H Exercises

Exercise III.1 Compute the probability of measuring $|0\rangle$ and $|1\rangle$ for each of the following quantum states:

- 1. $0.6|0\rangle + 0.8|1\rangle$.
- 2. $\frac{1}{\sqrt{3}}|0\rangle + \sqrt{2/3}|1\rangle$.
- 3. $\frac{\sqrt{3}}{2}|0\rangle \frac{1}{2}|1\rangle$.
- 4. $-\frac{1}{25}(24|0\rangle 7|1\rangle)$.
- 5. $-\frac{1}{\sqrt{2}}|0\rangle + \frac{e^{i\pi/6}}{\sqrt{2}}|1\rangle$.

Exercise III.2 Compute the probability of the four states if the following are measured in the computational basis:

- 1. $(e^{i}|00\rangle + \sqrt{2}|01\rangle + \sqrt{3}|10\rangle + 2e^{2i}|11\rangle)/\sqrt{10}$.
- 2. $\frac{1}{2}(-|0\rangle + |1\rangle) \otimes (e^{\pi i}|0\rangle + e^{-\pi i}|1\rangle)$.

3.

$$(\sqrt{1/3}|0\rangle - \sqrt{2/3}|1\rangle) \otimes \sqrt{2} \left(\frac{e^{\pi i/4}}{2}|0\rangle + \frac{e^{\pi i/2}}{2}|1\rangle \right).$$

Exercise III.3 Suppose that a two-qubit register is in the state

$$|\psi\rangle = \frac{3}{5}|00\rangle - \frac{\sqrt{7}}{5}|01\rangle + \frac{e^{i\pi/2}}{\sqrt{5}}|10\rangle - \frac{2}{5}|11\rangle.$$

- 1. Suppose we measure just the first qubit. Compute the probability of measuring a $|0\rangle$ or a $|1\rangle$ and the resulting register state in each case.
- 2. Do the same, but supposing instead that we measure just the second qubit.

Exercise III.4 Prove that projectors are idempotent, that is, $P^2 = P$.

Exercise III.5 Prove that a normal matrix is Hermitian if and only if it has real eigenvalues.

H. EXERCISES 195

Exercise III.6 Prove that $U(t) \stackrel{\text{def}}{=} \exp(-iHt/\hbar)$ is unitary.

Exercise III.7 Use spectral decomposition to show that $K = -i \log(U)$ is Hermitian for any unitary U, and thus $U = \exp(iK)$ for some Hermitian K.

Exercise III.8 Show that the commutators $([L, M] \text{ and } \{L, M\})$ are bilinear (linear in both of their arguments).

Exercise III.9 Show that [L, M] is anticommutative, i.e., [M, L] = -[L, M], and that $\{L, M\}$ is commutative.

Exercise III.10 Show that $LM = \frac{[L,M] + \{L,M\}}{2}$.

Exercise III.11 In Sec. B.5 we proved the no-cloning theorem with single ancillary constant qubit. Prove that the cloning is still impossible if multiple ancillary qubits are provided. That is, show that we cannot have a unitary operator $U(|\psi\rangle \otimes |C\rangle) = |\psi\rangle |\psi\rangle \otimes |D\rangle$, where $|C\rangle$ is an n > 1 dimensional vector and $|D\rangle$ is an n - 1 dimensional vector. (Note that $|D\rangle$ might depend on $|\psi\rangle$.)

Exercise III.12 Show that the four Bell states are orthonormal (i.e., both orthogonal and normalized).

Exercise III.13 Prove that $|\beta_{11}\rangle$ is entangled.

Exercise III.14 Prove that $\frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$ is entangled.

Exercise III.15 What is the effect of Y (imaginary definition) on the computational basis vectors? What is its effect if you use the real definition (C.2.a, p. 112)?

Exercise III.16 Prove that I, X, Y, and Z are unitary. Use either the imaginary or real definition of Y (C.2.a, p. 112).

Exercise III.17 What is the matrix for H in the $sign\ basis$?

Exercise III.18 Show that the X, Y, Z and H gates are Hermitian (their own inverses) and prove your answers. Use either the imaginary or real definition of Y (C.2.a, p. 112).