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C Formal models

C.1 Sticker systems

C.1.a Basic operations

The sticker model was developed by Rosweis et al. in the mid-1990s. It
depends primarily on separation by means of hybridization and makes no
use of strand extension and enzymes. It implements a sort of random-access
binary memory. Each bit position is represented by a substrand of length
m. A memory strand comprises k contiguous substrands, and so has length
n = km and can store k bits. Sticker strands or stickers are strands that are
complementary to substrands representing bits. When a sticker is bound to
a bit, it represents 1, and if no sticker is bound, the bit is 0. Such a strand,
which is partly double and partly single, is called a complex strand.

Computations begin with a prepared library of strings. A (k, l) library
uses the first l  k bits as inputs to the algorithm, and the remaining k�l for
output and working storage. Therefore, the last k � l are initially 0. There
are four basic operations, which act on multi-sets of binary strings:

Merge: Creates the union of two tubes (multi-sets).
Separate: The operation separate(N, i) separates a tube N into two

tubes: +(N, i) contains all strings in which bit i is 1, and �(N, i) contains
all strings in which bit i is 0.

Set: The operation set(N, i) produces a tube in which every string from
N has had its ith bit set to 1.

Clear: The operation clear(N, i) produces a tube in which every string
from N has had its ith bit cleared to 0.

C.1.b Set cover problem

The set cover problem is a classic NP-complete problem. Given a finite
set of p objects S, and a finite collection of subsets of S (C1, . . . , Cq ⇢ S)
whose union is S, find the smallest collection of these subsets whose union
is S. For an example, consider S = {1, 2, 3, 4, 5} and C1 = {3, 4, 5}, C2 =
{1, 3, 4}, C3 = {1, 2, 5}, C4 = {3, 4}. In this case there are three minimal
solutions: {C1, C3}, {C3, C4}, {C2, C3}.
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algorithm Minimum Set Cover:

Data representation: The memory strands are of size k = p + q. Each
strand represents a collection of subsets, and the first q bits encode which
subsets are in the collection; call them subset bits. For example 1011 rep-
resents {C1, C3, C4} and 0010 represents {C3}. Eventually, the last p bits
will represent the union of the collection, that is, the elements of S that are
contained in at lease one subset in the collection; call them element bits. For
example, 0101 10110 represents {C2, C4} {1, 3, 4}.

Library: The algorithm begins with the (p + q, q) library, which must be
initialized to reflect the subsets’ members.

Step 1 (initialization): For all strands, if the i subset bit is set, then set
the bits for all the elements of that subset. Call the result tube N0. This is
accomplished by the following code:

Initialize (p+ q, q) library in N0

for i = 1 to q do
separate(+(N0, i),�(N0, i)) //separate those with subset i
for j = 1 to |Ci| do
set(+(N0, i), q + c

j

i
) //set bit for jth element of set i

end for
N0  merge(+(N0, i),�(N0, i)) //recombine

end for

Step 2 (retain covers): Retain only the strands that represent collections
that cover the set. To do this, retain in N0 only the strands whose last p bits
are set.

for i = q + 1 to q + p do
N0  +(N0, i) //retain those with element i

end for
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Fig. 3.4. Sorting procedure

and so on until we find a tube that contains a covering. In this case, tube
N2 contains three coverings, each using two bags. The algorithm is formally
expressed within the sticker model as follows.

(1) Initialize (p,q) library in tube N0

(2) for i = 1 to q do begin
(3) N0 ← separatei(+(N0, i),−(N0, i))
(4) for j = 1 to | Ci |
(5) set(+(N0, i), q + cj

i )
(6) end for
(7) N0 ← merge(+(N0, i),−(N0, i))
(8) end for

This section sets the object identifying substrands. Note that cj
i denotes the

jth element of set Ci. We now separate out for further use only those memory
complexes where each of the last p substrands is set to on.

(1) for i = q + 1 to q + p do begin
(2) N0 ← +(N0, i)
(3) end for

Figure IV.11: Sorting of covers by repeated separations. [source: Amos, Fig.
3.4]

Step 3 (isolate minimum covers): Tube N0 now holds all covers, so we
have to somehow sort its contents to find the minimum cover(s). Set up a
row of tubes N0, N1, . . . , Nq. We will arrange things so that Ni contains the
covers of size i; then we just have to find the first tube with some DNA in it.

Sorting: For i = 1, . . . , q, “drag” to the right all collections containing Ci,
that is, for which bit i is set (see Fig. IV.11). This is accomplished by the
following code:10

for i = 0 to q � 1 do
for j = i down to 0 do
separate(+(Nj, i+ 1),�(Nj, i+ 1)) //those that do & don’t have i

10Corrected from Amos p. 60.
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Nj+1  merge(+(Nj, i+ 1), Nj+1) //move those that do to Nj+1

Nj  �(Nj, i+ 1) //leave those that don’t in Nj

end for
end for

Detection: Find the minimum i such that Ni contains DNA; Ni contains
the minimum covers.
⇤

The algorithm is O(pq).

C.2 Splicing systems

It has been argued that the full power of a TM requires some sort of string
editing operation. Therefore, beginning with Tom Head (1987), a number of
splcing systems have been defined. The splicing operations takes two strings
S = S1S2 and T = T1T2 and performs a “crossover” at a specified location,
yielding S1T2 and T1S2. Finite extended splicing systems have been shown
to be computationally universal (1996).

The Parallel Associative Memory (PAM) Model was defined by Reif in
1995. It is based on a restricted splicing operation called parallel associative
matching (PA-Match) operation, which is named Rsplice. Suppose S = S1S2

and T = T1T2. Then,

Rsplice(S, T ) = S1T2, if S2 = T1,

and is undefined otherwise. The PAM model can simulate nondeterministic
TMs and parallel random access machines.


