
Chapter 2

The Continuous and the
Discrete

2.1 Word Magic

All words are spiritual, nothing is more spiritual than words.

— Walt Whitman

He who shall duly consider these matters will find that there is a
certain bewitchery or fascination in words, which makes them operate
with a force beyond what we can naturally give account of.

— Robert South

We can never be wholly free of our background of assumptions, but we can
become more aware of it, and in this way expose it to change. Although
I claimed in the last chapter, and will show in detail in this chapter, that
the traditional theory of knowledge grows out of attitudes prevalent in early
Greek philosophy, in fact they are grounded in a reverence and awe of lan-
guage that is common to all cultures.

For if we look, especially in less scientific cultures, we find magic power
attributed to words.1 It’s well known that in many societies everyone has

1Sources for this section are Cornford (FRP), Englefield (Lang., Ch. 11), Frazer (GB,
pp. 244–262), Frazer (NGB, pp. 235–246), Ogden & Richards (MoM, Ch. 2).
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14 CHAPTER 2. THE CONTINUOUS AND THE DISCRETE

a secret name that’s known only to one’s closest family, because it’s be-
lieved that anyone who knows an individual’s true name (the secret name)
has power over that individual. Indeed, a person’s name and soul are effec-
tively identical. Likewise, many religions believe that knowing the name of
a god grants some control over that god, or that the name of a god should
not be spoken out loud (hence the “unspeakable name” represented by the
tetragrammaton ‘YHWH’ was pronounced Adonai, “Lord”).

This magical power is not limited to personal names, for, as Cornford
(FRP, p. 141) says,

To classify things is to name them, and the name of a thing, or
of a group of things, is its soul; to know their name is to have
power over their soul.

You may wonder how words came to be invested with such power. One theory
is that the earliest forms of communication were imperative, and that many
magical procedures had their origin in verbal and nonverbal commands: spo-
ken orders (spells), gestures, facial expressions (the “evil eye”), pantomime
(ritual dances), etc. (Englefield, Lang., pp. 124–127). However, in the case
of word magic a more direct source is apparent, for in many cases words do
in fact operate directly to produce an effect. Verbal formulas of this kind are
called performatives (Austin, PP, Ch. 10) because they perform some action.
A familiar example of a performative is the formula “I now pronounce you
husband and wife.” The mere uttering of this phrase by an authorized person
(legally or religiously ordained) in an appropriate ceremony is sufficient to
make the marriage a fact. This is true in general: performatives do not ask
or even command that something be done; they do it.

Performatives often begin with formulas such as “I hereby . . . ” or “By
the power vested in me . . . ” that signal the special nature of the utterance.
They have causal efficacy only if uttered in the appropriate circumstances
(e.g., a marriage, graduation or other ceremony) by someone duly authorized.
Some performatives require no special authority, such as “I apologize” or “I
promise,” but even in these cases they may not be efficacious if uttered by a
young child, by a mentally incompetent adult, or under duress, etc.

The connection with word magic should be clear. In all societies, but
especially in authoritarian ones, many states of affairs can be created by
an authorized individual uttering the appropriate verbal formula. Marriage,
banishment, official office, death, kinship, identity, possession, access to food
or shelter — all may be granted or refused by speaking the right words in
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the right way. Is it any wonder that the power came to be attributed to the
words themselves rather than to the social context of their use?

Language, that stupendous product of the collective mind, is a
duplicate, a shadow-soul, of the whole structure of reality; it
is the most effective and comprehensive tool of human power,
for nothing, whether human or superhuman, is beyond its reach.
(Cornford, FRP, p. 141)

Thus it is hardly surprising that we should find in the earliest philosophy an
attempt to capture the world by verbal formulas.

2.2 Pythagoras: Rationality & the Limited

What is the wisest thing? Number; but second, the man who assigned
names to things.

— Pythagoras (attributed in Iamblichus, Vita Pythagorae 82;
DK 58C4)

[The Pythagoreans] took numbers to be the whole of reality, the el-
ements of numbers to be the elements of all existing things, and the
whole heaven to be a musical scale and a number.

— Aristotle, Metaphysics 1.5.985b23 (DK 58B4)

And indeed all the things that are known have number; for it is not
possible for anything to be thought of or known without this.

— Philolaus (DK 44B4)

There is divinity in odd numbers, either in nativity, chance or death.

— Shakespeare, The Merry Wives of Windsor, 5.1.2
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Figure 2.1: Intervals and ratios of lengths. If the string is divided in half
(and all other factors are kept constant), then the string sounds an octave
higher. If the string is divided in thirds, then it sounds an octave and a fifth
higher.

2.2.1 Discovery of the Musical Scale

The early Pythagoreans — perhaps Pythagoras himself (572–497 BCE) —
discovered the relationship between musical intervals and ratios.2 They dis-
covered that strings divided in the ratio 1:2 sounded consonant, producing
the interval that we call an octave. Similarly, a ratio of 2:3 produces the
interval of a perfect fifth, and 3:4 produces a perfect fourth (Figs. 2.1 and
2.2). It might seem that this discovery’s main significance is in music, but
in fact it became a paradigm for most later science, logic, mathematics and
philosophy. This claim will take some justification, and that is the aim of
this section. To understand the significance of this discovery, it’s impor-
tant to observe that tuning a musical instrument is a skill that requires some
training and expertise. It is not easy to describe how the instrument sounds
when it’s in tune. Rather, the teacher must show the students, who must
learn to recognize the difference with their own ears. In this sense, tuning is

2Much of this discussion of the Pythagoreans is drawn from Burnet (GPI, §§ 28–38
and §§ 69–75). Another good source is Kirk, Raven & Schofield (Presoc.), although the
first edition (Kirk & Raven, 1957) is more outspoken in its opinions. Greek philosophical
terms are discussed in Peters (GPT). I have also used Liddell, Scott & Jones (LSJ), and
occasionally Donnegan (Lex.). Other sources for the Pythagoreans are Burkert (LSAP),
Sinnige (M&I) and Maziarz & Greenwood (GMP).
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Figure 2.2: Musical intervals based on ratios. If the string is divided in the
ration 1:1, then its halves sound the same pitch, called perfect unison. The
“oblong numbers” (ratios of the form n + 1 : n) determine progessively more
dissonant intervals. If the string is divided in the ratio 2:1, then its parts
sound in the interval of an octave, which is the most consonant interval after
unison. The ratio 3:2 produces a perfect fifth; 4:3 a perfect fourth; 5:4 a
major third, 6:5 a minor third; and so on.
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apparently inexplicable; that is, we cannot explain it in words.
The accomplishment of Pythagoras was to show that tuning is explicable.

Specifically, he showed that being in tune is equivalent to satisfying certain
ratios. The measurement of these ratios, in turn, is a simple procedure that
does not require a “well-trained ear.” As Maziarz & Greenwood (GMP, p. 43)
say,

Intervals between sounds perceptible only to the fine ears of ex-
pert musicians, which could be neither explained to others nor
referred to definite causes, were now reduced to clear and fixed
numerical relations.

The impact of this discovery on Greek thought was profound. Burnet (GPI,
p. 56) claims that the concordant intervals

yield the conception of ‘form’ as correlative to ‘matter’, and the
form is always in some sense a Mean. This is the central doctrine
of all Greek philosophy to the end, and it is not too much to say
that it is henceforth dominated by the idea of [harmonia] or the
tuning of a string.

(Note that Greek harmonia ( ‘αρµoνία) doesn’t mean harmony in the modern
sense: “the word ‘harmony’ . . .means in the Greek language, first, ‘tuning,’
and then ‘scale’ ” (Burnet, GPI, p. 45).)

In modern terms, what the Pythagoreans accomplished was to reduce
a kind of expertise (tuning) to a simple rule (a ratio). Thus it is both an
example of the reduction of an expert judgement to computation, and an
example of embodying a phenomenon of nature in a mathematical law. Next
we’ll discover why it was of crucial importance to the Greeks that the rules
was expressed as a ratio.

2.2.2 The Rational

Occasionally, but especially in this chapter, we will consider the origin of
some word or group of words. We make these etymological forays for several
reasons. First, the histories of these words are part of the archaeology of the
theory of knowledge; they exhibit ancient habits of thought from which we
derive our own habits. Second, since this book is concerned with knowledge
representation, and especially with the role in it of concepts and language
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(recall its title, Word and Flux), therefore these historical data become ex-
amples of the very phenomena of interest. They show us the complexity, in
actual use, of the meaning of certain key words, and how the constellation of
meanings of such a word may influence the ways we think about the world.
Thus these etymological discussions should be read both as pertaining to
the history of the theory of knowledge and as illustrating the interplay of
language and cognition.

We begin by considering the way the Greek word logos (λóγoς) was used
in Pythagoras’ time, which will help us appreciate the significance to the
ancient Greeks of the reduction of a natural phenomenon to ratios. This
word ultimately derives from the verb to say (legō), and so the most basic
meanings of logos relate to saying. By the time of Pythagoras, logos could
mean word, language, talk and thought. In a more extended sense it could
refer to verbal accounts of things, such as reasons, explanations, principles,
meanings and causes. Finally, logos could mean a ratio or calculation, which
is an explanation or reason in the mathematical domain. From logos we of
course get such terms as logic and logical as well as the -ology that ends the
names of many sciences.

It is important to realize that for the ancient Greeks these meanings
formed a whole. Thus, that which had a logos was simultaneously that which
was reasonable, explainable, principled, meaningful, reducible to causes, think-
able and sayable. Conversely, alogos came to mean irrational, inexplica-
ble, unprincipled, meaningless, causeless, incomprehensible and unspeakable.
(See also p. 29.)

It’s easy to see how the Greeks would view the discovery of the musical
scale as a triumph of reason over unintelligibility, as indeed it was. The
Pythagoreans believed that just as tuning had been reduced to ratios, so
eventually all phenomena would be reduced. Hence their claim: “Everything
is number.”3

We need to make one more linguistic observation. The Latin word ratio
was used with a similar constellation of meanings to the Greek logos (in part

3There is disagreement about whether the Pythagoreans said everything is number or
everything is like number; indeed their position may have changed over time. Aristo-
tle states quite clearly however that the Pythagoreans thought numbers were the actual
material constituents of things, and that in this they differed from the Platonists (Aris.,
Met. 1.6.6.987b28–29; see also quotation on p. 15). It is noteworthy that harmony and
arithmetic both derive from the same Indo-European root ar-, meaning ‘to join together’
(AHD).
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because it was used to translate logos). In extended senses ratio meant a
reckoning, account, computation, calculation, list, catalog, relation with or
reference to, plan or procedure, principle, reason, ground, method, order,
rule, theory, system, knowledge, opinion, or ratio. Ratio is of course the
source of our word rational and its derivatives. It is thus no coincidence
that in English rational can mean both expressible as a ratio and intelligible.
To the ancients, what was intelligible was what was expressible in words,
and a numerical ratio was the paragon of such expressions. Thus, to the
Pythagoreans, the rational — in the sense of intelligible — was identical
with the rational — in the sense of reducible to ratios.

The connection between what we may call mathematical rationality and
epistemological rationality may seem no more than a historical curiosity, but
we will see that over the centuries the two notions have influenced each other
in mathematics, logic, philosophy and computer science.

We turn next to the Pythagorean theory of numbers. This will help
us understand their idea of ratio (logos). More importantly, however, we
will see that it is the ultimate root of formal logic, some critical issues in
the foundations of mathematics, the theory of computability, and knowledge
representation languages.

The Pythagoreans represented numbers by pebbles, for example, •, ••, ••
•. By placing these pebbles in various arrangements they were able to demon-
strate (but not prove in the modern sense) a number of elementary properties
of numbers. For example, the triangular numbers can be arranged into an
equilateral triangle, which shows that each triangular number is the sum of
consecutive integers (Fig. 2.3):

1 = 1,

3 = 1 + 2,

6 = 1 + 2 + 3,

10 = 1 + 2 + 3 + 4,

etc.

(The Pythagoreans also recognized square, pentagonal, hexagonal numbers,
etc.4) Similarly, the Pythagoreans were able to prove that the square numbers
are the sums of consecutive odd numbers (Fig. 2.4). Notice that if the shape
of a gnomon (carpenter’s square, or rule) is drawn in the figures, then the

4See Nicomachus, Intro. to Arith. 2.8–12 (Cohen & Drabkin, SBGS, pp. 7–9).
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1 151063

Figure 2.3: Triangular numbers. Applying the “rule” shows that consecutive
triangular numbers are the partial sums of the natural numbers, 1, 1 + 2,
1 + 2 + 3, 1 + 2 + 3 + 4, . . .

1 251694

Figure 2.4: Square numbers. Applying the “rule” shows that consecutive
square numbers are the partial sums of the odd numbers, 1, 1 + 3, 1 + 3 + 5,
. . .

squares can be seen to be the sums of the odds: 1 = 1, 4 = 1+3, 9 = 1+3+5,
and so forth. The oblong numbers can be arranged in figures in which one
side exceeds the other by one unit. The oblong numbers are the sums of
consecutive even numbers, as can be seen by applying the gnomon (Fig. 2.5).

Like the English word ‘rule’, the ancient Greek gnōmōn (γνώµων) could
refer either to an instrument that makes something known (such as a carpen-
ter’s square, a ruler, a quadrant, or the needle of a sundial), or more generally

2 3020126

Figure 2.5: Oblong numbers. Application of the “rule” shows that consec-
utive oblong numbers are the partial sums of the even numbers, 2, 2 + 4,
2 + 4 + 6, . . .
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to a rule to be followed or to one who knows, judges or interprets. It is related
to some of the words meaning to know (gignōskō), knowledge (gnōsis) and a
rule or principle (gnōmē). Thus, concretely, the series of square and oblong
numbers are generated by applying the shape of the carpenter’s square, but
more abstractly by applying an intelligible (gnōrimon) rule.5

The Pythagoreans were very impressed by the fact that these families
of structures were generated by the recursive application of a single rule
(Sinnige, M&I, p. 70). Recursive generation is still valued in science: sen-
tences in the formal grammars used by linguists, logicians and computer sci-
entists, definitions in mathematics, knowledge representation structures in
AI and cognitive science — all of these make use of the recursive application
of a finite number of rules to a finite number of terms.

In logic, AI and cognitive science, we often refer to a formal pattern
as a schema, and it is no coincidence that this is the word (σχ�ηµα) the
Pythagoreans used for the shape in which the pebbles were arranged. The
corresponding Latin word, figura, is the origin of our word figure, and it is
due to Pythagorean figured numbers that we still call numbers figures and
refer to calculation as figuring. Both the Greek and Latin terms refer to
the patterns or arrangements of things. Another term used to refer to the
arrangement was Greek eidos (ε�’ιδoς), which comes from to see, and means
appearance, aspect, form, figure, kind and so forth. Significantly, it was also
used to refer to musical scales. A related word, idea ( ’ιδέα), is the origin of
our word idea and is one of the terms Plato used to refer to his forms (Section
2.4). The latter is just the English derivative of the Latin forma, which has
a similar meaning to the Greek schema. It is the basis of our notion of a
formal system.6 But also we see the roots of an assumption that ideas are
formal structures, and hence that intelligence may be reduced to a formal
system.7

5See Donnegan (Lex.), LSJ, Sinnige (M&I, pp. 70–75) and Peters (GPT). The Greeks
got the gnomon — the needle of the sundial — from the Babylonians, who also arranged
pebbles in right triangles for calculating their sides (Kirk, Raven & Schofield, Presoc.,
pp. 83, 103, 335; see Neugebauer, ESA, Ch. II).

6See Burnet (GPI, pp. 49–53) and Taylor (VS, Ch. 5), as well as pp. 16 and 44.
7Pythagorean representation of numbers in figures may have been suggested to them

by the constellations, and they probably knew that the Babylonians distinguished two
aspects of a constellation: the number of stars in it and their arrangement (Maziarz &
Greenwood, GMP, p. 13). The Babylonian view may have suggested to the Pythagoreans
a distinction between the substance and the form of a thing, a characteristic feature of
later Greek philosophy.
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Figure 2.6: Termini or Boundary Markers.

The Pythagoreans called the pebbles in their figured numbers boundary
stones, and called the spaces that they defined fields. However, the Greek
word for these stones ( ‘́oρoς, horos) and its Latin equivalent, terminus, have
a spread of meanings, including landmark, stone tablet, boundary, and, more
abstractly, limit, standard, measure, aim, goal, rule and definition. These all
connote definition or delimitation. This constellation of meanings is still with
us in our term. We refer to a term in logic and mathematics, a technical term,
to run to term, a school term, a prison term, terms of surrender or agreement,
and speak of coming to terms with, and being on equal or good terms with.
These all have connotations of mark, limit, measure or goal.

It is of course reasonable that in early agricultural societies the marking
out of fields by boundary stones is fundamental to the structure of the society.
They provided a definitive basis for resolving land disputes, and it is easy to
imagine their becoming the principal metaphor for anything that is defining,
delimiting, or conducive of order. As evidence of the importance of boundary
markers, we find that in ancient Rome: “Offenses against the gods included
murder, the slaying of a parent, incest, the selling of one’s wife, the swearing
of false oaths, and the moving of boundary stones, this last being a particular
affront to the god Terminus” (Humez & Humez, ABC, p. 123). (See Fig. 2.6.)
At one time, anyone pulling up such a stone could be killed with impunity
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and without the killer becoming defiled. The importance of Terminus is
illustrated by the story that he was the only god that refused to give way to
Jupiter when the latter came to reside on the Capitol. Termini (boundary
stones, terms) were considered statues of the god and so were crowned with
garlands and honored with sacrifices. Terminus was also celebrated in year-
end festivals:8

The simple neighbors meet and hold a feast, and sing thy praises,
holy Terminus; thou dost set bounds to peoples and cities and vast
kingdoms; without thee every field would be a root of wrangling.
(Ovid, Fasti 2.657–660)

Finally, recall also that geometry means the measurement of land and that
we are told by Herodotus (History 2.109) that it had its origins in Egyptian
surveying.9 Thus both number theory and geometry have their origins in the
dividing of continuous land. (See also Section 2.2.3 and Cohen & Drabkin,
SBGS, p. 34.)

Significantly, the words horos and terminus were used to refer to the terms
of a proposition or of a ratio. And there you have it. For the ancients terms
were tokens that, by a recursive rule, could be arranged into forms, figures
and schemas, and which thereby put knowledge in rational (or logical) form.
This became the dominant root metaphor for knowledge for the next 2500
years.

It is well known that in ancient times small pebbles were used for cal-
culation, for voting, and in various games. Indeed, it now seems that writ-
ing itself may have had its origin in the use of clay tokens for accounting
(Schmandt-Besserat, ARS, EPW). In early Neolithic times, eleven thousand
years ago, Mesopotamian merchants began to enclose tokens of various stan-
dard shapes in a clay envelope to indicate the contents of a shipment (i.e.,
a bill of lading). However, since the contents of the envelopes could not be

8See Guirand (NLEM, p. 214); Lemprière (Cl. Dict., p. 615); Mollett (Dict., pp. 315–
316); Nettleship & Sandys (Dict., pp. 620–621); OCD, p. 1045; Yonah & Shatzma (Enc.,
p. 450).

9The impetus for the development of practical geometry may been the high popula-
tion density in the Mediterranean region (Cornford, FRP, p. 142). Ancient tradition
(Herodotus, Aristotle, Eudemos) held that geometry was brought to Greece by Thales
(624–550 BCE). Although both the Egyptians and the Babylonians knew some practical
geometry, its development as a logically structured science seems to have been initiated
by Greeks, perhaps Thales himself (Ronan, Science, p. 68).
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checked without breaking them open (which would be done only by the final
recipient of the shipment), it was convenient to impress the shapes of the
tokens on the outside of the envelope. Eventually, towards the end of the
fourth millennium BCE, the enclosed tokens were omitted and their shapes
were simply impressed on tablets, the predecessor of an ideographic writing
system.

The terms of the Pythagoreans are of course another such use. The
Latin word for such a token is calculus, and it is from the manipulation of
calculi that we get our word calculate. We still use the word calculus for any
game-like system in which terms are arranged in schemas and manipulated
according to formal rules. The coincidence in terminology is not accidental,
as we will see.

2.2.3 The Definite and the Indefinite

There is another issue in Pythagoreanism that we must discuss, for it sets
the tone for much of Greek philosophy, and becomes a central issue in the
foundations of mathematics and a motivation for symbolic knowledge repre-
sentation in AI and cognitive science. It is related to the issue of boundary
marking that we have already seen. The Greeks were uncomfortable when a
continuum was not divided into discrete parcels by delimiting terms.

The root, again, is the notion of a boundary, limit or end (πέρας, peras),
but the more important term is apeiros ( ’́απειρoς), which is usually translated
infinite.10 More precisely it means without internal or external limit:

Thus, in the context of a pre-Socratic philosopheme, and even still
in Plato, apeiron, when translated into modern idiom, may have
to be rendered by: infinite, illimited, unbounded, immense, vast,
indefinite, undetermined; even by: undefinable, undifferentiated.
(Bochner, Inf., p. 607)

It will be easier for us to understand the issue through Latin terms, since
they are cognate to the relevant English words. The verb finire means to
bound, limit, enclose within limits, restrain, determine, put an end to or
conclude. The related noun finis means boundary, limit, border, term or
territory. Finally, the perfect passive participle of finire, which is finitus,

10A compact discussion can be found in the entries in (Peters, GPT) for apeiron and
peras.
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Table 2.1: Pythagorean Table of the Ten Opposites

Limited Unlimited
Odd Even
One Plurality
Right Left
Male Female

Resting Moving
Straight Curved
Light Darkness
Good Bad
Square Oblong

means that which has been bounded, limited, restrained, ended, etc. This
is of course cognate to our word finite, but is in fact broader in meaning.
It means not just finite as opposed to infinite (endless), but also definite,
determinate and limited. It includes the notion not only of a definite end,
but also of clear and distinct boundaries and internal divisions. (Recall the
importance of boundary markers, p. 23.)

It is hardly surprising that the Greeks considered the finite (in this broad
sense) to be intelligible and good, whereas the infinite was chaotic and bad.
“For evil belongs to the unlimited, as the Pythagoreans conjectured, and
good to the limited” (Aristotle, Nic. Ethics 1106b29).

The Pythagorean preference for the definite is also expressed in their Table
of the Ten Opposites (Table 2.1). These oppositions may be understood as
follows.11

Limited vs. Unlimited This is of course the fundamental opposition
upon which all the others are based. Indeed, all the others are mixtures,
with some of the unlimited entering into the limited.

Odd vs. Even The opposition is a bit obscure, but perhaps can be under-
stood as follows (Aristotle, Physica 203a2). An even number can be divided
or analyzed, but an odd number cannot. Therefore, so long as division yields

11Some of these explanations are ancient, but others are modern conjectures.
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even numbers, analysis can continue; it is limited or ended by the reaching
of an odd number. Therefore the odd numbers are the ultimate limits (or
“atoms”) of analysis. (We will see later that the notion of analysis stopping
at “atoms” is fundamental to traditional epistemology.)

One vs. Plurality Plurality contains an admixture of the void. For there
to be discrete things there must be a principle of separation (void, gap =
chaos in Greek).12 In this sense the One is pure, unadulterated by chaos.
The opposition of the One and the Many is a recurring theme in Western
philosophy. The Pythagoreans held that

the void distinguishes the natures of things, since it is the thing
that separates and distinguishes the separate terms in a series.
This happens in the first instance in the case of numbers; for the
void distinguishes their nature.
(Aristotle, Phys. 4.6.213b24–28)

(This observation is a deep insight into the topological distinction between
the continuous and the discrete, as will be explained in volume 2.)

Resting vs. Moving The resting is stable, the moving unstable. The
Greeks did not know how to make motion rational; the reduction of motion
to ratios was not achieved until Galileo’s time. The problem of change was
central to all Greek philosophy, and much of it can be seen to be based on
the assumption that change is inherently irrational (unintelligible). This is
clearest in Plato (p. 43). Aristotle made the understanding of change central
to his philosophy, but his theory was qualitative, i.e., he did not succeed in
reducing change to ratios. We will see that the mathematical description
of change, especially by the calculus, depended on a reconciliation of the
rational and the irrational, the discrete and the continuous, the resting and
the moving, the straight and the curved — all issues the Pythagoreans had
identified.

Straight vs. Curved Straight lines have a constant (stable, dependable,
determinate) direction; curved lines do not; since their direction is always
changing, it is indeterminate. Also the length of a curved line is problematic,

12In Greek mythology, as in many others, the origin of the universe of discrete things
comes with a separation of the undifferentiated continuum (Robinson, IEGP, Ch. 1).
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as is the area under a curve. These notions were not clarified until the calculus
was developed.

Light vs. Darkness The simplest explanation here is that in the light we
see things clearly and distinctly, whereas in the dark everything is obscure
and indeterminate.

Good vs. Bad The only comment we make here is that it was a persistent
theme of ancient Greek culture that the limited was good (cf. “Nothing in
excess” on Apollo’s temple at Delphi), and the absence of limits was bad (cf.,
the concept of hubris, or “overweaning pride”).

Square vs. Oblong This is an unusual opposition, but it is important
for the history of mathematics. The idea seems to be this (Aristotle, Phys.
3.4.203a10–15). The series of square numbers maintains a constant ratio of
their sides, namely 1/1. On the other hand, for the oblong numbers this
ratio is constantly changing: 1/2, 2/3, 3/4, 4/5, . . . Of course we would say
that this series approaches a limit, 1, but the concept of a limit was yet
to be invented, and the Greeks had a hard time conceiving of the limit of
an unlimited process. It was two thousand years before this problem was
adequately resolved (if in fact it is yet). (See pp. 20 and 30.)

Other Oppositions The remaining oppositions (male vs. female and right
vs. left) are difficult to understand in purely philosophical terms; they proba-
bly represent cultural biases of the Pythagoreans. For example, Wheelwright
(Pres., pp. 203–204) points out that constancy of direction was considered a
masculine characteristic, and changeableness feminine. It must also be men-
tioned that in addition to their scientific endeavors, Pythagoreanism had a
strong mystical component, and that they had many — to our mind — odd
doctrines.13 On the other hand, the association of the right side with the
“propitious, healthy, strong, dexterous,” and male, and conversely the left

13Dodds (GI, pp. 140–146) has argued persuasively that Pythagoras was a shaman, as
were at least two more of the earliest Greek philosophers, Empedocles and Epimenides.
It is perhaps no coincidence that we find these shaman-philosophers in late fifth-century
and early sixth-century Greece, and that the Greeks’ first contact with a culture based on
shamanism came in the seventh century, when the Black Sea was opened to Greek trade
and colonization. Against this, see Kirk, Raven & Schofield (Presoc., p. 229).
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with the “unfavorable, unsound, weak, . . . sinister ” and female, has been a
pervasive pattern in the Indo-European cultures (Mallory, SIE, p. 140).14

2.2.4 The Discovery of the Irrational

The foregoing discussion will perhaps make clear the devastating effect that
the discovery of irrational numbers had on the Pythagorean brotherhood. It
is possible that Pythagoras himself discovered the property that bears his
name, and this led directly to the observation that the sides and hypotenuse
of an isosceles right triangle are incommensurable. Let’s try to understand
this in terms of Pythagorean “figures.” A ratio m : n can be represented in
a figure as a rectangle with sides m and n. What Pythagoras discovered is
that there is no formula (arrangement of terms), no matter how big, that can
represent this ratio exactly (Fig. 2.7). We can of course approximate it, but
the exact ratio is forever beyond our grasp. Thus, although the hypotenuse
surely has a length, it cannot be expressed by any (de)finite figure.

The implications of this discovery for the Pythagoreans was that their
goal, which was to reduce all of nature to ratios, that is, to produce a rational
account of nature, was doomed to failure. They had discovered a phenomenon
of nature — in mathematics no less — which was, in their terms, by its
nature irrational, and thus forever beyond the grasp of reason. This discovery
destroyed the confidence expressed in “Everything is number.”

Additional insight into the significance of this discovery on the Pythagorean
outlook is provided by the etymology of the words surd and absurd. The word
surd, in its mathematical sense of an irrational number, derives from the Latin
surdus (deaf, inaudible, or insufferable to the ear), which is a translation of
the Greek alogos (speechless, irrational). On the other hand, absurd origi-

14 The Pythagorean Table of Opposites may be compared with the ancient (before 400
BCE) Chinese opposition of yin and yang: “Passive and active principles, respectively, of
the universe, or the female, negative force and the male, positive force, always contrasting
but complimentary. Yang and yin are expressed in heaven and earth, man and woman,
father and son, shine and rain, hardness and softness, good and evil, white and black,
upper and lower, great and small, odd number and even number, joy and sorrow, reward
and punishment, agreement and opposition, life and death, advance and retreat, love and
hate. . . ” (Runes, Dict., s.v. Yin and Yang). Other oppositions associated with yang and
yin include light and dark, warm and cold, strong and weak, dynamic and passive, creative
and receptive. For the most part the Chinese oppositions agree with the Pythagorean,
although it is worth noting that in Taoist thought the yin (feminine) was considered
preferable to the yang (masculine) (Schwartz, WTAC, p. 203; Laotse, WoL, Ch. 28).
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1/1 = 1

17/12 = 1.4166. . .,      41/29 = 1.41379. . .,      99/70 = 1.4142857. . .

7/5 = 1.43/2 = 1.5

Figure 2.7: Figures Approximating Square Root of 2. The figures come closer
and closer to expressing the ratio of the side to the hypotenuse (

√
2), but

they never reach it. Hence, the relationship was considered irrational and
the process infinite. See also the opposition of square and oblong numbers
(p. 28). In this case the “rule” that generates the elements of the series is as
follows: the height of the next figure is the sum of the width and height of
the previous figure; the width of the next figure is the width plus twice the
height of the previous. We have this procedure from Theon of Smyrna (fl. c.
115–140 CE), but it probably goes back to the early Pythagoreans (Heath,
Euclid, Vol. 2, p. 119; Maziarz & Greenwood, GMP, pp. 121–122).
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Mathematics

The continuousThe discrete

AstronomyGeometryMusicArithmetic

The movingThe stableThe relativeThe absolute

Figure 2.8: Pythagorean Divisions of Mathematics. From late antiquity
through the middle ages, the four mathematical sciences were called the
Quadrivium. Together with the Trivium — grammar, logic and rhetoric
(which we might call syntax, semantics and pragmatics) — they made up
the Seven Liberal Arts of the medieval schools.

nally meant inharmonious, jarring and out of tune (cf. Pythagorean musical
theory, p. 20). It comes from ab (an intensive), and surdus. Thus, to the
ancients it was nearly tautological that surds were absurd.15

2.2.5 Arithmetic vs. Geometry

The discovery of the irrational caused a major setback in mathematics at
the end of the fifth century BCE (Maziarz & Greenwood, GMP, p. 5), and
resulted in a split between arithmetic and geometry that was to last for two
thousand years. On the one hand was the Pythagorean arithmetic calcu-
lus: the theory of natural numbers seemed like rationality in its truest sense.
On the other hand, the demonstrations of the earlier geometers (perhaps
Pythagoras himself) seemed convincing. Each of the two sciences, arithmetic
and geometry, seemed to yield irrefutable laws, yet they remained unrecon-
ciled. As a result, mathematics split into two subdisciplines (Fig. 2.8),16 and
a major research problem in the philosophy of mathematics was born:

Future discussions will center around the 2 Pythagorean oppo-

15American Heritage Dictionary and Oxford English Dictionary: ‘absurd’ and ‘surd’.
16H. W. Turnbull (“The Great Mathematicians,” in: Newman, WM, p. 85) says we owe

to the Pythagoreans this division of mathematics, as well as the word mathematics itself.
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sites of the indefinite (continuous) and the finite (discrete). But
no synthesis of these two principles has yet been found to satisfy
equally mathematicians and philosophers. (Maziarz & Greenwood,
GMP, p. 65)

Most attempts at a unification of mathematics have tried to reduce geom-
etry to arithmetic, since the calculus-like manipulation of terms in schemas
according to formal rules has always seemed more rational. This arithme-
tization of geometry — the attempt to ground geometry in something like
Pythagorean number theory — will be discussed in detail below (Chapter
4). Suffice it here to say that the arithmetization of geometry was not ac-
complished until the nineteenth century (by Dedekind and Weierstrass); the
methods lead directly to the theory of computation.

2.3 Zeno: Paradoxes of the Continuous &

Discrete

Zeno’s argument, in some form, have afforded grounds for almost all
the theories of space and time and infinity which have been constructed
from his day to our own.

— Bertrand Russell

2.3.1 Importance of the Paradoxes

After the discovery of the irrational in geometry, the Pythagoreans broke
into two groups; one concentrated on mathematics, the other had more mys-
tical interests.17 Likewise, we shall, for a time, have to follow two parallel
paths (they don’t rejoin until the nineteenth century). On the one hand
we have the history of mathematics trying to reconcile the discrete and the
continuous; the only alternative would seem to be to abandon arithmetic or
geometry. On the other hand, the second group of Pythagoreans clung to

17Dodds (GI, p. 67, n. 68) thinks this “split” is a modern fiction, imposing on the ancient
Pythagoreans a modern dichotomy between science and mysticism. For the recency of this
dichotomy, see Section 4.2.
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the idea that true knowledge is rational, but concluded that the forms are
not mathematical (where irrationality is inevitable), but more abstract. This
is the path pursued by Socrates and Plato, which we will consider shortly.
For now, however, we will follow the mathematical path a little further, and
consider Zeno’s paradoxes.

Zeno’s (c.490 – 430 BCE) aim seems to have been to show that the con-
tinuous and the discrete are fundamentally irreconcilable, and in this he was
quite successful. “The fact that it took 24 centuries to answer satisfacto-
rily Zeno’s arguments proves their fundamental importance in the history of
mathematical philosophy” (Maziarz & Greenwood, GMP, p. 60). The formal
apparatus of limits in modern mathematics makes it is easy to be glib about
them, but, considered seriously, they still remain paradoxes. As Hamming
(UEM) has said,

Zeno’s paradoxes are still, even after 2,000 years, too fresh in our
minds to delude ourselves that we understand all that we wish we
did about the relationship between the discrete number system
and the continuous real line we want to model.

We’ll see that the modern mathematical approach not without its own prob-
lems. The fundamental question of the continuous and discrete is: In what
sense in a continuum composed of discrete points?18

2.3.2 Paradoxes of Plurality

As a defense of the thesis of his master, Parmenides, that “everything is one,
altogether, changeless” (DK 28B8). Zeno proposed the following paradoxes
to show the inconsistency of the idea that things are composed of units, as
the Pythagoreans believed:

• The many have no size

• The many have infinite size

• The number of the many is finite and infinite

18An excellent discussion of Zeno’s paradoxes can be found in Maziarz & Greenwood
(GMP, Ch. 6). It is the basis for much of the presentation here. Additional information
can be found in Kirk, Raven & Schofield (Presoc., Ch. IX), Robinson (IEGP, Ch. 7),
Burnet (GPI, §§ 63–66) and Sinnige (M&I, Ch. IV).
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Figure 2.9: The Many Have No Size

We’ll consider each in turn.

The Many Have No Size: “If it [the unit] existed, it would have to
be one. But if it were one, it could have no body. If it had thick-
ness, it would have parts, and then it would no longer be one.”
(Melissus of Samos, in Simplicius, Phys. 109.34; DK 30B9)19

The idea seems to be as follows (Fig. 2.9). Suppose that a thing is composed
of units. Then these units must have no size. That is, they must be infinitely
small (infinitesmal), since if they had any size, they would have parts (e.g.
left and right sides). But such a unit doesn’t exist at all, “for, having no size,
it could not contribute anything to the size of that to which it was added.
And thus the thing added would be nothing” (Simplicius, Phys. 139.5; DK
29B2). See also Robinson (IEGP, p. 129).

The Many Have Infinite Size: “If they exist, each must have
some size and thickness, and one part of it must project beyond
the other. And the same argument applies to the projecting part;
for this too will have size, and some part of it will project. Now
to say this once is the same as saying it forever.” (Simplicius,
Phys. 140.34; DK 29B1)

19 The abbreviation ‘DK’ refers to the fragment’s “Diels-Kranz number,” its position in
Diels & Kranz (Frag.). Freeman (APSP) provides a translation indexed by DK number,
but Hussey (Presoc., p. 156) claims it is unreliable and recommends instead Kirk, Raven
& Schofield (Presoc.), Guthrie (HGP), Burnet (GPI) or Burnet (EGP).
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Figure 2.10: The Many Have Infinite Size

The picture may be something like this (Fig. 2.10). If it has size, then it has
parts, but these parts also have size. And so we have an infinite number of
parts, all with finite size.

The Number of the Many is Finite & Infinite: “If there is a many,
there must be just so many — neither more nor less. But if there
are just so many, they must be limited in number.” That is, a
(de)finite number. But, “If there is a many, there must be an
infinite number of them. For between existing things there are
always others, and between these others still.” (Simplicius, Phys.
140.27; DK 29B3)

That is, an in(de)finite number. So again we reach a contradiction by as-
suming that there is a many, that is, that things are composed of discrete
units.

2.3.3 Paradoxes of Motion

Zeno’s paradoxes of motion can be organized as shown here:

continuous discrete

absolute motion Dichotomy Arrow
relative motion Achilles Stadium

They can be classified in terms of whether they’re problems of the con-
tinuous or problems of the discrete. The Dichotomy and the Achilles are
both problems of the continuous; they show the difficulties that arise when
we assume space is infinitely divisible. We are left with an infinite number
of pieces, all of finite size. If we think of them as discrete units then they
seem to combine to an infinity (Fig. 2.11). The Arrow and the Stadium are
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. . .

Figure 2.11: Problems of the Continuous. The Dichotomy and the Achilles
assume that space and time are infinitely divisible.

Figure 2.12: Problems of the Discrete. The Arrow and the Stadium assume
that space and time are composed of indivisible units.

both problems of the discrete; they show the difficulties that arise when we
assume time is composed of discrete moments (Fig. 2.12). I’ll discuss each
paradox briefly.

The Dichotomy: “There is no motion, because what moves must
arrive at the middle of its course before it reaches the end.” (Aris-
totle, Physics 239b11)

That is, before we reach the point 1, we must pass through the point 1/2,
and before we can do that we must pass through 1/4, and so on (Fig. 2.13).
Hence we must pass through an infinity of points — each requiring finite
time to reach — in finite time: 1/2 + 1/4 + 1/8 + · · ·.

The Achilles: “The slower in a race will never be overtaken by the
quicker; because the pursuer must first reach the starting point

Figure 2.13: The Dichotomy
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of the pursued, so that the slower must always be some distance
ahead.” (Aristotle, Physics 239b14)

Suppose for simplicity that the slower is given a head start of 1 meter, and
that the faster is twice as fast as the slower. By the time the faster has covered
the 1 meter, the slower will have advanced another 1/2 meter. By the time
the faster goes that 1/2 meter, the slower will have gone another 1/4, and
so on. The slower will always be a little ahead of the faster. Of course Zeno
knew as well as we do that the quicker will overtake the slower. The point of
the paradox is to show a contradiction between this common experience and
our theoretical reasoning about continuous motion and infinite divisibility.

The Arrow: “The flying arrow is at rest”; because a thing is at rest
when occupying its own space at a given time, as the arrow does
at every instance of its alleged flight. (Maziarz & Greenwood,
GMP, p. 59; cf. Aristotle, Physics 239b29, 5)

This is the problem of “instantaneous velocity.” Suppose that at a given
indivisible instant the arrow is moving. But if it moves it must be at different
places at different times. But this has divided the instant (into a before and
an after), which contradicts its indivisibility. Thus, in an indivisible instant
the arrow cannot move; it’s at rest. But if it’s at rest at every instant of
time, then it cannot move at all.

The Stadium: This argument “supposes a number of objects all
equal with each other in dimensions, forming two equal rows and
arranged so that one row stretches from one end of a race course
to the middle of it and the other from the middle to the other
end. Then if you let the two rows, moving in opposite directions
but at the same rate, pass each other, Zeno undertakes to show
that half of the time they take in passing each other is equal to
the whole.” (Aristotle, Physics 239b33–240a2)

The argument seems to be this. We have three rows of objects of the same
length. One row is stationary, the other two move in opposite directions.
The initial configuration is shown in Fig. 2.14. Now consider the point in
time when the two moving rows are both aligned with the stationary row
(Fig. 2.15). When this occurs, the first unit in row B will have passed all the
units in row C, but only half the units in row A. But rows A and C are the
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C

A

B

Figure 2.14: The Stadium: Initial Configuration

A

C

B

Figure 2.15: The Stadium: Rows Aligned
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same length, so in a given period of time it has gone both the distance and
half the distance. The contradiction arises from supposing that the units are
indivisible. Then, in the time it takes B to pass one unit of A it will pass
half of a unit of C, thus contradicting its indivisibility.

2.3.4 Summary

What has Zeno accomplished by these paradoxes? He has shown that if
you assume that space and time are infinitely divisible continua, then you
reach absurdities. On the other hand, if you assume that space and time
are composed of discrete points or moments, then you also reach absurdities.
Zeno’s aim was to show that the notion of things having parts was incoherent
and that, as Parmenides said, all is one. For our purposes though, the
relevance of his paradoxes lies in the problems they reveal in the notion
that a continuum is composed of discrete points. This problem is critical to
the arithmetization of geometry.

2.4 Socrates and Plato: Definition & Cate-

gories

2.4.1 Background

Now we leave the mathematical path and consider Socrates’ and Plato’s de-
velopment of Pythagorean mathematical and physical ideas into a theory of
knowledge. They were so successful that they defined the theoretical frame-
work for nearly all subsequent Western-philosophical debate about knowl-
edge. In the epistemology of Socrates and Plato, word magic reaches a new
level of sophistication.

There is considerable doubt as to whether the ideas presented in Plato’s
dialogues are Socrates’ own or Plato’s. For our purposes, it doesn’t much
matter, since we will treat them as a unit. Plato (c. 428–347 BCE), who
was the most important student of Socrates (c. 470–399 BCE), is one of
the key figures in the history of philosophy. It has been truly said that
Western philosophy is merely footnotes to Plato (Kaufmann, PC, Vol. I,
p. 98). According to Burnet (GPI, Ch. IX), it is very likely that Socrates
was a Pythagorean; Aristotle also thought his ideas were Pythagorean (Met.
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987a–b). You may decide for yourself as we investigate his views.20

2.4.2 Method of Definition

We have seen the importance to the Pythagoreans of logoi: ratios, terms,
words, and rational accounts. Therefore, Socrates’ probable Pythagoreanism
will explain the importance he attached to words. In fact, a shift of emphasis
from facts to words was the essence of his contribution to philosophy:

We know from Plato that the new method of Sokrates consisted
precisely in the consideration of things from the point of view
of propositions (λóγoι) rather than from that of facts ( ’́εργα) . . .
(Burnet, GPI, p. 146)

An important example of this is his Method of Definition, which is based on
the belief that we do not understand something unless we can define it, and
that therefore definition should be the principal activity of philosophers. The
idea is essentially Pythagorean: to define means to make something definite,
and to make it definite is to bound it and set it off from other things. Recall
the Pythagoreans’ concern with the (de)finite and the in(de)finite. For the
ancient Greeks, to be intelligible was to be definite (and hence defined).21

You can see why definitions would be so important to a Pythagorean like
Socrates. Thus, many of the dialogues have as their goal the definition of
such terms as excellence, courage, and piety:

. . . what is that common quality, which is the same in all these
cases, and which is called courage? (Laches 191e)

Well then, show me what, precisely, this ideal is, so that, with my
eye on it, and using it as a standard, I can say that any action
done by you or anybody else is holy if it resembles this ideal, or,
if it does not, can deny that it is holy. (Euthyphro 6e)

20Needless to say, there is an enormous literature on Socrates. I. F. Stone’s 1988 book
provides a nice overview of his philosophical ideas and how they led to his execution.
This is perhaps not a majority opinion among scholars (Griswold, SGP), but I find it
convincing. More traditional views are presented in Brickhouse & Smith (SoT). Burnet
(GPI, Chs. 8–10) has an interesting account of the historical Socrates, which emphasizes
the Pythagorean connections, although, again, this position is considered extreme by many
scholars.

21See also Section 2.2.3 and p. 45.
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And so of the excellences, however many and different they may
be, they all have a common nature which makes them excellences.
(Meno 72)

The emphasis on definition continues in philosophy to the present day. Most
knowledge representation schemes in AI and cognitive science are likewise
based on formal structures that represent a concept in terms of its defining
properties (“that common quality” or “common nature”).

2.4.3 Knowledge vs. Right Opinion

Socrates’ entire theory of knowledge is centered on words, for he claimed
that we truly know something only when we can give a verbal account of
it. The Pythagorean orientation is apparent: something is rational or logical
only when it can be expressed in terms of ratios and logoi (words, propo-
sitions, verbal accounts). As he says in the Laches (190c), “that which we
know we must surely be able to tell.” (See also Meno 96d–100a.) Of course
Socrates recognized that many people are skillful in their endeavors, and yet
unable to explain what they’re doing in theoretical terms. Yet he denigrated
this atheoretical, practical knowledge, and called it (merely) “right opinion.”
Such people, he said, knew what to do, but not why they should do it. He
contrasted this with theoretical knowledge, which for him was the only true
knowledge:

it is not an art22 [techne] but a practice [empeiria], because it can
produce no principle in virtue of which it offers what it does, nor
explain the nature thereof, and consequently is unable to point
to the cause of each thing it offers. And I refuse the name of art
to anything irrational.23 (Gorgias 465a)

An art, as opposed to a practice, “has investigated the nature of the subject
it treats and the cause of its actions and can give a rational account of each
of them” (Gorgias 501a). For a concrete example, consider tuning a lyre. A
musician can do it, but doesn’t know why his technique works. He doesn’t
have true knowledge. Pythagoras, on the other hand, can give a rational
account (in all senses of rational).

22‘Art’ (technē) must be taken here to mean a systematic or methodical craft, or even
an applied science; on the other hand, a ‘practice’ (empeiria) is based on experience or
practice (LSJ, s.vv. τ έχνη, ’εµπειρία; Peters, GPT, s.v. ‘technē’).

23N.B. our discussion of irrational, p. 19.
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2.4.4 The Platonic Forms

The Socratic/Platonic theory of “forms” has been one of the most influential
epistemological theories in Western philosophy.24 It is most comprehensible
when seen as an outgrowth of Pythagorean mathematics.

In ancient times — as now — it was held that the truths of mathematics
are the most certain truths of all. Two plus two is exactly four; it’s not pos-
sible that refined measurements will show it’s 4.00001, and it’s not possible
that new discoveries will require this law to be rejected. Other examples
of mathematical truths are the Pythagorean theorem, and the theorem that
the angles of a triangle add to two right angles. But even if we grant the
certainty of these truths — that they are necessary truths — we may still
question what they are about. They’re about numbers or triangles you say?
But what is a triangle? Surely not the triangle we draw, which can never
have perfectly straight edges, or be made of edges with no width. But these
are the only triangles that exist, in the sense that physical objects exist.
We may say that mathematical truths are about “idealized” triangles, which
are products of thought. But it’s clear that the truths of mathematics are
objective; all rational investigators will find the angles of a triangle to be
two right angles. Hence the triangles of mathematics must have an existence
that is not physical, and yet is independent of individual mathematicians.
Thus it seems that the only explanation for the objectivity of mathematics is
that there is a “realm” where there exist the true, perfect, ideal lines, points,
triangles, and other objects of mathematics. The mathematician explores
this realm by a process of pure reason.25

But if mathematicians are exploring the realm of ideal mathematical ob-
jects by pure reason, then why do they draw the figures and constructions
that are so prominent in mathematical proofs? Plato’s answer (Republic

24The theory of forms is discussed in many of the Platonic dialogues. The following are
a few key sources: Approximations to an ideal: Phaedo 74a–75d; How being and becoming
are known: 78d–80b; Philosophy frees us from senses: 82d–83e; How the forms are related
to sensible objects: 99d–102d; A summary: Parmenides 128e–130a; Critique of the theory:
Parmenides 130a–135c; Investigation of nature of knowledge: Theaetetus. Plato explains
the realms of being and becoming in three famous “myths”: Republic 506d–511e, 514a–
519b.

25We are running roughshod over many important issues in the philosophy of mathe-
matics, only a few of which will be treated later. The nature of mathematical objects
and mathematical truth are still controversial topics. A good reference is (Benacerraf &
Putnam, PM).
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510d–e) was that these are merely aids to the intuition. True intelligence
passes beyond the need for these crutches and can proceed by reason alone.

The example of mathematics is easily extended. The physical triangles in
the everyday world of sensation are approximations to the ideal triangles that
the mathematician studies. Similarly, when we say that two objects are equal,
we recognize that this equality is an approximation to mathematical (perfect)
Equality. Furthermore, Plato claimed that the triangles and equalities of
sense can be understood only by reference to the corresponding ideals. Now,
since the Pythagoreans already believed that everything is number (p. 29),
it’s not such a big step to see the transient and imperfect virtues of individual
people or things as approximations to an eternal, idealized and perfect Virtue
that exists in the same realm as the mathematicians’ triangles. Also, it’s not
such a big leap to say that these individual virtues can be understood only
by reference to ideal Virtue. Philosophers, like mathematicians, are after
eternal certainties, and so they investigate the ideals by pure reason. The
objects of sense may prod the intuition, but ultimately they mislead.

One effect of this view has been the prevalence in early Western phi-
losophy of rationalism, the view that pure reason is a much surer way to
the truth than empirical investigation. ‘Rationalism’ is not a synonym for
‘reasonableness’; rather it is a technical term referring to

(a) the belief that it is possible to obtain by reason alone a knowl-
edge of what exists; (b) the view that knowledge forms a single
system, which (c) is deductive in character; and (d) the belief that
everything is explicable, that is, that everything can in principle
be brought under the single system. (Flew, DP, s.v. ‘rational-
ism’)

In this sense, rationalism is not the same as the practice of being rational,
in the sense of being reasonable. Indeed, a significant question is whether
rationalism is reasonable. Rejection of rationalism was a major feature of the
scientific revolution in the sixteenth century. In a broader sense, Plato’s views
lead to intellectualism, the view that theoretical knowledge is the only true
knowledge, and that so-called practical knowledge is “mere opinion” (Section
2.4.3). Intellectualism was not questioned by the scientific revolution, and
it is a major background assumption of traditional AI and cognitive science,
which tend to focus on intellectual and verbal skills to the exclusion of manual
and other nonverbal skills.
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The Pythagorean influence is very apparent in the Platonic distinction
between Being and Becoming. Recall that the Pythagoreans consigned mo-
tion and change to the Indefinite (p. 27). Change was intelligible only when
it could be reduced to ratios. Zeno’s paradoxes of motion only reinforced
this assessment (Section 2.3.3). Yet in the everyday world of sense, things
are always changing; everything is in a state of becoming. Thus, the world of
sense is in a fundamental way unintelligible, and can be understood only to
the extent that it approximates the eternal (changeless) ideals in the world of
Being. We can never have scientific knowledge about becoming; knowledge
is always of being (p. 41).

The notion of approximations to an ideal is connected with the distinc-
tion between being and becoming. The approximations are “striving” or
“tending” to become the goal, but they will never be it. This is illustrated in
Zeno’s paradoxes of motion (Section 2.3.3). As Burnet (GPI, p. 156) says,
“The problem of an indefinite approximation which never reaches its goal
was that of the age.” But a theory of limits did not come for two millennia.

The foregoing ideas are brought together in the theory of forms, but
before I discuss it it’s necessary to discuss terminology. The Greek words
here translated form are ε�’ιδoς (eidos) and ’ιδέα (idea; the source of English
ideal).26 These words are often translated idea (and thus one hears of Plato’s
Theory of Ideas), but that is a poor translation, since Plato’s “ideas” are
definitely not in the head. These words originally meant the form of a thing,
its shape, or figure. It is significant that these words were also used to refer
to the Pythagorean figures. This is evidence for the view that the theory of
forms is a development of Pythagoreanism. Later these words came to mean
a characteristic property or category. Notice the continuing assumption that
categories are formal. (Recall also the discussion on p. 22.)

In Plato’s theory of forms two realms are postulated: the familiar realm
of sensible objects and the realm of the forms. The realm of sense is charac-
terized by flux and approximation. It is intelligible only to the extent that
the sensible objects approximate the ideal forms. The forms themselves are
changeless, ideal and perfect. Perception is a faulty source of knowledge; it
informs us of the world of sense, which is unintelligible, and can at best hint
at the forms. Knowing the forms requires pure reason. Reason is capable of
comprehending the forms because the categories of thought are in fact the

26See Peters (GPT, pp. 46–47), Taylor (VS, Ch. 5), LSJ (s.v. ε�’ιδoς, ’ιδέα), Donnegan
(Lex., s.v. ε�’ιδoς, ’ιδέα), and Burnet (GPI, pp. 49–53).
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forms. The words we use for these categories (triangle, equality, virtue, etc.)
are the names of the forms. True knowledge is thus knowledge of the forms
and their logical relations.

Since the forms correspond to what are commonly called categories and
concepts, we can draw from the theory of forms the following conclusions
about categories and conceptual knowledge:

Categories are real because they exist in the world of forms. Therefore
there is nothing arbitrary or subjective about them.

Categories are static since there is no change (becoming) in the world
of being. Therefore, categories do not evolve.

Categories are a priori because they exist independent of experience;
they are not derived from experience.

Categories are context-independent because they fit into an eternal
logical structure.

Categories are discrete because they correspond to terms (words), and
terms are discrete.

Words have definite meanings because each word names a form, which
is definite.

Categories have an objective logical structure. That is, the logical
relations between categories are like those between the mathematical objects.

Terms have objectively correct definitions because the definitions are
determined by the logical structures of the forms that the terms name.

All knowledge is formal knowledge because the only true knowledge
is knowledge of the forms and their logical structures.
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What we truly know we can say because words correspond to forms,
and the logical structure of language — properly used — reflects the logical
structure of the forms.

These assertions have been assumed — almost without question — through-
out most of Western intellectual history, but especially in epistemology, cog-
nitive science and artificial intelligence. Thus it is especially significant that
they are rejected by connectionism, the new theory of knowledge which is
the subject of the second half of this book.

2.4.5 Summary: Socrates and Plato

We have presented — very briefly — what is probably the most influential
theory of knowledge and concepts in Western philosophy. In effect it provides
a justification for the Pythagorean program. If the only true knowledge is
knowledge of the forms, and if the forms are real discrete objects fitting into
a logical structure, then such knowledge can be expressed verbally, as terms
arranged in formal structures. Thus the truly real world, the world of Being,
has a rational structure, even if the sensible world, the world of Becoming,
which is only a distorted shadow of true reality, is ultimately irrational and
unintelligible. The principal task of philosophy and science thus becomes the
charting of the formal structure of the world of forms.

2.5 Aristotle: Formal Logic

2.5.1 Background

Aristotle (384–322 BCE) is one of the most influential thinkers in Western
philosophy. If he stands behind Plato it is only because he was a student of
Plato, and thus is the principal “footnoter” of his teacher (p. 39).27

Aristotle’s scholarship had enormous breadth: he wrote on nearly every
subject from logic, physics and biology, to love, music and table manners.
He was nothing if not prolific: one ancient catalog28 lists 150 books (about
50 modern volumes) comprising 445 250 lines! And this catalog is known

27Two readable summaries of Aristotle’s philosophy are Randall (Aris.) and Barnes
(Aris.). There are many books of selections from Aristotle’s works.

28Diogenes Laertius, 5.22–27
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to be incomplete! (Barnes, Aris., p. 3) Unfortunately, only about a fifth
of Aristotle’s writings have survived the accidents of time and the hands of
the book burners. It is no wonder that throughout most of history Aristotle
has been known simply as “The Philosopher.” Here we will be concerned
only with Aristotle’s logical works; these are the ones that have been most
influential in the traditional theory of knowledge.

2.5.2 Structure of Theoretical Knowledge

Recall Socrates’ distinction between knowledge and right opinion (p. 41).
Knowledge is preferable because it’s more reliable. That is, if we just have
right opinion, then we only know that what we are doing has worked in the
past; we cannot be certain that it will work the next time we try it. On
the other hand, if we have knowledge, then we can give a rational account
of what we do. Therefore, since we know the necessary connections between
things we do not have to fear being wrong.

Aristotle accepts this same basic definition, since he too expects true
knowledge to be universal.29 Also, like Plato, he sees that the only way
to achieve this universality is to give knowledge a strict deductive (logical)
structure grounded in indubitable premisses.30 This leads to two subgoals
in Aristotle’s investigation of the structure of knowledge: one is to set down
the rules for deductive argument; the other is to determine how we can know
the primary truths, since these cannot be established deductively. We will
discuss the results of Aristotle’s investigations in each of these areas.

2.5.3 Primary Truths

The primary truths must be more than mere assumptions, since in that
case the conclusions drawn from them would be no better than assumptions.
Further, the primary truths cannot be merely hypotheses, since then the

29Aristotle distinguishes three kinds of scientific knowledge (Metaphysics 6.1.1025b25):
theoretical knowledge, productive knowledge and practical knowledge. At the present time
we are concerned only with theoretical knowledge, and when we use the term knowledge
this is what it will mean.

30Aristotle, like Plato, was an epistemological “realist,” which means that he took the
forms to exist independently of us and not to be creations of our minds. He differed from
Plato in putting the forms in the objects of sensation rather in a separate ideal realm.
However, these ontological distinctions are not relevant to our concerns here.
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conclusions would be no surer than hypothetical. For scientific knowledge
to be absolutely certain, the primary truths themselves are required to be
absolutely certain. But since the primary truths are the starting point of
deductions they cannot themselves be established deductively. Therefore the
primary truths must be self-evident, in the literal sense of providing their
own evidence. That is, the primary truths are self-justifying.

In most cases Aristotle takes the primary truths to be definitions or parts
of definitions. But again we must be careful, since Aristotle understands
definition differently from the way we do now. In the deductive sciences we
usually take a definition to be a prescription for the use of a word. That
is, a definition is way of introducing a word as an abbreviation for a longer
sequence of words. Such definitions are not truths, but conventions, and
therefore would lead to no more certainty than arbitrary assumptions.

The modern notion of definition will not serve Aristotle’s needs. For him
a definition is a factual statement that says what it is for a thing to be what
it is. An example will make this notion clearer.

We can begin with a good example of a definition: ‘a triangle is a three-
sided figure’.31 The purpose of this definition is not to introduce ‘triangle’ as
an abbreviation for ‘three-sided figure’, nor is it even to explain the way the
word ‘triangle’ is used in English. Rather, its purpose is to state what it is
for something to be a triangle. As it’s usually put, the definition states the
essence of triangles: the properties that anything must have in order to be
a triangle. Something that’s not a figure, or that’s not three-sided, is surely
not a triangle. Conversely, any figure with three sides is surely a triangle.

Traditionally, definition in terms of essences is considered the hallmark
of Aristotle’s theory of definition, and much medieval (and even modern)
philosophy was concerned with the nature of essences. Yet it’s remarkable
that there is not a Greek word corresponding to the translation essence. The
phrase most commonly translated essentially is καθ’ α ‘υτ ó (kath’ hauto),
which means per se, or in itself. So where we often read “what is Man
essentially?” or “what is Man in essence?”, we should read “what is Man
in itself?” Similarly, there is no single word corresponding to essence. The
phrase most commonly translated this way is τ ò τ ί ’εστι (to ti esti), which
means the ‘What is it?’ (a question turned into a noun). Another such phrase

31The definition we use for this example, ‘a three-sided figure’, admits triangles bounded
by curved lines, and these are traditionally called triangles. However, for the purpose of
the example we restrict our attention to rectilinear figures and triangles, that is, those
bounded by straight lines.
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is τ ò τ ί �’ην ε�’ιναι (to ti ēn einai), which means something like the ‘What is it
to be what it is?’. These translations are more awkward, but more accurate
(Randall, Aris., p. 47, n. 13). We will avoid essence and derivative terms.

The problem of essence is a good illustration of the role of language in
the history of ideas. The Latin essentia was coined, perhaps by Cicero, to
translate the Greek ousia (one’s own, property, being); in the Medieval period
it came to mean essence in the sense under consideration here.32 Over the
two millenia since its invention, much ink has been spilled about essences —
what they are, where they are, and so forth.

But observe: by creating a word, Cicero (or whoever) created a philo-
sophical problem. Once the word essentia had been invented and used in
meaningful contexts, such as translations and paraphrases of Aristotle, it
was necessary to find something that it named. The implicit presumption is
that if it can be used meaningfully, then it must mean something, in other
words, there must be some things (essences) to which the word refers.

The existence of a word such as essence can also bias the way we go about
our investigations and can set bounds on acceptable answers. If we begin our
inquiry by seeking “the essence of life,” we will likely find the soul or an élan
vital or some such. On the other hand, if we begin by asking, “What is it
to be alive?” then we are more likely to come up with a description of a
process, or at least an operational test for life. Thus we must beware of the
“bewitchery of words.”

Back to Aristotelian definitions. Since they state the most fundamental
properties of things, their discovery may require significant analysis and sci-
entific investigation. Once found, however, they are self-evident in the way
illustrated above. Who could rationally deny that a triangle is a three-sided
figure?

A proper Aristotelian definition contains one or more primary truths.
For example, in the definition of triangle we may see two primary truths:
that a triangle is a figure, and that a triangle has three sides. From these
and other primary truths many derivative truths follow in turn by deduc-
tion. In summary, Aristotelian definitions are self-evident matters of fact,
not prescriptions.

There is one more aspect of Aristotle’s approach that we must address
before leaving the topic of primary truths. This is that Aristotle permits the

32At least as early as Thomas Aquinas (1225–1274), e.g., Sum. Theol. 1, q.3, a.3 concl.
and q.29, a.2 ad 3.
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various sciences to have their own primary truths; he does not seek to derive
all truths from one first principle, as Plato did. As we’ll see, Euclid, following
Aristotle, deftly avoids the chasm between arithmetic and geometry — the
discrete and the continuous — by basing each science on its own primary
truths (p. 53).

Unfortunately, it’s much more difficult to apply Aristotle’s idea of defini-
tion outside of mathematics. What is the definition of cow, or person? To
define person we must find those properties without which a thing would not
be human.

2.5.4 Formal Logic

Although many earlier philosophers had studied the forms of arguments (es-
pecially the Sophists), we owe to Aristotle the founding of logic as a science.
He was the first to analyze propositions into terms and to show how deduc-
tive processes rearrange these terms (recall p. 22). For example, consider the
well-known syllogism:33

All men are mortal;
Socrates is a man;

therefore, Socrates is mortal.

The validity of this argument does not depend on the particular terms
‘Socrates’, ‘man’ and ‘mortal’ that appear in it; indeed, they are like game
tokens (calculi, p. 24). All that’s important to the validity of the argument
is its form (hence, formal logic).

The general form of this argument can be expressed in a formal rule, or
schema, such as this:

All M is P
S is M

therefore, S is P

Indeed, Aristotle was the first to use variables (such as S, M and P
here) to express rules formally; it is a major contribution and a model for
rule-based systems in AI and cognitive science.

33I retain the conventional translation ‘man’ for ’́ανθρωπoς (anthrōpos), which, though
masculine in gender, was generally used for people of both sexes.
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Aristotle considered all the possible arrangements of the terms in syllo-
gisms and classified them into three figures (schemata, p. 22). The preceding
example is in the first figure; here is a valid syllogism in the second (Joseph,
IL, p. 258):

No insects have eight legs;
Spiders have eight legs;

therefore, Spiders are not insects

In general:

No P is M
S is M

therefore, No S is P

The three figures enumerate the possible arrangements of the three terms
that occur in the syllogism: S the subject of the conclusion, P the predicate
of the conclusion, and M the middle term, which appears in both premisses
but not in the conclusion. Writing the terms of the propositions in the order
subject-predicate, we have the three figures:

MP PM MP
SM SM MS

SP SP SP

Note that this exhausts all possible arrangements, if the order of the
premisses is not considered.

Aristotle’s formal logic can be considered a continuation of the Pythagorean
program. The earliest Pythagoreans thought that things were literally com-
posed of numbers, that is, units (terms) arranged in various forms or figures.
Later Pythagoreans believed a more abstract version of this theory: that
every thing had a number through which it could be understood. Aristotle
moves to a higher level of abstraction, since for him it’s not things that are
formal arrangements of terms, but knowledge itself. What has not changed
is the identification of the intelligible with formal structures.
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2.5.5 Epistemological Implications

We now turn to some of the epistemological implications of Aristotle’s view.
Since for Aristotle definitions are matters of fact, there is one correct defini-
tion for each term, that is, the definition is a formula (logos) saying “what it is
to be what it is.” Like Socrates and Plato (Section 2.4.2), Aristotle believed
that the meaning of a term can be expressed exactly in a finite formula.

Similarly, as we’ve seen, Aristotle was able to express his deductive rules
formally — as mechanical symbol manipulation processes. Therefore, in Aris-
totle’s ideal of a completed science, all the knowledge is expressed as formal
(structural) relationships between symbol structures (schemata, formulas).

We summarize the epistemological implications of Aristotle’s theory:

• Definitions are objective matters of fact, which can be expressed in
finite formulas.

• Deduction can be described by the formal manipulation of terms ar-
ranged in specified schemata.

• A completed science takes the form of propositions connected formally
to definitions.

These assertions have become incorporated into our unconscious assump-
tions about “true knowledge,” and they provide the ultimate source of the
formal, deductive knowledge representation and inference schemes commonly
employed in cognitive science and artificial intelligence. However, in volume
2 we will see that they are assumptions that need to be questioned, and in
fact rejected.

2.6 Euclid: Axiomatization of Continuous &

Discrete

Euclid alone has looked on Beauty bare.

— Edna St. Vincent Millay (The Harp Weaver, 4, sonnet 22)
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2.6.1 Background

We return now to the mathematical part of our story, and consider an impor-
tant investigation of the continuous and discrete in mathematics. Eudoxus
(408–355 BCE), a student of Plato, was probably the greatest Greek mathe-
matician before Archimedes.34 It is likely that he originated both the theory
of magnitudes and the method of exhaustion, which we find in Euclid’s Ele-
ments. Yet not one of his works survives (Bochner, RMRS, p. 325). On the
other hand, by all accounts (ancient and modern) Euclid (c. 300 BCE) was a
rather mediocre mathematician. Nevertheless, the 13 books of his Elements
have survived intact, and have been a required subject in school from his
time until well into the twentieth century. Its apparently perfect reduction
of a body of knowledge to a deductive structure has an austere beauty, as
Millay and many others have recognized.

2.6.2 Axiomatic Structure

Euclid’s Elements is an application to mathematics of Aristotle’s idea of a
science as defined in his two major logical works, the Prior and Posterior
Analytics (Maziarz & Greenwood, GMP, p. 242–243). It begins with defini-
tions in terms of necessary and sufficient attributes that are taken to be prior
to the term defined. It bases its deductions on axioms (“common notions”),
which are taken to be self-evident truths, and postulates, which are taken
as the starting points of the particular science (Post. An. 74b5–77a30).
The organization of the whole makes its deductive structure explicit, since
no proposition may be admitted unless it is deducible from the first prin-
ciples.35 The Elements was thus the first concrete demonstration of how a
body of knowledge could proceed by formal operations from explicitly given
hypotheses. It remained the exemplar of formal reasoning until some of its
defects were discovered in the nineteenth century.

The Platonic/Aristotelian view of knowledge as a formal structure of
discrete propositions is further evident in the use of the term elements. Pre-

34A general source for the material in this section is Maziarz & Greenwood (GMP, Part
4). The definitive translation of Euclid’s Elements is Heath (Euclid).

35Aristotle’s use of rational necessity should be contrasted with Plato’s. Plato used
rational analysis as a means of regression from the familiar forms back to the most basic
form. Aristotle takes certain principles as given, and the then by rational synthesis shows
how various conclusions follow from them by rational necessity (Maziarz & Greenwood,
GMP, p. 242–243).
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Euclidean mathematicians had already organized theorems by showing that
many of them followed from a few general principles, which they called el-
ements, by analogy with the alphabet’s relation to language (Maziarz &
Greenwood, GMP, p. 240). Compare Plato’s notion of the unanalyzable ele-
ments of which the “syllables” of knowledge are composed (Theaetetus 201d–
206b). In both cases there is a presumption that knowledge is a complex of
discrete, indivisible elements. This view is characteristic of the traditional
view of knowledge, as we will see (Sections 3.6.1).

2.6.3 Theory of Magnitudes

The Pythagoreans and Zeno had demonstrated the difficulty of having a sin-
gle theory that encompasses both discrete and continuous quantities. There-
fore, Euclid axiomatized each of them separately. In Book 7 he develops the
theory of discrete quantities — what we call number theory. However, in
Book 5 he develops an axiomatic theory of continuous quantities, or mag-
nitudes. This is based on relations of proportion, that is, on ratios. Using
this theory he is able to prove the very important principle of continuity,
which is the basis for the method of exhaustion — a way of finding the limits
of sequences (p. 55). This principle shows that certain infinite series must
eventually get smaller than any number we can pick. We consider briefly
Euclid’s theory.

Just as numbers (i.e. integers) are idealizations of discrete objects, such
as pebbles or tokens, taken as members of ensembles, so magnitudes are
idealizations of continuous quantities, such as lengths and areas. Both ide-
alizations are based on intuitions about the familiar world. For example, we
see we are surrounded by discrete objects. We also see continuous change,
such as continuous motion, growth, and the flow of time.

Although we have basic intuitions of both the continuous and the discrete,
our Pythagorean view of knowledge has caused us to view numbers as more
basic than magnitudes — hence the goal of arithmetizing geometry (Chapter
4). We will see in volume 2 that we can as easily geometrize arithmetic, that
is, reduce the discrete to the continuous.

Euclid’s theory of magnitudes is not expressed with nearly as much rigor
as would be demanded now. In contrast to the axiomatization of geometry
in Book 1, where point, lines, and the like are defined, the basic concept
magnitude is not defined at all. The definitions we find in Book 5 have
to do with multiples, ratios, proportions, and so forth. Further, there are
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M

> M/2

m

Figure 2.16: Principle of Continuity. M and m are two unequal magnitudes,
M > m. Subtract from M a magnitude > M/2 and consider the remain-
der. Subtract at least a half of the remainder, and continue. Eventually a
magnitude smaller than m will remain.

no postulates for magnitudes. Rather, the proofs are based on the axioms
(Common Notions) from Book 1 together with informal intuitions about
magnitudes.36

The Principle of Continuity, which is the basis for Euclid’s method of han-
dling limits, is of fundamental importance for the eventual arithmetization
of geometry:

Two unequal magnitudes being set out, if from the greater there
be subtracted a magnitude greater than its half, and from that
which is left a magnitude greater than its half, and if this process
be repeated continually, there will be left some magnitude which
will be less than the lesser magnitude set out . . . And the theorem
can be similarly proved even if the parts subtracted be halves.
(Euclid, Bk. 10, Prop. 1)

See Fig. 2.16, in which M is the larger magnitude and m the smaller. The
Principle of Continuity is used in method of exhaustion, discussed next.

The method of exhaustion circumvents the difficulties with infinitesmals
and infinite processes pointed out by Zeno (Section 2.3). It accomplishes
this by replacing actual infinities by potential infinities. For example, Euclid
wants to prove that the areas of circles are to one another as the squares of
their diameters. He has already proved this theorem for regular polygons, so
he would like to make use of Antiphon’s insight that a circle can be thought
of as a circle with an infinite number of sides (Fig. 2.17). In modern terms,

36The Common Notions are: (1) Things which are equal to the same thing are also
equal to one another. (2) If equals be added to equals, the wholes are equal. (3) If equals
be subtracted from equals, the remainders are equal. (4) Things which coincide with one
another are equal to one another. (5) The whole is greater than the part. (Euclid, Bk. 1)
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Figure 2.17: The Circle as an Infinite-Sided Polygon
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Figure 2.18: Example Application of Method of Exhaustion

he would like to “take the limit” and let the number of the polygon’s sides
go to infinity. But, instead of depending on the problematic notion of an
infinite-sided polygon, Euclid applies the principle of continuity, and shows
that the difference between the circle and polygon can be made smaller than
any given magnitude by increasing the number of sides sufficiently. This
allows him to show that a contradiction would result from the assumption
that the area is different from that given by the ratio of the squares of the
diameters.

The method is basically this (Fig. 2.18). Let A be the area of the larger
circle. Contrary to the theorem, assume the area given by the ratio of the
squares is B < A, that is, A′(dd/d′d′) = B < A. Inscribe a polygon with
sufficient sides so that its area is S > B. A similar polygon S ′ is constructed
in the smaller circle. But since the areas of the polygons are as the squares
of the diameters, it can be shown that the area of the larger polygon is less
than B. Specifically, S/S ′ = dd/d′d′ = B/A′. Hence S/B = S ′/A′. But
S ′ < A′, so S < B, which contradicts the fact that it was constructed with
area greater than B. A contradiction similarly follows from the assumption
B > A. Hence B = A.
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2.6.4 Summary

Euclid made the deductive structure of mathematics explicit through the
methods of Aristotle. However, the inability of Greek mathematics to rec-
oncile the rational and irrational forced him to treat continuous and discrete
quantities separately. In particular, he was not able to rationalize the con-
tinuous by arithmetizing geometry. The continuous and discrete remained
unreconciled for over 2000 years. The arithmetization of geometry was finally
accomplished around the turn of the twentieth century (see Chapter 4).


