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D.5 Quantum error correction

D.5.a Motivation

Quantum coherence is very di�cult to maintain for long.19 Even weak inter-
actions with the environment can a↵ect the quantum state, and we’ve seen
that the amplitudes of the quantum state are critical to quantum algorithms.
On classical computers, bits are represented by very large numbers of parti-
cles (but that is changing). On quantum computers, qubits are represented
by atomic-scale states or objects (photons, nuclear spins, electrons, trapped
ions, etc.). They are very likely to become entangled with computationally
irrelevant states of the computer and its environment, which are out of our
control. Quantum error correction is similar to classical error correction in
that additional bits are introduced, creating redundancy that can be used to
correct errors. It is di↵erent from classical error correction in that: (a) We
want to restore the entire quantum state (i.e., the continuous amplitudes),
not just 0s and 1s. Further, errors are continuous and can accumulate. (b)
It must obey the no-cloning theorem. (c) Measurement destroys quantum
information.

D.5.b Effect of decoherence

Ideally the environment |⌦i, considered as a quantum system, does not inter-
act with the computational state. But if it does, the e↵ect can be categorized
as a unitary transformation on the environment-qubit system. Consider de-
coherence operator D describing a bit flip error in a single qubit (Fig. III.36):

D :

⇢
|⌦i|0i =) |⌦00i|0i + |⌦10i|1i
|⌦i|1i =) |⌦01i|0i + |⌦11i|1i

.

In this notation the state vectors |⌦xyi are not normalized, but incorporate
the amplitudes of the various outcomes. In the case of no error, |⌦00i =
|⌦11i = |⌦i and |⌦01i = |⌦10i = 0. If the entanglement with the environment
is small, then k⌦01k, k⌦10k ⌧ 1 (small exchange of amplitude).

Define decoherence operators Dxy|⌦i def
= |⌦xyi, for x, y 2 2, which describe

the e↵ect of the decoherence on the environment. (These are not unitary, but
are the products of scalar amplitudes and unitary operators for the various

19This section follows Rie↵el & Polak (2000).
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Figure III.36: E↵ects of decoherence on a qubit. On the left is a qubit |yi that
is mostly isoloated from its environment |⌦i. On the right, a weak interaction
between the qubit and the environment has led to a possibly altered qubit
|xi and a correspondingly (slightly) altered environment |⌦xyi.
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outcomes.) Then the evolution of the joint system is defined by the equations:

D|⌦i|0i = (D00 ⌦ I +D10 ⌦ X)|⌦i|0i,
D|⌦i|1i = (D01 ⌦ X +D11 ⌦ I)|⌦i|1i.

Alternately, we can define it:

D = D00 ⌦ |0ih0| +D10 ⌦ |1ih0| +D01 ⌦ |0ih1| +D11 ⌦ |1ih1|.

Now, it’s easy to show (Exer. III.20):

|0ih0| = 1

2
(I + Z), |0ih1| = 1

2
(X � Y ), |1ih0| = 1

2
(X + Y ), |1ih1| = 1

2
(I � Z),

where Y =

✓
0 �1
1 0

◆
. Therefore

D =
1

2
[D00 ⌦ (I + Z) +D01 ⌦ (X � Y ) +

D10 ⌦ (X + Y ) +D11 ⌦ (I � Z)]

=
1

2
[(D00 +D11) ⌦ I + (D10 +D01) ⌦ X +

(D10 � D01) ⌦ Y + (D00 � D11) ⌦ Z].

Therefore the bit flip error can be described as a linear combination of the
Pauli matrices. It is generally the case that the e↵ect of decoherence on a
single qubit can be described by a linear combination of the Pauli matrices,
which is important, since qubits are subject to various errors beside bit flips.
This is a distinctive feature about quantum errors: they have a finite basis,
and because they are unitary, they are therefore invertible. In other words,
single-qubit errors can be characterized in terms of a linear combination
of the Pauli matrices (which span the space of 2 ⇥ 2 self-adjoint unitary
matrices: C.2.a, p. 112): I (no error), X (bit flip error), Y (phase error), and
Z = Y X (bit flip phase error). Therefore a single qubit error is represented
by e0�0+e1�1+e2�2+e3�3 =

P3
j=0 ej�j, where the �j are the Pauli matrices

(Sec. C.2.a, p. 111).

D.5.c Correcting the quantum state

We consider a basis set of unitary “error operators” Ej, so that the error

transformation is a superposition E
def
=
P

j
ejEj. In the more general case



162 CHAPTER III. QUANTUM COMPUTATION

Figure III.37: Circuit for quantum error correction. | i is the n-qubit quan-
tum state to be encoded by C, which adds m error-correction qubits to yield
the encoded state |�i. E is a unitary superposition of error operators Ej,
which alter the quantum state to |�̃i. S is the syndrome extraction operator,
which computes a superposition of codes for the errors E. The syndrome
register is measured, to yield a particular syndrome code j⇤, which is used to
select a corresponding inverse error transformation E

�1
j⇤ to correct the error.

of quantum registers, the Ej a↵ect the entire register, not just a single qubit.

algorithm quantum error correction:

Encoding: An n-bit register is encoded in n+m bits, where the extra bits

are used for error correction. Let y
def
= C(x) 2 2m+n be the n +m bit code

for x 2 2n. As in classical error correcting codes, we embed the message in
a space of higher dimension.

Error process: Suppose ỹ 2 2m+n is the result of error type k, ỹ = Ek(y).

Syndrome: Let k = S(ỹ) be a function that determines the error syndrome,
which identifies the error Ek from the corrupted code. That is, S(Ek(y)) = k.

Correction: Since the errors are unitary, and the syndrome is known, we
can invert the error and thereby correct it: y = E

�1
S(ỹ)(ỹ).
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Quantum case: Now consider the quantum case, in which the state | i is a
superposition of basis vectors, and the error is a superposition of error types,
E =

P
j
ejEj. This is an orthogonal decomposition of E (see Fig. III.37).

Encoding: The encoded state is |�i def
= C| i|0i. There are several require-

ments for a useful quantum error correcting code. Obviously, the codes for
orthogonal inputs must be orthogonal; that is, if h |  0i = 0, then C| ,0i
and C| 0

,0i are orthogonal: h ,0|C†
C| 0

,0i = 0. Next, if |�i and |�0i are
the codes of distinct inputs, we do not want them to be confused by the error
processes, so h�|E†

j
Ek|�0i = 0 for all i, j. Finally, we require that for each

pair of error indices j, k, there is a number mjk such that h�|E†

j
Ek|�i = mjk

for every code |�i. This means that the error syndromes are independent of
the codes, and therefore the syndromes can be measured without collapsing
superpositions in the codes, which would make them useless for quantum
computation.

Error process: Let |�̃i def
= E|�i be the code corrupted by error.

Syndrome extraction: Apply the syndrome extraction operator to the
encoded state, augmented with enough extra qubits to represent the set of
syndromes. This yields a superposition of syndromes:

S|�̃,0i = S

 
X

j

ejEj|�i
!

⌦ |0i =
X

j

ej(SEj|�i|0i) =
X

j

ej(Ej|�i|ji).

Measurement: Measure the syndrome register to obtain some j
⇤ and the

collapsed state Ej⇤ |�i|j⇤i.20

Correction: Apply E
�1
j⇤ to correct the error.

⇤
20As we mentioned the discussion of in Shor’s algorithm (p. 150), it is not necessary to

actually perform the measurement; the same e↵ect can be obtained by unitary operations.
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428 Quantum error-correction

the logical |0〉 and logical |1〉 states, not the physical zero and one states. A circuit
performing this encoding is illustrated in Figure 10.2.

• •

⊕

⊕

|ψ〉

|0〉

|0〉
Figure 10.2. Encoding circuit for the three qubit bit flip code. The data to be encoded enters the circuit on the top
line.

Exercise 10.1: Verify that the encoding circuit in Figure 10.2 works as claimed.

Suppose the initial state a|0〉 + b|1〉 has been perfectly encoded as a|000〉 + b|111〉.
Each of the three qubits is passed through an independent copy of the bit flip channel.
Suppose a bit flip occurred on one or fewer of the qubits. There is a simple two stage
error-correction procedure which can be used to recover the correct quantum state in
this case:

(1) Error-detection or syndrome diagnosis: We perform a measurement which tells us
what error, if any, occurred on the quantum state. The measurement result is called
the error syndrome. For the bit flip channel there are four error syndromes,
corresponding to the four projection operators:

P0 ≡ |000〉〈000| + |111〉〈111| no error (10.5)

P1 ≡ |100〉〈100| + |011〉〈011| bit flip on qubit one (10.6)

P2 ≡ |010〉〈010| + |101〉〈101| bit flip on qubit two (10.7)

P3 ≡ |001〉〈001| + |110〉〈110| bit flip on qubit three. (10.8)

Suppose for example that a bit flip occurs on qubit one, so the corrupted state is
a|100〉 + b|011〉. Notice that 〈ψ|P1|ψ〉 = 1 in this case, so the outcome of the
measurement result (the error syndrome) is certainly 1. Furthermore, the syndrome
measurement does not cause any change to the state: it is a|100〉 + b|011〉 both
before and after syndrome measurement. Note that the syndrome contains only
information about what error has occurred, and does not allow us to infer anything
about the value of a or b, that is, it contains no information about the state being
protected. This is a generic feature of syndrome measurements, since to obtain
information about the identity of a quantum state it is in general necessary to
perturb that state.

(2) Recovery: We use the value of the error syndrome to tell us what procedure to use
to recover the initial state. For example, if the error syndrome was 1, indicating a
bit flip on the first qubit, then we flip that qubit again, recovering the original state
a|000〉 + b|111〉 with perfect accuracy. The four possible error syndromes and the
recovery procedure in each case are: 0 (no error) – do nothing; 1 (bit flip on first
qubit) – flip the first qubit again; 2 (bit flip on second qubit) – flip the second qubit

Figure III.38: Quantum encoding circuit for triple repetition code. [source:
NC]

Note the remarkable fact that although there was a superposition of er-
rors, we only have to correct one of them to get the original state back. This
is because measurement of the error syndrome collapses into a state a↵ected
by just that one error.

D.5.d Example

We’ll work through an example to illustrate the error correction process. For
an example, suppose we use a simple triple redundancy code that assigns
|0i 7! |000i and |1i 7! |111i. This is accomplished by a simple quantum gate
array:

C|0i|00i = |000i, C|1i|00i = |111i.

This is not a sophisticated code! It’s called a repetition code. The three-qubit
codes are called logical zero and logical one (See Fig. III.38). This code can
correct single bit flips (by majority voting); the errors are represented by the
operators:

E0 = I ⌦ I ⌦ I

E1 = I ⌦ I ⌦ X

E2 = I ⌦ X ⌦ I

E3 = X ⌦ I ⌦ I.

The following works as a syndrome extraction operator:

S|x3, x2, x1, 0, 0, 0i
def
= |x3, x2, x1, x1 � x2, x1 � x3, x2 � x3i.
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The �s compare each pair of bits, and so the � will be zero if the two bits
are the same (the majority). The following table shows the bit flipped (if
any), the corresponding syndrome, and the operator to correct it (which is
the same as the operator that caused the error):

bit flipped syndrome error correction
none |000i I ⌦ I ⌦ I

1 |110i I ⌦ I ⌦ X

2 |101i I ⌦ X ⌦ I

3 |011i X ⌦ I ⌦ I

(Note that the correction operators need not be the same as the error oper-
ators, although they are in this case.)

For an example, suppose we want to encode the state | i = 1
p

2
(|0i� |1i).

Its code is |�i = 1
p

2
(|000i � |111i). Suppose the following error occurs:

E = 4
5X ⌦ I ⌦ I + 3

5I ⌦X ⌦ I (that is, the bit 3 flips with probability 16/25,
and bit 2 with probability 9/25). The resulting error state is

|�̃i = E|�i

=

✓
4

5
X ⌦ I ⌦ I +

3

5
I ⌦ X ⌦ I

◆
1p
2
(|000i � |111i)

=
4

5
p
2
X ⌦ I ⌦ I(|000i � |111i) + 3

5
p
2
I ⌦ X ⌦ I(|000i � |111i)

=
4

5
p
2
(|100i � |011i) + 3

5
p
2
(|010i � |101i).

Applying the syndrome extraction operator yields:

S|�̃, 000i = S


4

5
p
2
(|100000i � |011000i) + 3

5
p
2
(|010000i � |101000i)

�

=
4

5
p
2
(|100011i � |011011i) + 3

5
p
2
(|010101i � |101101i)

=
4

5
p
2
(|100i � |011i) ⌦ |011i + 3

5
p
2
(|010i � |101i) ⌦ |101i

Measuring the syndrome register yields either |011i (representing an error in
bit 3) or |101i (representing an error in bit 2). Suppose we get |011i. The
state collapses into:

1p
2
(|100i � |011i) ⌦ |011i.
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Note that we have projected into a subspace for just one of the two bit-flip
errors that occurred (the flip in bit 3). The measured syndrome |011i tells
us to apply X ⌦ I ⌦ I to the first three bits, which restores |�i:

(X ⌦ I ⌦ I)
1p
2
(|100i � |011i) = 1p

2
(|000i � |111i) = |�i.

We can do something similar to correct single phase flip (Z) errors by using
the encoding |0i 7! |+++i, |1i 7! | � ��i (Exer. III.55). To see this, recall
that Z in the sign basis is the analog of X is the computational basis.

D.5.e Discussion

There is a nine-qubit code, called the Shor code, that can correct arbitrary
errors on a single qubit, even replacing the entire qubit by garbage (Nielsen
& Chuang, 2010, §10.2). The essence of this code is that triple redundancy
is used to correct X errors, and triple redundancy again to correct Z errors,
thus requiring nine code qubits for each logical qubut. Since Y = ZX and
the Pauli matrices are a basis, this code is able to correct all errors.

Quantum error correction is remarkable in that an entire continuum of
errors can be corrected by correcting only a discrete set of errors. This
works in quantum computation, but not classical analog computing. The
general goal in syndrome extraction is to separate the syndrome information
from the computational information in such a way that the syndrome can
be measured without collapsing any of the computational information. Since
the syndrome is unitary, it can be inverted to correct the error.

What do we do about noise in the gates that do the encoding and decod-
ing? It is possible to do fault-tolerant quantum computation. “Even more
impressively, fault-tolerance allow us to perform logical operations on en-
coded quantum states, in a manner which tolerates faults in the underlying
gate operations.” (Nielsen & Chuang, 2010, p. 425) Indeed, “provided the
noise in individual quantum gates is below a certain constant threshold it
is possible to e�ciently perform an arbitrarily large quantum computation.”
(Nielsen & Chuang, 2010, p. 425)21

21See Nielsen & Chuang (2010, §10.6.4).


