
E. GENERAL-PURPOSE ANALOG COMPUTATION 273

E General-purpose analog computation

E.1 The importance of general-purpose computers

Although special-purpose analog and digital computers have been developed,
and continue to be developed, for many purposes, the importance of general-
purpose computers, which can be adapted easily for a wide variety of pur-
poses, has been recognized since at least the nineteenth century. Babbage’s
plans for a general-purpose digital computer, his analytical engine (1835),
are well known, but a general-purpose di↵erential analyzer was advocated
by Kelvin (Thomson, 1876). Practical general-purpose analog and digital
computers were first developed at about the same time: from the early 1930s
through the war years. General-purpose computers of both kinds permit the
prototyping of special-purpose computers and, more importantly, permit the
flexible reuse of computer hardware for di↵erent or evolving purposes.

The concept of a general-purpose computer is useful also for determin-
ing the limits of a computing paradigm. If one can design—theoretically
or practically—a universal computer, that is, a general-purpose computer
capable of simulating any computer in a relevant class, then anything un-
computable by the universal computer will also be uncomputable by any
computer in that class. This is, of course, the approach used to show that
certain functions are uncomputable by any Turing machine because they
are uncomputable by a universal Turing machine. For the same reason, the
concept of general-purpose analog computers, and in particular of universal
analog computers are theoretically important for establishing limits to analog
computation.

E.2 General-purpose electronic analog computers

Before taking up these theoretical issues, it is worth recalling that a typ-
ical electronic GPAC would include linear elements, such as adders, sub-
tracters, constant multipliers, integrators, and di↵erentiators; nonlinear ele-
ments, such as variable multipliers and function generators; other computa-
tional elements, such as comparators, noise generators, and delay elements
(Sec. B.1.b). These are, of course, in addition to input/output devices, which
would not a↵ect its computational abilities.



274 CHAPTER V. ANALOG COMPUTATION

E.3 Shannon’s analysis

Claude Shannon did an important analysis of the computational capabil-
ities of the di↵erential analyzer, which applies to many GPACs (Shannon,
1941, 1993). He considered an abstract di↵erential analyzer equipped with an
unlimited number of integrators, adders, constant multipliers, and function
generators (for functions with only a finite number of finite discontinuities),
with at most one source of drive (which limits possible interconnections be-
tween units). This was based on prior work that had shown that almost
all the generally used elementary functions could be generated with addition
and integration. We will summarize informally a few of Shannon’s results;
for details, please consult the original paper.

First Shannon o↵ers proofs that, by setting up the correct ODEs, a GPAC
with the mentioned facilities can generate any function if and only if is not
hypertranscendental (Theorem II); thus the GPAC can generate any function
that is algebraic transcendental (a very large class), but not, for example,
Euler’s gamma function and Riemann’s zeta function. He also shows that
the GPAC can generate functions derived from generable functions, such as
the integrals, derivatives, inverses, and compositions of generable functions
(Thms. III, IV). These results can be generalized to functions of any number
of variables, and to their compositions, partial derivatives, and inverses with
respect to any one variable (Thms. VI, VII, IX, X).

Next Shannon shows that a function of any number of variables that
is continuous over a closed region of space can be approximated arbitrarily
closely over that region with a finite number of adders and integrators (Thms.
V, VIII).

Shannon then turns from the generation of functions to the solution of
ODEs and shows that the GPAC can solve any system of ODEs defined in
terms of non-hypertranscendental functions (Thm. XI).

Finally, Shannon addresses a question that might seem of limited interest,
but turns out to be relevant to the computational power of analog computers
(see Sec. F below). To understand it we must recall that he was investigating
the di↵erential analyzer—a mechanical analog computer—but similar issues
arise in other analog computing technologies. The question is whether it is
possible to perform an arbitrary constant multiplication, u = kv, by means of
gear ratios. He show that if we have just two gear ratios a and b (a, b 6= 0, 1),
such that b is not a rational power of a, then by combinations of these gears
we can approximate k arbitrarily closely (Thm. XII). That is, to approximate



E. GENERAL-PURPOSE ANALOG COMPUTATION 275

multiplication by arbitrary real numbers, it is su�cient to be able to multiply
by a, b, and their inverses, provided a and b are not related by a rational
power.

Shannon mentions an alternative method of constant multiplication, which
uses integration, kv =

R
v

0 kdv, but this requires setting the integrand to the
constant function k. Therefore, multiplying by an arbitrary real number re-
quires the ability to input an arbitrary real as the integrand. The issue of
real-valued inputs and outputs to analog computers is relevant both to their
theoretical power and to practical matters of their application (see Sec. F.3).

Shannon’s proofs, which were incomplete, were eventually refined by
Pour-El (1974a) and finally corrected by Lipshitz & Rubel (1987). Rubel
(1988) proved that Shannon’s GPAC cannot solve the Dirichlet problem for
Laplace’s equation on the disk; indeed, it is limited to initial-value problems
for algebraic ODEs. Specifically, the Shannon–Pour-El Thesis is that the
outputs of the GPAC are exactly the solutions of the algebraic di↵erential
equations, that is, equations of the form

P [x, y(x), y0(x), y00(x), . . . , y(n)(x)] = 0,

where P is a polynomial that is not identically vanishing in any of its vari-
ables (these are the di↵erentially algebraic functions) (Rubel, 1985). (For
details please consult the cited papers.) The limitations of Shannon’s GPAC
motivated Rubel’s definition of the Extended Analog Computer.

E.4 Rubel’s Extended Analog Computer

The combination of Rubel’s (1985) conviction that the brain is an analog
computer together with the limitations of Shannon’s GPAC led him to pro-
pose the Extended Analog Computer (EAC) (Rubel, 1993).

Like Shannon’s GPAC (and the Turing machine), the EAC is a concep-
tual computer intended to facilitate theoretical investigation of the limits of
a class of computers. The EAC extends the GPAC in a number of respects.
For example, whereas the GPAC solves equations defined over a single vari-
able (time), the EAC can generate functions over any finite number of real
variables. Further, whereas the GPAC is restricted to initial-value problems
for ODEs, the EAC solves both initial- and boundary-value problems for a
variety of PDEs.

The EAC is structured into a series of levels, each more powerful than the
ones below it, from which it accepts inputs. The inputs to the lowest level



276 CHAPTER V. ANALOG COMPUTATION

are a finite number of real variables (“settings”). At this level it operates on
real polynomials, from which it is able to generate the di↵erentially algebraic
functions. The computation on each level is accomplished by conceptual
analog devices, which include constant real-number generators, adders, mul-
tipliers, di↵erentiators, “substituters” (for function composition), devices for
analytic continuation, and inverters, which solve systems of equations de-
fined over functions generated by the lower levels. Most characteristic of the
EAC is the “boundary-value-problem box,” which solves systems of PDEs
and ODEs subject to boundary conditions and other constraints. The PDEs
are defined in terms of functions generated by the lower levels. Such PDE
solvers may seem implausible, and so it is important to recall field-computing
devices for this purpose were implemented in some practical analog comput-
ers (see Sec. B.1) and more recently in Mills’ EAC (Mills et al., 2006). As
Rubel observed, PDE solvers could be implemented by physical processes
that obey the same PDEs (heat equation, wave equation, etc.). (See also
Sec. H.1 below.)

Finally, the EAC is required to be “extremely well-posed,” which means
that each level is relatively insensitive to perturbations in its inputs; thus
“all the outputs depend in a strongly deterministic and stable way on the
initial settings of the machine” (Rubel, 1993).

Rubel (1993) proves that the EAC can compute everything that the
GPAC can compute, but also such functions as the gamma and zeta, and
that it can solve the Dirichlet problem for Laplace’s equation on the disk, all
of which are beyond the GPAC’s capabilities. Further, whereas the GPAC
can compute di↵erentially algebraic functions of time, the EAC can compute
di↵erentially algebraic functions of any finite number of real variables. In
fact, Rubel did not find any real-analytic (C1) function that is not com-
putable on the EAC, but he observes that if the EAC can indeed generate
every real-analytic function, it would be too broad to be useful as a model
of analog computation.

F Analog computation and the Turing limit

F.1 Introduction

The Church-Turing Thesis asserts that anything that is e↵ectively com-
putable is computable by a Turing machine, but the Turing machine (and



F. ANALOG COMPUTATION AND THE TURING LIMIT 277

equivalent models, such as the lambda calculus) are models of discrete com-
putation, and so it is natural to wonder how analog computing compares in
power, and in particular whether it can compute beyond the “Turing limit.”
Superficial answers are easy to obtain, but the issue is subtle because it de-
pends upon choices among definitions, none of which is obviously correct,
it involves the foundations of mathematics and its philosophy, and it raises
epistemological issues about the role of models in scientific theories. This is
an active research area, but many of the results are apparently inconsistent
due to the di↵ering assumptions on which they are based. Therefore this
section will be limited to a mention of a few of the interesting results, but
without attempting a comprehensive, systematic, or detailed survey; Siegel-
mann (1999) can serve as an introduction to the literature.

F.2 A sampling of theoretical results

F.2.a Continuous-time models

Orponen’s (1997) survey of continuous-time computation theory is a good
introduction to the literature as of that time; here we give a sample of these
and more recent results.

There are several results showing that—under various assumptions—
analog computers have at least the power of Turing machines (TMs). For
example, Branicky (1994) showed that a TM could be simulated by ODEs,
but he used non-di↵erentiable functions; Bournez et al. (2006) provide an
alternative construction using only analytic functions. They also prove that
the GPAC computability coincides with (Turing-)computable analysis, which
is surprising, since the gamma function is Turing-computable but, as we have
seen, the GPAC cannot generate it. The paradox is resolved by a distinction
between generating a function and computing it, with the latter, broader no-
tion permitting convergent computation of the function (that is, as t ! 1).
However, the computational power of general ODEs has not been determined
in general (Siegelmann, 1999, p. 149). M. B. Pour-El and I. Richards exhibit
a Turing-computable ODE that does not have a Turing-computable solution
(Pour-El & Richards, 1979, 1982). Stannett (1990) also defined a continuous-
time analog computer that could solve the halting problem.

Moore (1996) defines a class of continuous-time recursive functions over
the reals, which includes a zero-finding operator µ. Functions can be classified
into a hierarchy depending on the number of uses of µ, with the lowest level



278 CHAPTER V. ANALOG COMPUTATION

(no µs) corresponding approximately to Shannon’s GPAC. Higher levels can
compute non-Turing-computable functions, such as the decision procedure
for the halting problem, but he questions whether this result is relevant in
the physical world, which is constrained by “noise, quantum e↵ects, finite
accuracy, and limited resources.” Bournez & Cosnard (1996) have extended
these results and shown that many dynamical systems have super-Turing
power.

Omohundro (1984) showed that a system of ten coupled nonlinear PDEs
could simulate an arbitrary cellular automaton, which implies that PDEs
have at least Turing power. Further, D. Wolpert and B. J. MacLennan
(Wolpert, 1991; Wolpert & MacLennan, 1993) showed that any TM can be
simulated by a field computer with linear dynamics, but the construction
uses Dirac delta functions. Pour-El and Richards exhibit a wave equation
in three-dimensional space with Turing-computable initial conditions, but
for which the unique solution is Turing-uncomputable (Pour-El & Richards,
1981, 1982).

F.2.b Sequential-time models

We will mention a few of the results that have been obtained concerning the
power of sequential-time analog computation.

Although the BSS model has been investigated extensively, its power
has not been completely determined (Blum et al., 1998, 1988). It is known
to depend on whether just rational numbers or arbitrary real numbers are
allowed in its programs (Siegelmann, 1999, p. 148).

A coupled map lattice (CML) is a cellular automaton with real-valued
states; it is a sequential-time analog computer, which can be considered a
discrete-space approximation to a simple sequential-time field computer. Or-
ponen & Matamala (1996) showed that a finite CML can simulate a universal
Turing machine. However, since a CML can simulate a BSS program or a
recurrent neural network (see Sec. F.2.c below), it actually has super-Turing
power (Siegelmann, 1999, p. 149).

Recurrent neural networks are some of the most important examples of
sequential analog computers, and so the following section is devoted to them.



F. ANALOG COMPUTATION AND THE TURING LIMIT 279

F.2.c Recurrent neural networks

With the renewed interest in neural networks in the mid-1980s, many in-
vestigators wondered if recurrent neural nets have super-Turing power. M.
Garzon and S. Franklin showed that a sequential-time net with a countable
infinity of neurons could exceed Turing power (Franklin & Garzon, 1990; Gar-
zon & Franklin, 1989, 1990). Indeed, Siegelmann & Sontag (1994b) showed
that finite neural nets with real-valued weights have super-Turing power, but
Maass & Sontag (1999b) showed that recurrent nets with Gaussian or sim-
ilar noise had sub-Turing power, illustrating again the dependence on these
results on assumptions about what is a reasonable mathematical model of
analog computing.

For recent results on recurrent neural networks, we will restrict our at-
tention of the work of Siegelmann (1999), who addresses the computational
power of these network in terms of the classes of languages they can rec-
ognize. Without loss of generality the languages are restricted to sets of
binary strings. A string to be tested is fed to the network one bit at a time,
along with an input that indicates when the end of the input string has been
reached. The network is said to decide whether the string is in the language if
it correctly indicates whether it is in the set or not, after some finite number
of sequential steps since input began.

Siegelmann shows that, if exponential time is allowed for recognition,
finite recurrent neural networks with real-valued weights (and saturated-
linear activation functions) can compute all languages, and thus they are
more powerful than Turing machines. Similarly, stochastic networks with
rational weights also have super-Turing power, although less power than the
deterministic nets with real weights. (Specifically, they compute P/POLY
and BPP/log⇤ respectively; see Siegelmann 1999, chs. 4, 9 for details.) She
further argues that these neural networks serve as a “standard model” of
(sequential) analog computation (comparable to Turing machines in Church-
Turing computation), and therefore that the limits and capabilities of these
nets apply to sequential analog computation generally.

Siegelmann (1999, p 156) observes that the super-Turing power of recur-
rent neural networks is a consequence of their use of non-rational real-valued
weights. In e↵ect, a real number can contain an infinite number of bits of
information. This raises the question of how the non-rational weights of a net-
work can ever be set, since it is not possible to define a physical quantity with
infinite precision. However, although non-rational weights may not be able



280 CHAPTER V. ANALOG COMPUTATION

to be set from outside the network, they can be computed within the network
by learning algorithms, which are analog computations. Thus, Siegelmann
suggests, the fundamental distinction may be between static computational
models, such as the Turing machine and its equivalents, and dynamically
evolving computational models, which can tune continuously variable param-
eters and thereby achieve super-Turing power.

F.2.d Dissipative models

Beyond the issue of the power of analog computing relative to the Tur-
ing limit, there are also questions of its relative e�ciency. For example,
could analog computing solve NP-hard problems in polynomial or even lin-
ear time? In traditional computational complexity theory, e�ciency issues
are addressed in terms of the asymptotic number of computation steps to
compute a function as the size of the function’s input increases. One way to
address corresponding issues in an analog context is by treating an analog
computation as a dissipative system, which in this context means a system
that decreases some quantity (analogous to energy) so that the system state
converges to an point attractor. From this perspective, the initial state of
the system incorporates the input to the computation, and the attractor
represents its output. Therefore, H. T. Sieglemann, S. Fishman, and A.
Ben-Hur have developed a complexity theory for dissipative systems, in both
sequential and continuous time, which addresses the rate of convergence in
terms of the underlying rates of the system (Ben-Hur et al., 2002; Siegelmann
et al., 1999). The relation between dissipative complexity classes (e.g., Pd,
NPd) and corresponding classical complexity classes (P, NP) remains unclear
(Siegelmann, 1999, p. 151).

F.3 Real-valued inputs, output, and constants

A common argument, with relevance to the theoretical power of analog com-
putation, is that an input to an analog computer must be determined by
setting a dial to a number or by typing a number into digital-to-analog con-
version device, and therefore that the input will be a rational number. The
same argument applies to any internal constants in the analog computation.
Similarly, it is argued, any output from an analog computer must be mea-
sured, and the accuracy of measurement is limited, so that the result will
be a rational number. Therefore, it is claimed, real numbers are irrelevant



F. ANALOG COMPUTATION AND THE TURING LIMIT 281

to analog computing, since any practical analog computer computes a func-
tion from the rationals to the rationals, and can therefore be simulated by a
Turing machine.2

There are a number of interrelated issues here, which may be considered
briefly. First, the argument is couched in terms of the input or output of
digital representations, and the numbers so represented are necessarily ratio-
nal (more generally, computable). This seems natural enough when we think
of an analog computer as a calculating device, and in fact many historical
analog computers were used in this way and had digital inputs and outputs
(since this is our most reliable way of recording and reproducing quantities).

However, in many analog control systems, the inputs and outputs are con-
tinuous physical quantities that vary continuously in time (also a continuous
physical quantity); that is, according to current physical theory, these quan-
tities are real numbers, which vary according to di↵erential equations. It is
worth recalling that physical quantities are neither rational nor irrational;
they can be so classified only in comparison with each other or with respect
to a unit, that is, only if they are measured and digitally represented. Fur-
thermore, physical quantities are neither computable nor uncomputable (in
a Church-Turing sense); these terms apply only to discrete representations
of these quantities (i.e., to numerals or other digital representations).

Therefore, in accord with ordinary mathematical descriptions of physical
processes, analog computations can can be treated as having arbitrary real
numbers (in some range) as inputs, outputs, or internal states; like other
continuous processes, continuous-time analog computations pass through all
the reals in some range, including non-Turing-computable reals. Paradox-
ically, however, these same physical processes can be simulated on digital
computers.

F.4 The issue of simulation by Turing machines and
digital computers

Theoretical results about the computational power, relative to Turing ma-
chines, of neural networks and other analog models of computation raise
di�cult issues, some of which are epistemological rather than strictly tech-
nical. On the one hand, we have a series of theoretical results proving the
super-Turing power of analog computation models of various kinds. On the

2See related arguments by Martin Davis (2004, 2006).



282 CHAPTER V. ANALOG COMPUTATION

other hand, we have the obvious fact that neural nets are routinely simulated
on ordinary digital computers, which have at most the power of Turing ma-
chines. Furthermore, it is reasonable to suppose that any physical process
that might be used to realize analog computation—and certainly the known
processes—could be simulated on a digital computer, as is done routinely in
computational science. This would seem to be incontrovertible proof that
analog computation is no more powerful than Turing machines. The crux
of the paradox lies, of course, in the non-Turing-computable reals. These
numbers are a familiar, accepted, and necessary part of standard mathe-
matics, in which physical theory is formulated, but from the standpoint of
Church-Turing (CT) computation they do not exist. This suggests that the
the paradox is not a contradiction, but reflects a divergence between the
goals and assumptions of the two models of computation.

F.5 The problem of models of computation

These issues may be put in context by recalling that the Church-Turing (CT)
model of computation is in fact a model, and therefore that it has the limita-
tions of all models. A model is a cognitive tool that improves our ability to
understand some class of phenomena by preserving relevant characteristics
of the phenomena while altering other, irrelevant (or less relevant) charac-
teristics. For example, a scale model alters the size (taken to be irrelevant)
while preserving shape and other characteristics. Often a model achieves
its purposes by making simplifying or idealizing assumptions, which facili-
tate analysis or simulation of the system. For example, we may use a linear
mathematical model of a physical process that is only approximately linear.
For a model to be e↵ective it must preserve characteristics and make sim-
plifying assumptions that are appropriate to the domain of questions it is
intended to answer, its frame of relevance (MacLennan, 2004). If a model
is applied to problems outside of its frame of relevance, then it may give
answers that are misleading or incorrect, because they depend more on the
simplifying assumptions than on the phenomena being modeled. Therefore
we must be especially cautious applying a model outside of its frame of rel-
evance, or even at the limits of its frame, where the simplifying assumptions
become progressively less appropriate. The problem is aggravated by the fact
that often the frame of relevance is not explicitly defined, but resides in a
tacit background of practices and skills within some discipline.

Therefore, to determine the applicability of the CT model of computa-



F. ANALOG COMPUTATION AND THE TURING LIMIT 283

tion to analog computing, we must consider the frame of relevance of the
CT model. This is easiest if we recall the domain of issues and questions
it was originally developed to address: issues of e↵ective calculability and
derivability in formalized mathematics. This frame of relevance determines
many of the assumptions of the CT model, for example, that information is
represented by finite discrete structures of symbols from a finite alphabet,
that information processing proceeds by the application of definite formal
rules at discrete instants of time, and that a computational or derivational
process must be completed in a finite number of these steps.3 Many of these
assumptions are incompatible with analog computing and with the frames of
relevance of many models of analog computation.

F.6 Relevant issues for analog computation

Analog computation is often used for control. Historically, analog computers
were used in control systems and to simulate control systems, but contempo-
rary analog VLSI is also frequently applied in control. Natural analog com-
putation also frequently serves a control function, for example, sensorimotor
control by the nervous system, genetic regulation in cells, and self-organized
cooperation in insect colonies. Therefore, control systems delimit one frame
of relevance for models of analog computation.

In this frame of relevance real-time response is a critical issue, which mod-
els of analog computation, therefore, ought to be able to address. Thus it
is necessary to be able to relate the speed and frequency response of analog
computation to the rates of the physical processes by which the computa-
tion is realized. Traditional methods of algorithm analysis, which are based
on sequential time and asymptotic behavior, are inadequate in this frame
of relevance. On the one hand, the constants (time scale factors), which
reflect the underlying rate of computation are absolutely critical (but ig-
nored in asymptotic analysis); on the other hand, in control applications the
asymptotic behavior of algorithm is generally irrelevant, since the inputs are
typically fixed in size or of a limited range of sizes.

The CT model of computation is oriented around the idea that the pur-
pose of a computation is to evaluate a mathematical function. Therefore
the basic criterion of adequacy for a computation is correctness, that is, that

3See MacLennan (2003, 2004) for a more detailed discussion of the frame of relevance
of the CT model.



284 CHAPTER V. ANALOG COMPUTATION

given a precise representation of an input to the function, it will produce (af-
ter finitely many steps) a precise representation of the corresponding output
of the function. In the context of natural computation and control, however,
other criteria may be equally or even more relevant. For example, robustness
is important: how well does the system respond in the presence of noise,
uncertainty, imprecision, and error, which are unavoidable in physical nat-
ural and artificial control systems, and how well does it respond to defects
and damage, which arise in many natural and artificial contexts. Since the
real world is unpredictable, flexibility is also important: how well does an
artificial system respond to inputs for which it was not designed, and how
well does a natural system behave in situations outside the range of those to
which it is evolutionarily adapted. Therefore, adaptability (through learning
and other means) is another important issue in this frame of relevance.4

F.7 Transcending Turing computability

Thus we see that many applications of analog computation raise di↵erent
questions from those addressed by the CT model of computation; the most
useful models of analog computing will have a di↵erent frame of relevance.
In order to address traditional questions such as whether analog computers
can compute “beyond the Turing limit,” or whether they can solve NP-hard
problems in polynomial time, it is necessary to construct models of analog
computation within the CT frame of relevance. Unfortunately, constructing
such models requires making commitments about many issues (such as the
representation of reals and the discretization of time), that may a↵ect the
answers to these questions, but are fundamentally unimportant in the frame
of relevance of the most useful applications of the concept of analog compu-
tation. Therefore, being overly focused on traditional problems in the theory
of computation (which was formulated for a di↵erent frame of relevance) may
distract us from formulating models of analog computation that can address
important issues in its own frame of relevance.

4See MacLennan (2003, 2004) for a more detailed discussion of the frames of relevance
of natural computation and control.



G. ANALOG THINKING 285

G Analog thinking

It will be worthwhile to say a few words about the cognitive implications of
analog computing, which are a largely forgotten aspect of analog vs. digital
debates of the late 20th century. For example, it was argued that analog
computing provides a deeper intuitive understanding of a system than the
alternatives do (Bissell 2004, Small 2001, ch. 8). On the one hand, analog
computers a↵orded a means of understanding analytically intractable sys-
tems by means of “dynamic models.” By setting up an analog simulation, it
was possible to vary the parameters and explore interactively the behavior
of a dynamical system that could not be analyzed mathematically. Digital
simulations, in contrast, were orders of magnitude slower and did not permit
this kind of interactive investigation. (Performance has improved su�ciently
in contemporary digital computers so that in many cases digital simulations
can be used as dynamic models, sometimes with an interface that mimics an
analog computer; see Bissell 2004.)

Analog computing is also relevant to the cognitive distinction between
knowing how (procedural knowledge) and knowing that (declarative knowl-
edge) (Small, 2001, ch. 8). The latter (“know-that”) is more characteristic of
scientific culture, which strives for generality and exactness, often by design-
ing experiments that allow phenomena to be studied in isolation, whereas the
former (“know-how”) is more characteristic of engineering culture; at least
it was so through the first half of the twentieth century, before the develop-
ment of “engineering science” and the widespread use of analytic techniques
in engineering education and practice. Engineers were faced with analyt-
ically intractable systems, with inexact measurements, and with empirical
relationships (characteristic curves, etc.), all of which made analog comput-
ers attractive for solving engineering problems. Furthermore, because ana-
log computing made use of physical phenomena that were mathematically
analogous to those in the primary system, the engineer’s intuition and un-
derstanding of one system could be transferred to the other. Some commen-
tators have mourned the loss of hands-on intuitive understanding resulting
from the increasingly scientific orientation of engineering education and the
disappearance of analog computers (Bissell, 2004; Lang, 2000; Owens, 1986;
Puchta, 1996).

I will mention one last cognitive issue relevant to the di↵erences between
analog and digital computing. As already discussed Sec. C.4, it is generally
agreed that it is less expensive to achieve high precision with digital tech-



286 CHAPTER V. ANALOG COMPUTATION

nology than with analog technology. Of course, high precision may not be
important, for example when the available data are inexact or in natural
computation. Further, some advocates of analog computing argue that high
precision digital results are often misleading (Small, 2001, p. 261). Precision
does not imply accuracy, and the fact that an answer is displayed with 10
digits does not guarantee that it is accurate to 10 digits; in particular, engi-
neering data may be known to only a few significant figures, and the accuracy
of digital calculation may be limited by numerical problems. Therefore, on
the one hand, users of digital computers might fall into the trap of trusting
their apparently exact results, but users of modest-precision analog comput-
ers were more inclined to healthy skepticism about their computations. Or
so it was claimed.

H Future directions

H.1 Post-Moore’s Law computing

Certainly there are many purposes that are best served by digital technology;
indeed there is a tendency nowadays to think that everything is done better
digitally. Therefore it will be worthwhile to consider whether analog com-
putation should have a role in future computing technologies. I will argue
that the approaching end of Moore’s Law (Moore, 1965), which has predicted
exponential growth in digital logic densities, will encourage the development
of new analog computing technologies.

Two avenues present themselves as ways toward greater computing power:
faster individual computing elements and greater densities of computing el-
ements. Greater density increases power by facilitating parallel computing,
and by enabling greater computing power to be put into smaller packages.
Other things being equal, the fewer the layers of implementation between the
computational operations and the physical processes that realize them, that
is to say, the more directly the physical processes implement the computa-
tions, the more quickly they will be able to proceed. Since most physical pro-
cesses are continuous (defined by di↵erential equations), analog computation
is generally faster than digital. For example, we may compare analog addi-
tion, implemented directly by the additive combination of physical quantities,
with the sequential process of digital addition. Similarly, other things being
equal, the fewer physical devices required to implement a computational ele-



H. FUTURE DIRECTIONS 287

ment, the greater will be the density of these elements. Therefore, in general,
the closer the computational process is to the physical processes that realize
it, the fewer devices will be required, and so the continuity of physical law
suggests that analog computation has the potential for greater density than
digital. For example, four transistors can realize analog addition, whereas
many more are required for digital addition. Both considerations argue for
an increasing role of analog computation in post-Moore’s Law computing.

From this broad perspective, there are many physical phenomena that are
potentially usable for future analog computing technologies. We seek phe-
nomena that can be described by well-known and useful mathematical func-
tions (e.g., addition, multiplication, exponential, logarithm, convolution).
These descriptions do not need to be exact for the phenomena to be useful
in many applications, for which limited range and precision are adequate.
Furthermore, in some applications speed is not an important criterion; for
example, in some control applications, small size, low power, robustness,
etc. may be more important than speed, so long as the computer responds
quickly enough to accomplish the control task. Of course there are many
other considerations in determining whether given physical phenomena can
be used for practical analog computation in a given application (MacLen-
nan, 2009b). These include stability, controllability, manufacturability, and
the ease of interfacing with input and output transducers and other devices.
Nevertheless, in the post-Moore’s Law world, we will have to be willing to
consider all physical phenomena as potential computing technologies, and in
many cases we will find that analog computing is the most e↵ective way to
utilize them.

Natural computation provides many examples of e↵ective analog com-
putation realized by relatively slow, low-precision operations, often through
massive parallelism. Therefore, post-Moore’s Law computing has much to
learn from the natural world.


