U (% > |a:>> 0 =~ ¥ Ul 0"

2m—1

= =Y I /W)

A single circuit does all 2™ computations simultaneously! “Note that since
n qubits enable working simultaneously with 2" states, quantum parallelism
circumvents the time/space trade-off of classical parallelism through its abil-
ity to provide an exponential amount of computational space in a linear
amount of physical space.” (Rieffel & Polak, 2000)

This is amazing, but not immediately useful. If we measure the input
bits, we will get a random value, and the state will be projected into a
superposition of the outputs for the inputs we measured. If we measure an
output bits, we will get a value probabilistically, and a superposition of all
the inputs that can produce the measured output. Neither of the above is
especially useful, so most quantum algorithms transform the state in such a
way that the values of interest have a high probability of being measured.
The other thing we can do is to extract common properties of all values of
f(z). Both of these require different programming techniques than classical
computing.
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Encoder f--------b-----o-ioiooiooocbiooon = Decoder
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source

Figure I11.18: Superdense coding. (Rieffel & Polak, 2000)

~ 7

C.6 Applications
C.6.a SUPERDENSE CODING

We will consider a couple simple applications of these ideas. The first is called
superdense coding or (more modestly) dense coding, since it is a method by
which one quantum particle can be used to transmit two classical bits of
information. It was described by Bennett and Wiesner in 1992, and was
partially validated experimentally by 1998.

Here is the idea. Alice and Bob share an entangled pair of qubits. To
transmit two bits of information, Alice applies one of four transformations
to her qubit. She then sends her qubit to Bob, who can apply an operation
to the entangled pair to determine which of the four transformations she
applied, and hence recover the two bits of information.

Now let’s work it through more carefully. Suppose Alice and Bob share
the entangled pair |5gy) = \/Li(|00) +]11)). Since the four Bell states are a
basis for the quantum state of the pair of qubits, Alice’s two bits of infor-
mation can be encoded as one of the four Bell states. For example, Alice
can use the state |3,,) to encode the bits z,x (the correspondence is ar-
bitrary so long as we are consistent, but this one is easy to remember).
Recall the circuit for generating Bell states (Fig. 111.13, p. 113). Its effect
is CNOT(H ® I)|zz) = |B..). This cannot be used by Alice for generating
the Bell states, because she doesn’t have access to Bob’s qubit. However,
the Bell states differ from each other only in the relative parity and phase
of their component qubits (i.e., whether they have the same or opposite bit
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values and the same or opposite signs). Therefore, Alice can alter the par-
ity and phase of just her qubit to transform the entangled pair into any of
the Bell states. In particular, if she uses zx to select I, X, Z, or ZX =Y
(corresponding to zz = 00,01, 10, 11 respectively) and applies it to just her
qubit, she can generate the corresponding Bell state |f3,,). I've picked this
correspondence because of the simple relation between the bits z, z and the
application of the operators Z, X, but this is not necessary; any other 1-1
correspondence between the two bits and the four operators could be used.
When Alice applies this transformation to her qubit, Bob’s qubit is unaf-
fected, and so the transformation on the entangled pair is I ® I, X ® I,
Z @I, or ZX @ I. We can check the results as follows:

bits | transformation | result
00 =y 2(00) +11)) = 1[Boo)
01 Xl Z5([10) +101)) = [Bo)
10 Z®1 \/Lg(|00> —[11))  =[Bw)
11 ZX®I | 55(=[10) +[01)) =|[bu)
For example, in the second-to-last case, since Z|0) = |0) and Z|1) = —|1),

we see Z @ 1 [\%(MO) + |11>)} = \%(|OO> —|11)). Make sure you can explain
the results in the other cases (Exer. 111.44).

When Alice wants to send her information, she applies the appropriate
operator to her qubit and sends her single transformed qubit to Bob, which
he uses with his qubit to recover the information by measuring the pair
of qubits in the Bell basis. This can be done by inverting the Bell state
generator, which, since the CNOT and H are self-adjoint, is simply:

(H ® I)CNOT|B.,) = |2z).

This translates the Bell basis into the computational basis, so Bob can mea-
sure the bits exactly.

C.6.b QUANTUM TELEPORTATION

Quantum teleportation is not quite as exciting as it sounds! Its goal is to
transfer the exact quantum state of a particle from Alice to Bob by means
a classical channel (Figs. I111.19, 111.20). Of course, the No Cloning Theorem
says we cannot copy a quantum state, but we can “teleport” it by destroying
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Figure I11.19: Quantum teleportation. (Rieffel & Polak, 2000)
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[from wikipedia
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the original and recreating it elsewhere. Single-qubit quantum teleportation
was described by Bennett in 1993 and first demonstrated experimentally in
the late 1990s.

This is how it works. Alice and Bob begin by sharing the halves of an
entangled pair, |Byp) = \/Li(|00> +]11)). Suppose that the quantum state that
Alice wants to share is |¢)) = a|0) + b|1). The composite system comprising
the unknown state and the Bell state is

|¢0)

def

= W),ﬁoo)

— (al0) +0]1)

V2
[2]0)(100) + [11)) + b]1)(]00) + |11))]

(100) +[11))

2
= ——(al0,00) + a0, 11) + b|1,00) + |1, 11)).

V2
Alice applies the decoding circuit used for superdense coding to the unknown
state and her qubit from the entangled pair. This function is (H ® I)CNOT;
it measures her two qubits in the Bell basis. When Alice applies CNOT to
her two qubits (leaving Bob’s qubit alone) the resulting composite state is:

.—&JH

def

1) = (CNOT @ 1))

1
= (CNOT®I) E(a|00, 0) + a|01,1) 4+ b[10,0) + b|11, 1))

1

—  ——(a]00,0) + al01,1) + b|11,0) + b|10,1)).

\/5( 100,0) + al01, 1) + b[11,0) + b[10, 1))
Notice that the amplitude a of |¢)) has been transferred to the components of
the shared pair having the same parity (]00) and |11)), whereas the amplitude
b has been transferred to the components having the opposite parity (|10)

and |01)). When Alice applies H ® I to her qubits the result is:

def

|¢2> =

—~

H®I®I)[)

1
HRI® [)E(a\o, 00) + al0, 11) + b|1,10) + b|1,01))

[a(]0,00) 4 ]1,00) + [0, 11) + |1, 11))
+5(|0,10) — |1,10) + |0,01) — |1,01))] .

—~

DO | —
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This is because H|0) = |[+) = \%(]0} +11)) and H|1) = |—-) = \/iﬁ(|0> —|1)).
Rearranging and factoring to separate Alice’s qubits from Bob’s, we have:

) = % [100)(a|0) +b[1)) + |01)(a[1) + 0]0))
+[10)(al0) = b[1)) + [11)(al1) — b]0))] .

Thus the unknown amplitudes have been transferred from the first qubit
(Alice’s) to the third (Bob’s), which now incorporates the amplitudes a and
b, but in different ways depending on the first two qubits. In fact you can
see that the amplitudes are transformed by the Pauli matrices, and Bob can
restore the quantum state by applying the correct Pauli matrix. Therefore
Alice measures the first two bits (completing measurement in the Bell basis)
and sends them to Bob over the classical channel. This measurement par-
tially collapses the state, which includes Bob’s qubit, but in a way that is
determined by the first two qubits.

When Bob receives the two classical bits from Alice, he uses them to
select a transformation for his qubit, which restores the amplitudes to the
correct basis vectors. These transformations are the Pauli matrices (which
are their own inverses):

bits | gate | input

00 | I |al0)+0b[1) (identity)

01 | X |all)+0]/0) (exchange)

10 | Z |al0)—0b[1) (flip)

11 | ZX | a|l) —b|0) (exchangeflip)

In each case, applying the specified gate to its input yields |¢) = a|0) + b|1),
Alice’s original quantum state. This is obvious in the 00 case, but you should
verify the others (Exer. I111.45). Notice that since Alice had to measure her
qubits, the original quantum state of her particle has collapsed. Thus it has
been “teleported,” not copied.

The quantum circuit in Fig. II1.21 is slightly different from what we’ve
described, since it uses the fact that the appropriate transformations can be
expressed in the form ZM1 X2 where M; and M, are the two classical bits.
You should verify that ZX =Y (Exer. 111.46).

Both superdense coding and teleportation indicate that with an entangled
pair, two bits can be interchanged with one qubit. This is one example of
a method of interchanging resources. However, quantum teleportation does
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Figure II1.21: Circuit for quantum teleportation. [from Nielsen & Chuang
(2010)]

not allow faster-than-light communication, since Alice has to transmit her
two classical bits to Bob.

Entangled states can be teleported in a similar way. Free-space quantum
teleportation has been demonstrated over 143 km between two of the Canary
Islands (Nature, 13 Sept. 2012).” In Sept. 2015 teleportation was achieved
over 101 km through supercooled nanowire. For teleporting material systems,
the current record is 21 m.

C.7 Universal quantum gates

We have seen several interesting examples of quantum computing using gates
such as CNOT and the Hadamard and Pauli operators.® Since the imple-
mentation of each of these is a technical challenge, it raises the important
question: What gates are sufficient for implementing any quantum compu-
tation?

Both the Fredkin (controlled swap) and Toffoli (controlled-controlled-
NOT) gates are sufficient for classical logic circuits. In fact, they can op-
erate as well on qubits in superposition. But what about other quantum
operators?

It can be proved that single-qubit unitary operators can be approximated
arbitrarily closely by the Hadamard gate and the 7' (7/8) gate, which is

"http://www.nature.com/nature/journal/v489/n7415/full/nature11472.html
(accessed 12-09-18).
8This lecture follows Nielsen & Chuang (2010, §4.5).
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1 0 o emE 0
T= < 0 eim/4 ) = ( 0 eim/8 ) (111‘19)

(ignoring global phase). To approximate within € any single-qubit unitary
operation, you need O(log®(1/¢)) gates, where ¢ = 2. For an m-gate circuit
(of CNOTSs and single-qubit unitaries) and an accuracy of €, O(mlog®(m/e)),
where ¢ &~ 2, gates are needed (Solovay-Kitaev theorem).

A two-level operation is a unitary operator on a d-dimensional Hilbert
space that non-trivially affects only two qubits out of n (where d = 2").
It can be proved that any two-level unitary operation can be computed by
a combination of CNOTs and single-qubit operations. This requires O(n?)
single-qubit and CNOT gates.

It also can be proved that an arbitrary d-dimensional unitary matrix
can be decomposed into a product of two-level unitary matrices. At most
d(d —1)/2 of them are required. Therefore a unitary operator on an n-qubit
system requires at most 2"71(2" — 1) two-level matrices.

In conclusion, the H (Hadamard), CNOT, and 7/8 gates are sufficient
for quantum computation. For fault-tolerance, either the standard set —
H (Hadamard), CNOT, 7/8, and S (phase) — can be used, or H, CNOT,
Toffoli, and S. The latter phase gate is defined:

S:TQ:((l) Q). (I11.20)

(4

defined:



