C Formal models

C.1 Sticker systems

C.1.a Basic operations

The *sticker model* was developed by Rosweis et al. in the mid-1990s. It depends primarily on separation by means of hybridization and makes no use of strand extension and enzymes. It implements a sort of random-access binary memory. Each bit position is represented by a substrand of length m. A memory strand comprises k contiguous substrands, and so has length n = km and can store k bits. Sticker strands or stickers are strands that are complementary to substrands representing bits. When a sticker is bound to a bit, it represents 1, and if no sticker is bound, the bit is 0. Such a strand, which is partly double and partly single, is called a complex strand.

Computations begin with a prepared *library* of strings. A (k, l) library uses the first $l \leq k$ bits as inputs to the algorithm, and the remaining k-l for output and working storage. Therefore, the last k-l are initially 0. There are four basic operations, which act on multi-sets of binary strings:

Merge: Creates the union of two tubes (multi-sets).

Separate: The operation separate (N, i) separates a tube N into two tubes: +(N, i) contains all strings in which bit i is 1, and -(N, i) contains all strings in which bit i is 0.

Set: The operation set(N, i) produces a tube in which every string from N has had its ith bit set to 1.

Clear: The operation clear(N, i) produces a tube in which every string from N has had its ith bit cleared to 0.

C.1.b SET COVER PROBLEM

The set cover problem is a classic NP-complete problem. Given a finite set of p objects S, and a finite collection of subsets of S $(C_1, \ldots, C_q \subset S)$ whose union is S, find the smallest collection of these subsets whose union is S. For an example, consider $S = \{1, 2, 3, 4, 5\}$ and $C_1 = \{3, 4, 5\}, C_2 = \{1, 3, 4\}, C_3 = \{1, 2, 5\}, C_4 = \{3, 4\}$. In this case there are three minimal solutions: $\{C_1, C_3\}, \{C_3, C_4\}, \{C_2, C_3\}$.

algorithm Minimum Set Cover:

Data representation: The memory strands are of size k = p + q. Each strand represents a collection of subsets, and the first q bits encode which subsets are in the collection; call them *subset bits*. For example 1011 represents $\{C_1, C_3, C_4\}$ and 0010 represents $\{C_3\}$. Eventually, the last p bits will represent the union of the collection, that is, the elements of S that are contained in at lease one subset in the collection; call them *element bits*. For example, 0101 10110 represents $\{C_2, C_4\}$ $\{1, 3, 4\}$.

Library: The algorithm begins with the (p + q, q) library, which must be initialized to reflect the subsets' members.

Step 1 (initialization): For all strands, if the i subset bit is set, then set the bits for all the elements of that subset. Call the result tube N_0 . This is accomplished by the following code:

```
Initialize (p+q,q) library in N_0

for i=1 to q do

separate (+(N_0,i),-(N_0,i)) //separate those with subset i

for j=1 to |C_i| do

\operatorname{set}(+(N_0,i),q+c_i^j) //set bit for jth element of set i

end for

N_0 \leftarrow \operatorname{merge}(+(N_0,i),-(N_0,i)) //recombine

end for
```

Step 2 (retain covers): Retain only the strands that represent collections that cover the set. To do this, retain in N_0 only the strands whose last p bits are set.

```
for i=q+1 to q+p do N_0 \leftarrow +(N_0,i) //retain those with element i end for
```


Figure IV.11: Sorting of covers by repeated separations. [source: Amos, Fig. 3.4]

Step 3 (isolate minimum covers): Tube N_0 now holds all covers, so we have to somehow sort its contents to find the minimum cover(s). Set up a row of tubes N_0, N_1, \ldots, N_q . We will arrange things so that N_i contains the covers of size i; then we just have to find the first tube with some DNA in it.

Sorting: For i = 1, ..., q, "drag" to the right all collections containing C_i , that is, for which bit i is set (see Fig. IV.11). This is accomplished by the following code:¹⁰

for
$$i = 0$$
 to $q - 1$ do
for $j = i$ down to 0 do
separate $(+(N_j, i + 1), -(N_j, i + 1))$ //those that do & don't have i

¹⁰Corrected from Amos p. 60.

```
N_{j+1} \leftarrow \operatorname{merge}(+(N_j,i+1),N_{j+1}) //move those that do to N_{j+1} N_j \leftarrow -(N_j,i+1) //leave those that don't in N_j end for end for
```

Detection: Find the minimum i such that N_i contains DNA; N_i contains the minimum covers.

The algorithm is $\mathcal{O}(pq)$.

C.2 Splicing systems

It has been argued that the full power of a TM requires some sort of string editing operation. Therefore, beginning with Tom Head (1987), a number of splcing systems have been defined. The splicing operations takes two strings $S = S_1S_2$ and $T = T_1T_2$ and performs a "crossover" at a specified location, yielding S_1T_2 and T_1S_2 . Finite extended splicing systems have been shown to be computationally universal (1996).

The Parallel Associative Memory (PAM) Model was defined by Reif in 1995. It is based on a restricted splicing operation called parallel associative matching (PA-Match) operation, which is named Rsplice. Suppose $S = S_1S_2$ and $T = T_1T_2$. Then,

Rsplice
$$(S,T) = S_1 T_2$$
, if $S_2 = T_1$,

and is undefined otherwise. The PAM model can simulate nondeterministic TMs and parallel random access machines.