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E Abrams-Lloyd theorem

E.1 Overview

All experiments to date confirm the linearity of QM, but what would be
the consequences of slight nonlinearities?22 We will see that nonlinearities
can be exploited to solve NP problems (and in fact harder problems) in
polynomial time. This fact demonstrates clearly that computability and
complexity are not purely mathematical matters. Because computation is
inherently physical, fundamental physics is intertwined with fundamental
computation theory. It also exposes the fact that there are hidden physical
assumptions in the traditional theory of computation.

How could nonlinearities be exploited in quantum computation? Recall
that quantum state vectors lie on the unit sphere and unitary transformations
preserve “angles” (inner products) between vectors. Nonunitary transforma-
tions would, in e↵ect, stretch the sphere, so the angles between vectors could
change. Unitary transformations could be used to position the vectors to the
correct position for subsequent nonunitary transformations. The following
algorithm exploits a nonlinear operator to separate vectors that are initially
close together.

E.2 Basic algorithm

The Lyapunov exponent � describes the divergence of trajectories in a dy-
namical system. If �✓(0) is the initial separation, then the separation after
time t is given by |�✓(t)| ⇡ e

�t|�✓(0)|. If � > 0, the system is usually
chaotic.

Suppose there is some nonlinear operation N with a positive Lyapunov
exponent over some finite region of the unit sphere. Further suppose we
have an oracle P : 2n ! 2. We want to determine if there is an x such
that P (x) = 1. Next suppose we are given a quantum gate array UP as in

22This section is based on Daniel S. Abrams and Seth Lloyd (1998), “Non-
linear quantum mechanics implies polynomial-time solution for NP-complete and
#P problems.” Phys. Rev. Lett. 81, 3992–3995 (1998), preprint available at
http://arxiv.org/abs/quant-ph/9801041v1. See also Scott Aaronson, “NP-complete
Problems and Physical Reality,” SIGACT News, Complexity Theory Column, March
2005. quant-ph/0502072. http://www.scottaaronson.com/papers/npcomplete.pdf
(accessed 2012-10-27).
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Figure III.39: Quantum circuit for Abrams-Lloyd algorithm. The first mea-
surement produces 0 with probability greater than 1/4, but if it yields a
nonzero state, we try again. The N parallelogram represents a hypothetical
nonlinear quantum state transformation, which may be repeated to yield a
macroscopically observable separation of the solution and no-solution vectors.

Grover’s algorithm. It is defined on a n-qubit data register and a 1-qubit
result register. See Fig. III.39.

algorithm Abrams-Lloyd:

Step 1: As usual, apply the Walsh-Hadamard transform to a zero data
register to get a superposition of all possible inputs:

| 0i = (Wn|0i)|0i = 1p
2n

X

x22n

|x, 0i.

Step 2 (apply oracle): Apply the oracle to get a superposition of input-
output pairs:

| 1i = UP | 0i =
1p
2n

X

x22n

|x, P (x)i.

Step 3 (measure data register): First, apply the Walsh transformation
to the data register to get:

| 2i = (Wn ⌦ I)| 1i
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The last step applies by Eq. III.24 (p. 138). That is,

| 2i =
X

x22n

X

z22n

1

2n
(�)x·z|zi|P (x)i.

Separate out the state z = 0 in order to see its amplitude:

X

x22n

1

2n
(�)x·0|0i|P (x)i =

X

x22n

1

2n
|0i|P (x)i.

At least half of the 2n vectors x must have the same value, a = P (x) (since
P (x) 2 2). Therefore the amplitude of |0, ai is at least 1/2, and the proba-
bility of observing |0, ai is at least 1/4. We get a non-zero data register with
probability  3/4. (If we happen to observe |x0, 1i, then of course we have
our answer.)

In the case in which we get a zero data register, measurement of the data
register yields the state:

| 2i
�

1
4�! Z�1

✓
s

2n
|0i|1i + 2n � s

2n
|0i|0i

◆
= Z�1|0i

✓
s

2n
|1i + 2n � s

2n
|0i

◆
,

where s is the number of solutions (the number of x such that P (x) = 1)
and Z�1 renormalizes after the state collapse.

The information we want is in the result qubit, but if s is small (as ex-
pected), then measurement will almost always yield |0i. Recall what we did
in Grover’s algorithm. For s ⌧ 2n, the vector Z�1|0i

�
s

2n |1i + 2n
�s

2n |0i
�
is

very close to the vector |0, 0i. Therefore, we would like to drive them apart.

Step 4: Applying the nonlinear operator N repeatedly will separate the
vectors at an exponential rate. “[E]ventually, at a time determined by a
polynomial function of the number of qubits n, the number of solutions s,
and the rate of spreading (Lyapunov exponent) �, the two cases will become
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macroscopically distinguishable.”

Step 5 (measure result register): Measure the result qubit. If the vec-
tors have been su�ciently separated, there will be a significant probability
of observing |1i in the s 6= 0 case.
⇤

If ⌘ is the angular extent of the nonlinear region, it might take O((⇡/⌘)2)
trials to get |1i with high probability. For large ⌘, just one iteration might
be su�cient.

E.3 Discussion of further results

The preceding algorithm depends on exponential precision, but Abrams and
Lloyd present another algorithm that is robust against small errors. Each
iteration doubles the number of components that have |1i in the result qubit,
and after n iterations it yields a result with probability 1, and so the algo-
rithm is linear.

Scott Aaronson has expressed doubts that the required nonlinear OR gate
can be implemented. Abrams and Lloyd summarize: “We have demonstrated
that nonlinear time evolution can in fact be exploited to allow a quantum
computer to solve NP-complete and #P problems in polynomial time.” (#P
or “number-P” asks how many accepting paths in a NTM running in polyno-
mial time. #P problems are at least as hard as corresponding NP problems.)
Nevertheless, they continue, “we believe that quantum mechanics is in all
likelihood exactly linear, and that the above conclusions might be viewed
most profitably as further evidence that this is indeed the case.”


