
196 CHAPTER III. QUANTUM COMPUTATION

Exercise III.19 Prove the following useful identities:

HXH = Z,HY H = �Y,HZH = X.

Exercise III.20 Show (using the real definition of Y , C.2.a, p. 112):
|0ih0| = 1

2(I + Z), |0ih1| = 1
2(X � Y ), |1ih0| = 1

2(X + Y ), |1ih1| = 1
2(I � Z).

Exercise III.21 Prove that the Pauli matrices span the space of 2⇥ 2 ma-
trices.

Exercise III.22 Prove |�xyi = (P ⌦ I)|�00i, where xy = 00, 01, 11, 10 for
P = I,X, Y, Z, respectively.

Exercise III.23 Suppose that P is one of the Pauli operators, but you don’t
know which one. However, you are able to pick a 2-qubit state | 0i and
operate on it, | 1i = (P ⌦ I)| 0i. Further, you are able to select a unitary
operation U to apply to | 1i, and to measure the 2-qubit result, | 2i = U | 1i,
in the computational basis. Select | 0i and U so that you can determine with
certainty the unknown Pauli operator P .

Exercise III.24 What is the matrix for CNOT in the standard basis? Prove
your answer.

Exercise III.25 Show that CNOT does not violate the No-cloning Theorem
by showing that, in general, CNOT| i|0i 6= | i| i. Under what conditions
does the equality hold?

Exercise III.26 What quantum state results from

CNOT(H ⌦ I)
1

2
(c00|00i + c01|01i + c10|10i + c11|11i)?

Express the result in the computational basis.

Exercise III.27 Compute (Y ⌦ I)CNOT(H ⌦ I)|00i. Show your work.

Exercise III.28

1. Compute (H ⌦ I ⌦ I)(CNOT ⌦ I)[(4
5 |0i +

3
5 |1i) ⌦ |�00i.

2. Give the probabilities and resulting states for measuring the first two
qubits in the computational basis.
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3. Apply Z to the state resulting from measuring |10i.

Exercise III.29 What is the matrix for CCNOT in the standard basis?
Prove your answer.

Exercise III.30 Use a single To↵oli gate to implement each of NOT, NAND,
and XOR.

Exercise III.31 Use To↵oli gates to implement FAN-OUT. FAN-OUT would
seem to violate the No-cloning Theorem, but it doesn’t. Explain why.

Exercise III.32 Design a quantum circuit to transform |000i into the en-
tangled state 1

p
2
(|000i + |111i).

Exercise III.33 Show that |+i, |�i is an ON basis.

Exercise III.34 Prove:

|0i =
1p
2
(|+i + |�i),

|1i =
1p
2
(|+i � |�i).

Exercise III.35 What are the possible outcomes (probabilities and result-
ing states) of measuring a|+i + b|�i in the computational basis (of course,
|a|2 + |b|2 = 1)?

Exercise III.36 Prove that Z|+i = |�i and Z|�i = |+i.

Exercise III.37 Prove:

H(a|0i + b|1i) = a|+i + b|�i,
H(a|+i + b|�i) = a|0i + b|1i.

Exercise III.38 Prove H = (X + Z)/
p
2.

Exercise III.39 Prove Eq. III.18 (p. 118).

Exercise III.40 Show that three successive CNOTs, connected as in Fig.
III.11 (p. 117), will swap two qubits.
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Exercise III.41 Recall the conditional selection between two operators (C.3,
p. 117): |0ih0| ⌦ U0 + |1ih1| ⌦ U1. Suppose the control bit is a superposition
|�i = a|0i + b|1i. Show that:

(|0ih0| ⌦ U0 + |1ih1| ⌦ U1)|�, i = a|0, U0 i + b|1, U1 i.

Exercise III.42 Show that the 1-bit full adder (Fig. III.15, p. 119) is cor-
rect.

Exercise III.43 Show that the operator Uf is unitary:

Uf |x, yi
def
= |x, y � f(x)i,

Exercise III.44 Verify the remaining superdense encoding transformations
in Sec. C.6.a (p. 123).

Exercise III.45 Verify the remaining decoding cases for quantum telepor-
tation Sec. C.6.b (p. 128).

Exercise III.46 Confirm the quantum teleportation circuit in Fig. III.21
(p. 129).

Exercise III.47 Complete the following step from the derivation of the
Deutsch-Jozsa algorithm (Sec. D.1, p. 138):

H|xi =
X

z22

1p
2
(�1)xz|zi.

Exercise III.48 Show that CNOT(H ⌦ I) = (I ⌦ H)CZH
⌦2, where CZ is

the controlled-Z gate.

Exercise III.49 Show that the Fourier transform matrix (Eq. III.25, p. 147,
Sec. D.3.a) is unitary.

Exercise III.50 Prove the claim on page 165 (Sec. D.4.b) that D is unitary.

Exercise III.51 Prove the claim on page 166 (Sec. D.4.b) that
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