
210 CHAPTER IV. MOLECULAR COMPUTATION

B Filtering models

Filtering models, an important class of DNA algorithms, operate by filtering
out of the solution molecules that are not part of the desired result. A
chemical solution can be treated mathematically as a finite bag or multi-set
of molecules, and filtering operations can be treated as operations to produce
multi-sets from multi-sets. Typically, for a problem of size n, strings of size
O(n) are required. The chemical solution should contain enough strings
to include many copies all possible answers. Therefore, for an exponential
problem, we will have O(kn) strings. Filtering is essentially a brute-force
method of solving problems.

B.1 Adleman: HPP

B.1.a Review of HPP

Leonard Adleman’s solution of the Hamiltonian Path Problem was the first
successful demonstration of DNA computing. The Hamiltonian Path Prob-
lem (HPP) is to determine, for a given directed graph G = (V,E) and two
of its vertices vin, vout 2 V , whether there is a Hamiltonian path from vin

to vout, that is, a path that goes through each vertex exactly once. HPP is
an NP-complete problem, but we will see that for Adleman’s algorithm the
number of algorithm steps is linear in problem size.

Adleman (the “A,” by the way, of “RSA.”) gave a laboratory demonstra-
tion of the procedure in 1994 for n = 7, which is a very small instance of
HPP. (We will use this instance, shown in Fig. IV.7, as an example.) Later
his group applied similar techniques to solving a 20-variable 3-SAT problem,
which has more than a million potential solutions (see p. 218).4

B.1.b Problem Representation

The heart of Adleman’s algorithm is a clever way to encode candidate paths in
DNA. Vertices are represented by single-stranded 20mers, that is, sequences
of 20nt (nucleotides). They were generated at random and assigned to the
vertices, but with the restriction that none of them were too similar or com-
plementary. Each vertex code can be considered a catenation of two 10mers:
vi = aibi (i.e., ai is the 50 10mer and bi is the 30 10mer). Edges are also

4https://en.wikipedia.org/wiki/Adleman, Leonard (accessed 2012-11-04).

B. FILTERING MODELS 211

112 5 Physical Implementations

5.4 Adleman’s Implementation

Adleman utilized the incredible storage capacity of DNA to implement a
brute-force algorithm for the directed Hamiltonian Path Problem (HPP). Re-
call that the HPP involves finding a path through a graph that visits each
vertex exactly once. The instance of the HPP that Adleman solved is depicted
in Fig. 5.2, with the unique Hamiltonian Path (HP) highlighted by a dashed
line.

 7

 1 2

 3

 4

 5

 6

Fig. 5.2. Instance of the HPP solved by Adleman

Adleman’s approach was simple:

1. Generate strands encoding random paths such that the Hamiltonian Path
(HP) is represented with high probability. The quantities of DNA used
far exceeded those necessary for the small graph under consideration, so
it is likely that many strands encoding the HP were present.

2. Remove all strands that do not encode the HP.
3. Check that the remaining strands encode a solution to the HPP.

The individual steps were implemented as follows:
Stage 1: Each vertex and edge was assigned a distinct 20-mer sequence of

DNA (Fig. 5.3a). This implies that strands encoding a HP were of length 140
b.p. Sequences representing edges act as ‘splints’ between strands representing
their endpoints (Fig. 5.3b).

In formal terms, the sequence associated with an edge i → j is the 3’ 10-
mer of the sequence representing vi followed by the 5’ 10-mer of the sequence
representing vj . These oligonucleotides were then combined to form strands
encoding random paths through the graph. An (illegal) example path (v1 →
v2 → v3 → v4) is depicted in Fig. 5.4.

Fixed amounts (50 pmol) of each oligonucleotide were mixed together in
a single ligation reaction. At the end of this reaction, it is assumed that a

Figure IV.7: HPP solved by Adleman. The HP is indicated by the dotted
edges. [source: Amos, Fig. 5.2]

represented by 20mers. The edge from vertex i to vertex j is represented by

ei!j = biaj, where vi = aibi, and vj = ajbj.

Paths are represented by using complements of the vertex 20mers to stitch
together the edge 20mers. (Of course, using the complements of the edges to
stitch together the vertices works as well.) For example, a path 2 ! 3 ! 4
is represented:

e2!3z }| {
b2 a3

e3!4z }| {
b3 a4

a3 b3| {z }
v3

The edges from vin and to vout have special representations as 30mers:

ein!j = vinaj, where vj = ajbj,

ei!out = bivout, where vi = aibi.

Note that the special representation of the initial and terminal edges results
in blunt ends for complete paths.

Therefore, for the n = 7 problems, candidate solutions were 140bp in
length: There are n�1 edges, but the first and last edges are 30mers. Hence
2 ⇥ 30 + (n � 3) ⇥ 20 = 140. Ligation is used to remove the nicks in the
backbone.

212 CHAPTER IV. MOLECULAR COMPUTATION

B.1.c Adleman’s Algorithm

algorithm Adlemen:

Step 1 (generation of all paths): Generate multiple representations of
all possible paths through the graph. This is done by combining the oligos
for the edges with the oligos for the complements of the vertices in a single
ligation reaction.

Step 2: Amplify the concentration of paths beginning with vin and ending
with vout. This is done by PCR using vin and vout as primers. Remember
that denaturation separates the sense and antisense strands. PCR extends
the sense strand in the 30 direction from vin, and extends the antisense strand
in the 30 direction from vout. At the end of this step we have paths of all
sorts from vin to vout.

Step 3: Only paths with the correct length are retained; for n = 7 this
is 140bp. This operation is accomplished by gel electrophoresis. The band
corresponding to 140bp is determined by comparison with a marker lane,
and the DNA is extracted from this band and amplified by PCR. Gel elec-
trophoresis and PCR are repeated to get a su�cient quantity of the DNA.
We now have paths from vin to vout, but they might not be Hamiltonian.

Step 4 (a�nity purification): Select for paths that contain all the ver-
tices (and are thus necessarily Hamiltonian). This is done by first selecting
all those paths that contain v1, and then, of those, all that contain v2, and
so forth. To select for vi, first heat the solution to separate the strands.
Then add the vi bound to a magnetic bead. Rehybridize (so the beads are
bound to strands containing vi), and use a magnet to extract all the paths
containing vi. Repeat this process for each vertex.

Step 5 If there any paths left, they are Hamiltonian. Therefore amplify them
by PCR and inspect the result by gel electrophoresis to see if there are any

B. FILTERING MODELS 213

Figure IV.8: Electrophoresis showing solution to HPP problem.

strands of the correct length. If there are, then there is a Hamiltonian path;
if there aren’t, then there is not. If desired, the precise HP can be determined
by a graduated PCR procedure: Run n � 1 parallel PCR reactions. In the
ith lane, vin is the left primer and vi is the right primer. This will produce
bands with lengths 40, 60, 80, 100, 120, and 140 bp. The lane that has a
band at 40 corresponds to the first vertex after vin in the path, the lane with
a band at 60 corresponds to the next vertex, etc. This final readout process
depends on there being only one Hamiltonian path, and it is error-prone due
to its dependence on PCR.
⇤

B.1.d Discussion

Adleman’s algorithm is linear in the number of nodes, since the only iteration
is Step 4, which is repeated for each vertex. Step 5 is also linear if the path
is read out. Thanks to the massive parallelism of molecular computation,
it solves this NP-complete problem in linear time. Adleman’s experiment
took about a week, but with a more automated approach it could be done
in a few hours. On the other hand, the PCR process cannot be significantly
shortened.

In addition to time, we need to consider the molecular resources required.
The number of di↵erent oligos required is proportional to n, but the number
of strands is much larger, since there must be multiples instances of each

214 CHAPTER IV. MOLECULAR COMPUTATION

possible path. If d is the average degree of the graph, then there are about
d

n possible paths (exponential in n). For example, if d = 10 and n = 80, then
the required 1080 DNAmolecules is more than the estimated number of atoms
in the universe. Hartmanis calculated that for n = 200 the weight of the DNA
would exceed the weight of the earth. So this brute-force approach is still
defeated by exponential explosion. Lipton (1995) estimates that Adleman’s
algorithm is feasible for n  70, based on an upper limit of 1021 ⇡ 270 DNA
strands (Boneh, Dunworth, Lipton & Sgall, 1996), but this is also feasible on
conventional computers.

Nevertheless, Adleman’s algorithm illustrates the massive parallelism of
molecular computation. Step 1 (generation of all possible paths) took about
an hour for n = 7. Adleman estimates that about 1014 ligation operations
were performed, and that it could be scaled up to 1020 operations. There-
fore, speeds of about 1015 to 1016 ops/sec (1–10 peta-operations/s) should be
achievable, which is, digital supercomputer range. Adlemen also estimates
that 2⇥1019 ligation operations were performed per joule of energy. Contem-
porary supercomputers perform only 109 operations per joule, so molecular
computation is 1010 more energy-e�cient. It is near the thermodynamic limit
of 34⇥1019 operations per joule. Recall (Ch. II, Sec. ??) kT ln 2 ⇡ 3⇥10�9pJ
= 3⇥ 10�21J, so there can be about 3.3⇥ 1020 bit changes/J.5

A more pervasive problem is the inherent error in the filtering processes
(due to incorrect hybridization). Some strands we don’t want, get through;
and some that we do want, don’t. With many filtering stages the errors
accumulate to the extent that the algorithms fail. There are some approaches
to error-resistant DNA computing, but this is an open problem.

5DNA is of course space e�cient. One bit of information occupies about 1 cubic nm,
whereas contemporary disks store a bit in about 1010 cubic nm. That is, DNA is a 1010

improvement in density.

B. FILTERING MODELS 215

Figure IV.9: Graph G2 for Lipton’s algorithm (with two variables, x and y).
[source: Lipton (1995)]

B.2 Lipton: SAT

In this section we will discuss DNA solution of another classic NP-complete
problem, Boolean satisfiability, in fact the first problem proved to be NP-
complete.6

B.2.a Review of SAT problem

In the Boolean satisfiability problem (called “SAT”), we are given a Boolean
expression of n variables. The problem is to determine if the expression is
satisfiable, that is, if there is an assignment of Boolean values to the variables
that makes the expression true.

Without loss of generality, we can restrict our attention to expressions in
conjunctive normal form, for every Boolean expression can be put into this
form. That is, the expression is a conjunction of clauses, each of which is a
disjunction of either positive or negated variables, such as this:

(x1 _ x
0

2 _ x
0

3) ^ (x3 _ x
0

5 _ x6) ^ (x3 _ x
0

6 _ x4) ^ (x4 _ x5 _ x6),

For convenience we use primes for negation, for example, x
0

2 = ¬x2. In
the above example, we have n = 6 variables m = 4 clauses. The (possibly
negated) variables are called literals.

B.2.b Data representation

To apply DNA computation, we have to find a way to represent potential
solutions to the problem as DNA strands. Potential solutions to SAT are

6This section is based on Richard J. Lipton (1995), “DNA solution of hard computa-
tional problems,” Science 268: 542–5.

216 CHAPTER IV. MOLECULAR COMPUTATION

n-bit binary strings, which can be thought of as paths through a particular
graph Gn (see Fig. IV.9). For vertices ak, xk, x

0

k
, k = 1, . . . , n, and an+1,

there are edges from ak to xk and x
0

k
, and from xk and x

0

k
to ak+1. Binary

strings are represented by paths from a1 to an+1. A path that goes through
xk encodes the assignment xk = 1 and a path through x

0

k
encodes xk = 0.

The DNA encoding of these paths is essentially the same as in Adleman’s
algorithm.

B.2.c Lipton’s Algorithm

algorithm Lipton:

Input: Suppose we have an instance (formula) to be solved: I = C1 ^ C2 ^
· · · ^ Cm. The algorithm will use a series of “test tubes” (reaction vessels)

T0, T1, . . . , Tm and T
i

1, T
i

1, . . . , T
i

m
, T

i

m
, for i = 0, . . . , n.

Step 1 (initialization): Create in a test tube T0 a library of all possible
n-bit binary strings, encoded as above as paths through the graph.

Step 2 (clause satisfaction): For each clause Ck, k = 1, . . . ,m: we will
extract from Tk�1 only those strings that satisfy Ck, and put them in Tk.
(These successive filtrations in e↵ect do an AND operation.) The goal is
that the DNA in Tk satisfies the first k clauses of the formula. That is,
8x 2 Tk 8 1  j  k : Cj(x) = 1. Here are the details.

For k = 0, . . . ,m� 1 do the following steps:

Precondition: The strings in Tk satisfy clauses C1, . . . , Ck.

Let ` = |Ck+1| (the number of literals in Ck+1), and suppose Ck+1 has the
form v1 _ · · · _ v`, where the vi are literals (positive or negative variables).
Our goal is to find all strings that satisfy at least one of these literals. To

B. FILTERING MODELS 217

accomplish this we will use an extraction operation E(T, i, a) that extracts
from test tube T all (or most) of the strings whose ith bit is a.

Let T
0
k
= Tk. Do the following for literals i = 1, . . . , `.

Positive literal: Suppose vi = xj (some positive literal). Let T i

k
= E(T

i�1
k

, j, 1)
and let a = 1 (used below). These are the paths that satisfy this positive
literal, since they have 1 in position j.

Negative literal: Suppose vi = x
0

j
(some negative literal). Let T

i

k
=

E(T
i�1
k

, j, 0) and let a = 0. These are the paths that satisfy this nega-
tive literal, since they have 0 in position j.

In either case, T i

k
are the strings that satisfy literal i of the clause. Let T

i

k
=

E(T
i�1
k

, j,¬a) be the remaining strings (which do not satisfy this literal).
Continue the process above until all the literals in the clause are processed.
At the end, for each i = 1, . . . , `, T i

k
will contain the strings that satisfy literal

i of clause k.
Combine T 1

k
, . . . , T

`

k
into Tk+1. (Combining the test tubes e↵ectively does

OR.) These will be the strings that satisfy at least one of the literals in clause
k + 1.

Postcondition: The strings in Tk+1 satisfy clauses C1, . . . , Ck+1.

Continue the above for k = 1, . . . ,m.

Step 3 (detection): At this point, the strings in Tm (if any) are those that
satisfy C1, . . . , Cm, so do a detect operation (for example, with PCR and gel
electrophoresis) to see if there are any strings left. If there are, the formula
is satisfiable; if there aren’t, then it is not.
⇤

If the number of literals per clause is fixed (as in the 3-SAT problem),
then performance is linear in m. The main problem with this algorithm is the

218 CHAPTER IV. MOLECULAR COMPUTATION

e↵ect of errors, but imperfections in extraction are not fatal, so long as there
are enough copies of the desired sequence. In 2002, Adelman’s group solved
a 20-variable 3-SAT problem with 24 clauses, finding the unique satisfying
string.7 In this case the number of possible solutions is 220 ⇡ 106. Since the
degree of the specialized graph used for this problem is small, the number
of possible paths is not excessive (as it might be in the Hamiltonian Path
Problem). They stated, “This computational problem may be the largest
yet solved by nonelectronic means,” and they conjectured that their method
might be extended to 30 variables.

7Ravinderjit S. Braich, Nickolas Chelyapov, Cli↵ Johnson, Paul W. K. Rothemund,
Leonard Adleman, “Solution of a 20-Variable 3-SAT Problem on a DNA Computer,”
Science 296 (19 Apr. 2002), 499–502.

B. FILTERING MODELS 219

B.3 Test tube programming language

Filtering algorithms use a small set of basic DNA operations, which can
be extended to a Test Tube Programming Language (TTPL), such as was
developed in the mid 90s by Lipton and Adleman (Adleman, 1995).

B.3.a Basic Operations

DNA algorithms operate on “test tubes,” which are multi-sets of strings over
⌃ = {A, C, T, G}. There are four basic operations (all implementable):

Extract (or separate): There are two complementary extraction (or
separation) operations. Given a test tube t and a string w, +(t, w) returns
all strings in t that have w as a subsequence:

+(t, w)
def
= {s 2 t | 9u, v 2 ⌃⇤ : s = uwv}.

Likewise, �(t, w) returns a test tube of all the remaining strings:

�(t, w) def
= t � +(t, w) (multi-set di↵erence).

Merge: The merge operation combines several test tubes into one test
tube:

[(t1, t2, . . . , tn)
def
= t1 [t2 [· · · [tn.

Detect: The detect operation determines if any DNA strings remain in
a test tube:

detect(t)
def
=

⇢
true, if t 6= ;
false, otherwise

.

Amplify: Given a test tube t, the amplify operation produces two copies
of it: t

0
, t

00 amplify(t). Amplification is a problematic operation, which
depends on the special properties of DNA and RNA, and it may be error
prone. Therefore it is useful to consider a restricted model of DNA computing
that avoids or minimizes the use of amplification.

The following additional operations have been proposed:
Length-separate: This operation produces a test tube containing all

the strands less than a specified length:

(t, n)
def
= {s 2 t | |s|  n}.

220 CHAPTER IV. MOLECULAR COMPUTATION

Position-separate: There are two position-separation operations, one
that selects for strings that begin with a given sequence, and one for sequences
that end with it:

B(t, w)
def
= {s 2 t | 9v 2 ⌃⇤ : s = wv},

E(t, w)
def
= {s 2 t | 9u 2 ⌃⇤ : s = uw}.

B.3.b Examples

AllC: The following example algorithm detects if there are any sequences
that contain only C:

procedure [out] = AllC(t, A, T, G)
t –(t, A)
t –(t, T)
t –(t, G)
out detect (t)

end procedure

HPP: Adelman’s solution of the HPP can be expressed in TTPL:

procedure [out] = HPP(t, vin, vout)
t B(t, vin) //begin with vin
t E(t, vout) //end with vout
t (t,  140) //correct length
for i=1 to 5 do //except vin and vout
t +(t, s[i]) //contains vertex i

end for
out detect(t) //any HP left?

end procedure

SAT: Programming Lipton’s solution to Sat requires another primi-
tive operation, which extracts all sequences for which the jth bit is a 2 2:
E(t, j, a). Recall that these are represented by the sequences containing xj

and x
0

j
. Therefore:

E(t, j, 1) = +(t, xj),

E(t, j, 0) = +(t, x0

j
).

B. FILTERING MODELS 221

procedure [out] = Sat(t)
for k = 1 to m do // for each clause
for i = 1 to n do // for each literal
if C[k][i] = xj // i-th literal in clause k
then t[i] E(t,j,1)
else t[i] E(t,j,0)

end if
end for
t merge(t[1], t[2], . . . , t[n]) // solutions for clauses 1,...,k

end for
out detect(t)

end procedure

222 CHAPTER IV. MOLECULAR COMPUTATION

B.4 Parallel filtering model

The parallel filtering model (PFM) was developed in the mid 90s by Martyn
Amos and colleagues to be a means of describing DNA algorithms for any
NP problem (as opposed to Ableson’s and Lipton’s algorthms, which are
specialized to particular problems). “Our choice is determined by what we
know can be e↵ectively implemented by very precise and complete chemical
reactions within the DNA implementation.”8 All PFM algorithms begin
with a multi-set of all candidate solutions. The PFM di↵ers from other DNA
computation models in that removed strings are discarded and cannot be
used in further operations. Therefore this is a “mark and destroy” approach
to DNA computation.

B.4.a Basic operations

The basic operations are remove, union, copy, and select.
Remove: The operation remove(U, {S1, . . . , Sn}) removes from U any

strings that contain any of the substrings Si. Remove is implemented by two
primitive operations, mark and destroy:

Mark: mark(U, S) marks all strands that have S as a substring. This is
done by adding S as a primer with polymerase to make it double-stranded.

Destroy: destroy(U) removes all the marked sequences from U . This is
done by adding a restriction enzyme that cuts up the double-stranded part.
These fragments can be removed by gel electrophoresis, or left in the solution
(since they won’t a↵ect it). Restriction enzymes are much more reliable than
other DNA operations, which is one advantage of the PFM approach.

Union: The operation union({U1, . . . , Un}, U) combines in parallel the
multi-sets U1, . . . , Un into U .

Copy: The operation copy(U, {U1, . . . , Un}) divides multi-set U into n

equal multi-sets U1, . . . , Un.
Select: The operation select(U) returns a random element of U . If U = ;,

then it returns ;.
Homogeneous DNA can be detected and sequenced by PCR, and nested

PCR can be used in non-homogeneous cases (multiple solutions). All of
these operations are assumed to be constant-time. Periodic amplification
(especially after copy operations) may be necessary to ensure an adequate

8Amos, p. 50.

B. FILTERING MODELS 223

5.6 Implementation of the Parallel Filtering Model 117

5.6 Implementation of the Parallel Filtering Model

Here we describe how how the set operations within the Parallel Filtering
Model described in Section 3.2 may be implemented.

Remove

remove(U, {Si}) is implemented as a composite operation, comprised of the
following:

• mark(U, S). This operation marks all strings in the set U which contains
at least one occurrence of the substring S.

• destroy(U). This operation removes all marked strings from U .

mark(U, S) is implemented by adding to U many copies of a primer corre-
sponding to S (Fig. 5.7b). This primer only anneals to single strands contain-
ing the subsequence S. We then add DNA polymerase to extend the primers
once they have annealed, making only the single strands containing S double
stranded (Fig. 5.7b).

Polymerase extends

(a)

(b)

(c)

(d)

Primer block

Restrict Restrict Restrict

Restriction site Target sequence

Fig. 5.7. Implementation of destroy

We may then destroy strands containing S by adding the appropriate restric-
tion enzyme. Double-stranded DNA (i.e. strands marked as containing S) is
cut at the restriction sites embedded within, single strands remaining intact

Figure IV.10: Remove operation implemented by mark and destroy. [source:
Amos]

number of instances. Amos et al. have done a number of experiments to
determine optimum reactions parameters and procedures.

B.4.b Permutations

Amos et al. describe a PFM algorithm for generating all possible permuta-
tions of a set of integers.

algorithm Permutations:

Input: “The input set U consists of all strings of the form p1i1p2i2 · · · pnin

where, for all j, pj uniquely encodes ‘position j’ and each ij is in {1, 2, . . . , n}.
Thus each string consists of n integers with (possibly) many occurrences of
the same integer.”9

9Amos, p. 51.

224 CHAPTER IV. MOLECULAR COMPUTATION

Iteration:

for j = 1 to n� 1 do
copy(U, {U1, U2, . . . , Un})
for i = 1, 2, . . . , n and all k > j

in parallel do remove(Ui, {pjij 6= pji, pki})
// Ui contains i in jth position and no other is
union({U1, U2, . . . , Un}, U)

end for
Pn U

In the preceding, remove(Ui, {pjij 6= pji, pki}) means to remove from Ui all
strings that have a pj value not equal to i and all strings containing pki for any
k > j. For example, if i = 2 and j = n� 1, this remove operation translates
to remove(U2, {pn�11, pn�13, pn�14, . . . , pn�1n, pn2}). That is, it eliminates
all strings except those with 2 in the n � 1 position, and eliminates those
with 2 in the n position. At the end of iteration j we have:

↵z }| {
p1i1p2i2 · · · pjij pj+1ij+1 · · · pnin| {z }

�

where ↵ represents a permutation of j integers from 1, . . . , n, and none of
these integers i1, . . . , ij are in �.

Amos shows how to do a number of NP-complete problems, including
3-vertex-colorability, HPP, subgraph isomorphism, and maximum clique.

