Chapter 6

Limitations of the Discrete

My purpose here has been ... to show that a specific Gédel
proposition — neither provable nor disprovable using the axioms
and rules of the formal system under consideration — is clearly
seen, using our insights into the meanings of the operations in
question, to be a true proposition!

— Roger Penrose (ENM, p. 116)

The import of Goedel’s conclusions is far-reaching, though it has
not yet been fully fathomed. ... Goedel’s conclusions also have
a bearing on the question whether calculating machines can be
constructed which would be substitutes for a living mathemati-
cal intelligence. ... There is no immediate prospect of replacing
the human mind by robots. ... None of this is to be construed,
however, as an invitation to despair, or as an excuse for mystery
mongering.

— Ernest Nagel and James R. Newman (GP/WM)

In the preceding chapters we have discussed the 2500 year history
of two related ideas, one epistemological, the other mathematical. The
epistemological idea is that knowledge can be represented in the for-
mulas of a calculus and that cognition is calculation — formal manipu-
lation of those formulas. The mathematical idea is the arithmetization

283

284 CHAPTER 6. LIMITATIONS OF THE DISCRETE

of geometry, which is motivated by the belief that the discrete is funda-
mentally more comprehensible than the continuous. The latter theme
will be brought to its conclusion in this chapter, for we will consider
several results that place fundamental limits on the arithmetization of
geometry and on the axiomatization of mathematics. Although these
results were established in the 1930s and were well-known to the sci-
entific community by mid-century, philosophers, psychologists and Al
researchers continued to use discrete, symbolic representations through
most of the twentieth century. Therefore, the next two chapters will
continue the historical presentation, and discuss the use of calculi in
philosophy, cognitive science and artificial intelligence.

In this chapter we will consider important theorems proved by Godel,
Turing and other logicians, and I will try to explain the proofs of these
theorems. Nonmathematical readers may wonder why they are being
subjected to these proofs, but the quotations that open this chapter
show the reason. Godel’s theorem rivals quantum mechanics in the
number of unwarranted conclusions it has engendered, often by math-
ematically sophisticated commentators. No doubt I am also misinter-
preting the significance of these results, but I hope at least that readers
who understand the proofs will be in a better position to draw their
own informed conclusions about their significance. Nevertheless, some
technical issues have been separated out, and I suggest that the re-
mainder be skimmed if the going gets too tough. Be cognizant though
of the risk you run by taking this route.!

Like a Rorshach test, quantum mechanics and Godel’s theorem in-
vite the projection of our fears and hopes, and the popular fascination
with these two ideas is perhaps a reflection of profound societal changes
NOW in progress.

!Cognoscenti will no doubt be outraged by my informality, but I have tried to
steer a middle course, avoiding a myriad of uninteresting details, while allowing a
majority of readers to grasp the essence of the proofs.

6.1. UNDECIDABLE PROPOSITIONS 285
6.1 TUndecidable Propositions

6.1.1 Godel’s Incompleteness Theorem

If an axiomatic system is consistent and complete, then for each propo-
sition P, exactly one of the pair P and not-P is provable.? This is
clearly the most desirable situation, since then the axioms say neither
too much nor too little. One of the landmarks of twentieth century
logic is Kurt Godel’s 1931 proof that no “reasonably powerful” ax-
iomatic system can be both consistent and complete. So that you will
understand the significance of this theorem I will sketch its proof. (If
you are interested in the details, see the appendices to this section,
beginning on p. 295.)

I’ve said that Godel’s result applies to “reasonably powerful ax-
iomatic systems.” What exactly does this mean? It will be most clear
after we’ve completed the proof, for then you will be able to see what
we’ve assumed. But I can give a rough definition now. We will make
use of the usual laws of logic, including the law of the excluded mid-
dle. However, the proof is completely constructive, and appeals only
to simple properties of the natural numbers. Thus it is acceptable even
to intuitionists. Further we will assume that our axiomatic system is
completely formal, so that the axioms are just strings of characters and
the rules of inference are just string replacement rules (such as Markov
algorithms). Since strings of characters can be encoded as integers
(just think of the bit strings representing both), the resources of such
an axiomatic system are adequate for talking about axiomatic systems
(including itself). In the following, let A be any reasonably powerful
axiomatic system.

To prove the completeness of an axiomatic system we must show
that every proposition is decidable; to prove its incompleteness we
must show that at least one is undecidable. Godel’s great accom-

2Godel (1906-1978) himself has provided a fairly readable, although somewhat
oversimplified, overview of his proof in his original paper (Davis, Undec., pp. 5-9).
A well-known popular account is Nagel & Newman ((P), which is abbreviated in
Nagel & Newman (GP/WM). See also “Godel’s Theorem” in Edwards (/P Vol. 3,
pp. 348-357). A good general reference for this chapter is Kneebone (MLIF'M),

although there are many other discussions of these topics.

286 CHAPTER 6. LIMITATIONS OF THE DISCRETE

plishment was to consider the possibility that axiomatizations of sig-
nificant mathematics are incomplete, and thus to try to construct a
counterexample.?

Our task is: given a consistent axiomatic system A, construct a
proposition) guaranteed to be undecidable in 4. One way to ac-
complish this is to make € a proposition of A that asserts its own
unprovability; then assuming the decidability of @ will lead to a con-
tradiction. For if © is provable then it’s true, and hence unprovable
(since § asserts its own unprovability). Conversely, if =) is provable
(and hence true), then £ must not be provable (since A is consistent),
which means € is true (since it asserts {2’s unprovability). Again we
have a contradiction. Thus we will have the incompleteness of A if such
an §) can be constructed.

If © asserts its own unprovability then it is a proposition about for-
mulas in A and their derivability from the axioms of A by its rules of
inference. Hence) is a proposition about strings and their relation-
ships. Thus, if Q is to be expressible in A then A must be able to express
propositions about strings. Any reasonably powerful axiomatic system
can do so; in fact it’s sufficient that A be able to express propositions
in elementary number theory (such as divisibility and prime numbers,
see “Godel Numbers,” p. 295).

Let w be the string representing {); we’ve seen that the incomplete-
ness of A will be established if) asserts its own unprovability:

) = —Provable(w)

Unfortunately we have no guarantee such an w exists. Indeed, since
this equation looks suspiciously like Russell’s paradoxical set (p. 230),
we are well advised to question its existence and to seek a construc-
tive definition. Our doubts are confirmed by attempting an explicit
definition of by replacing w by ‘—Provable(w)’:

0 = —Provable(w)

3Mathematicians had good reason to be optimistic about proving consistency
and completeness; recall the consistency and completeness results discussed in Sec-
tion 5.3. Von Neumann is reported to have reproached himself for not proving the
incompleteness result because he had never seriously considered its possibility.

6.1. UNDECIDABLE PROPOSITIONS 287

= —Provable(‘~Provable(w)’)
—Provable(‘=Provable(‘=Provable(w)’)’)

Thus 2 looks like an infinite formula, which violates the finitary as-
sumptions of formal systems. Therefore the construction of 2 must
take a different tack.

Suppose we make a list of all the decidable propositions of some
form. If we can then construct a proposition of this form that is guaran-
teed to not be in the list, then we will have constructed an undecidable
proposition. This suggests that we use a diagonalization proof such as
Cantor used to show that for any list of rational numbers there is a real
number that does not appear in that list (Section 5.1.3).

Therefore we will consider propositions of the form P(s) where s
is a string and P is a property of strings. We call such a property
decidable if for each s the proposition P(s) is decidable, and we call
it undecidable if there is at least one s for which P(s) is undecidable.
Each property P is represented by a string p and each proposition P(s)
is represented by a string, which we write subst(p, s), which refers to
the result of substituting s into p (see “Class Expressions,” p. 296 for
details).

Now consider all the strings py, ps, ... representing decidable prop-
erties of strings; let P; be the corresponding properties. Since P;(p;) is
decidable for every ¢ and j, we can make a table showing the truth or
falsity of these propositions:

Pr P2 P33 P+ Ps Ps
pllT] T F F T F
P F T F F T
P F F F F F
p|F T F FoT

Since we assume the list includes all decidable properties of strings, we
can construct an undecidable property by making it the negation of the

288 CHAPTER 6. LIMITATIONS OF THE DISCRETE

diagonal (shown in boxes):

‘Pl P2 P3 P4
Q\F F T F

Thus we want Q(p;) = —Pi(pi).

Since () is a property of strings we must define it in terms of the
string p; rather than the property P; it represents; therefore we repre-
sent the proposition P;(p;) by the string subst(p;, p;). Further, since the
P; are decidable properties, P;(p;) is true just when Provable[subst(p;, p;)]
is true (see p. 296). These observations permit an explicit definition of
the property Q:

Q(p) = —Provable[subst(p, p)] (6.1)

Clearly () cannot appear in the list of decidable properties since Q(p;)
is the negation of P;(p;) for every i.

Since () is an undecidable property there must be at least one string
s for which @(s) is an undecidable proposition. Taking a clue from
Russell’s Paradox, we try ¢, the string representing (). Then we have:

((q) = —~Provable[subst(q, ¢)] (6.2)

This is exactly the string required, as we can see by letting Q@ = Q(¢)
and w = subst(q, ¢), which is the string representing 2. Then Eq. 6.2
becomes

Q) = —Provable(w) (6.3)

Thus © = Q(q) is exactly the undecidable proposition we sought. See
Figures 6.1 and 6.2.

In an inconsistent axiomatic system every formula is provable. On
the other hand, as we’ve just shown, in a consistent system that’s suffi-
ciently powerful (i.e., powerful enough to talk about strings or numbers)
there is always a proposition € that’s undecidable. (And note that we
can actually construct this proposition; refer to “Definiteness of €2,”
p. 297, to see it.) Thus, if such a system is consistent, it cannot be
complete, and if it’s complete it cannot be consistent. Alternately, no

6.1. UNDECIDABLE PROPOSITIONS 289

4 N
Axioms
1Q = Pr(w)
4 N
a
axioms
W
\ _J
\ _J

Figure 6.1: Godel’s Theorem, First Part. The diagram depicts the first
part of the proof of G6del’s Incompleteness Theorem, showing that € is not
provable. The outer box represents the axiomatic system A, the inner box
represents a, the axiomatic system encoded in Godel numbers or in some
other way that allows it to be a subject within A. Dotted arrows indi-
cate deductions from hypotheses later determined to be false; thin undotted
arrows indicate true deductions. Lines with dots on both ends connect con-
tradictory situations. Thick arrows indicate the possibility or impossibility
of derivations from ‘Axioms’, the axioms of A, or from ‘axioms’, the encoded
axioms of A in a. We begin at ‘hyp.” with the hypothesis that €2 is derivable
from the axioms of A. The dotted arrow shows that —Provable[w] is also
provable. But the latter is provable if and only if w is not derivable from
the encoded axioms of @, as indicated by the crossed arrow in the inner box.
Now derivations in @ mirror those in A, so we must conclude that Q is not
derivable in \A. This contradicts the hypothesis so we conclude that € is not
provable in A.

290 CHAPTER 6. LIMITATIONS OF THE DISCRETE

4 N
Axioms
= Pr (w)
4 N
a
axioms
W
\ _J
\ _J

Figure 6.2: Godel’s Theorem, Second Part. The diagram depicts the second
part of the proof of Gdédel’s Incompleteness Theorem, showing that =€ is
not provable in A. Start with the hypothesis (marked ‘hyp.”) that = is
derivable from the axioms of A, from which we conclude =Q. A dotted
line indicates that the consistency of A allows us to conclude that Q is
not derivable. Therefore, in the encoded system a we know w is likewise
underivable. Hence we know —Provable(w), but this is exactly €, which
contradicts —2. Therefore we reject the hypothesis and conclude —€2 is not
provable in A.

6.1. UNDECIDABLE PROPOSITIONS 291

reasonably powerful axiomatic system can be both consistent and com-
plete. This is Godel’s Incompleteness Theorem. Clearly, this result was
devastating to the formalist program.?

6.1.2 Corollaries to Godel’s Theorem

(Godel dealt an additional blow to the formalist program, for he showed
that a (sufficiently powerful) consistent axiomatic system cannot prove
its own consistency. This result is a simple corollary to the incom-
pleteness proof. To see this, let C' be any proposition asserting the
consistency of A; since everything is provable in an inconsistent sys-
tem (p. 244), C' can be an assertion that some well-formed formula is
unprovable. This will do:

C' = —Provable(‘0 = 17)

The proof of Godel’s Theorem can be easily formalized in A, so we
know that if A is consistent, then € is not provable in it. Since C
implies the consistency of A we can prove the implication:

C' — —Provable(w)

But 2 = —Provable(w), so we can likewise prove in A the implication:

C —Q

Thus, if C' (the consistency of A) were provable in A, then 2 would
also be provable in A. But since we’ve seen that € is not provable in
A, the consistency of A must be likewise unprovable.

In summary, Godel showed that any reasonably powerful, consistent
axiomatic system must have undecidable propositions, and that among
these is the fact of its own consistency!

4The proof outlined above requires A to satisfy a stronger property than simple
consistency; it’s called w-consistency. 1 pass over this detail for three reasons:
(1) reasonable axiomatic systems are w-consistent; (2) the use of w-consistency is
buried in the proof of the correctness of Provable (p. 296), which I've omitted; and
(3) Rosser (ESTGC) showed that Godel’s Theorem can be strengthened so as to
require only consistency.

292 CHAPTER 6. LIMITATIONS OF THE DISCRETE

We turn to a surprising observation. We have seen that the for-
mula €2, which asserts the unprovability of €2, is undecidable in the
axiomatic system. Nevertheless, I claim that is true, and prove it
by the following metamathematical reasoning. We supposed that () is
provable, and reached a contradiction. Therefore, applying the usual
proof by contradiction, we must conclude that €2 is unprovable. That is,
we have proved (metamathematically) that € is unprovable (in the ax-
iomatic system). Since € asserts the unprovability of € in the axiomatic
system [recall @ = —Provable(w)], we have proved @ metamathemat-
ically. We've decided the undecidable proposition! Of course there’s
no contradiction here. We proved that) was undecidable in the given
axiomatic system. It was this very fact that allowed us to then decide
by metamathematical reasoning — outside the system.

Although this is an important point, too much can be made of it.
For example, the metamathematical proof has been the basis for claims
that informal mathematics is inherently more powerful than formal
mathematics (Penrose, FNM). Therefore the metamathematical proof
deserves some scrutiny.

To many people the term metamathematical suggests some kind of
supramathematical intuition, but, as we’ve seen, it simply denotes the
use of mathematical techniques to reason about mathematics (see Sec-
tion 5.1.4). This is exactly what we did in Godel’s proof when we de-
fined predicates such as Provable and IsaProof (p. 295). Thus Godel’s
proof is metamathematical. Also, contrary to some claims (Penrose,
ENM), there is nothing inherently unformalizable about the meta-
mathematical proof (see “Formalizing the Metamathematical Proof,”
p. 297). It is different from Godel’s proof in that it talks about the
truth of propositions, whereas Godel’s talks only about their provabil-
ity. Nevertheless, it’s a routine exercise (see below) to construct a
formal system A’ capable of expressing propositions about the truth
of the propositions of another system A. Similarly an A" can be con-
structed that can express the semantics of A’, and so on as necessary.
It could be objected that this very argument shows the greater power
of informal mathematics, since the informal metamathematical proof
is valid for any axiomatic system A, whereas the formal version re-
quires constructing a new axiomatic system A’ for each A. Indeed,
informal mathematics can talk about the truth of its own propositions.

6.1. UNDECIDABLE PROPOSITIONS 293

But even this self-descriptive ability may be formalized, since we can
construct an axiomatic system A* capable of expressing propositions
about its own semantics. If we do so, however, we will make an inter-
esting discovery: such an axiomatic system must be inconsistent since
it is powerful enough to express a contradiction analogous to the Liar
Paradox (p. 231): Define the predicate Q(p) = —P(p), where P is
the interpretation of p, and consider the truth of Q(q), where ¢ is the
encoded representation of (.

Again it might seem that the greater power of informal mathematics
has been established, since a formal system with its expressive power
must be inconsistent, but this does not follow. Since the Liar Paradox
can also be expressed in informal mathematics, it follows that infor-
mal mathematics is inconsistent, just like A*. Indeed, the original Liar
Paradox (p. 231) is a creature of informal logic, which is also inconsis-
tent.

The phenomenon to be explained is not the power of informal rea-
soning, since it’s already so powerful that it permits the Liar Paradox.
Rather, the mystery to be solved is the process by which the commu-
nity of mathematicians avoids perpetually encountering contradictions.
It seems there must be nonlogical constraints that keep reasoning in
check; I will address this issue in more detail in Section ?? (see also
MacLennan, DD).

In the 60 years since Godel published his result there has been little
consensus about its implications. However, we can make the following
observations. First, the result is extremely robust; it does not depend
on details of the formal system. Obvious escapes, such as going to mul-
tivalued logics (logics with truth values in addition to true and false),
do not change the result. There are systems (“semiformal” systems)
that are complete and sufficiently powerful to prove their own consis-
tency, but they diverge radically from the finitary goals of formalism.
For example, some have infinitely large rules of inference, while others

>This assumes the axiomatic system assigns a truth value to every proposition
and so also to Q(gq). Tt is of course possible to design a self-referential axiomatic
system if it does not assign a truth value to propositions such as Q(q). It also
assumes A* is powerful enough to talk about its own syntax (for which arithmetic
is sufficient), and to talk about its own semantics (for which set theory is sufficient).

See Beth (F'M, pp. 335-345) for a detailed discussion.

294 CHAPTER 6. LIMITATIONS OF THE DISCRETE

permit infinitely long proofs (Edwards, EP, Vol. 3, p. 355).

Certainly, if we restrict our attention to formal systems in the con-
ventional sense, which presumes that they are finite (Section 5.5), then
Godel’s theorem applies. Any such system (unless it’s extraordinar-
ily weak) must have at least one undecidable proposition (unless the
additional proposition made it inconsistent). And even if we add this
proposition as an additional axiom, the resulting formal system must
still have undecidable propositions. And yet all these propositions may
be decided by metamathematical reasoning (which is just the garden
variety mathematical reasoning applied to formal systems). Thus it
seems that there is a sense in which a formal system can never capture
the process of mathematics. This much is clear. Further implications
are much less apparent. (See also Section 6.4.)

6.1.

UNDECIDABLE PROPOSITIONS

295

Godel Numbers

Godel wanted to reason about proofs, so he needed a representa-
tion for formulas and sequences of formulas. Now we would use
strings of characters or linked lists, but Godel didn’t have these
computer programming concepts, so he represented a sequence
of numbers ny, nsy,...,n; by the number

N =pit X p32 X -+ X pi*

where py,...,pr are the first & prime numbers. By the prime
factorization theorem, the i-th element of the sequence could be
extracted by calculating the exponent of p; in V. Sequences of
characters were then represented by sequences of numbers, each
number representing a character (now, we would probably use
its ASCII code). Recall that Leibniz used the prime factoriza-
tion theorem to represent finite sets (p. 116).

When we deal with an axiomatic system metamathematically,
we treat formulas and proofs as string of characters (or, equiv-
alently, natural numbers). Thus a relationship among formu-
las, such as being derivable by a given rule of inference, is just
a relationship among strings (or natural numbers). Although
it’s tedious, it’s not hard to define a predicate Provable so that
Provable(p) means that the string p is derivable in the axiomatic
system A from its axioms and by its rules of inference. Just to
give the idea, here is the beginning of the top-down definition
of this predicate:

Provable(e) = dp{ProofOf(p,e)}
ProofOf(p,e) = IsaProof(p) A e = last(p)
IsaProof(p) = Axiom(p)V
dgds{p = postfix(q, s) A DerivableFrom(s, ¢) }

These definitions make use of simple operations on sequences
of strings (such as last, which returns the last element of the
sequence, and postfix, which adds an element to the end of the
sequence), which also must be defined. Ultimately we get down

296

CHAPTER 6. LIMITATIONS OF THE DISCRETE

to basic properties of strings (such as one being a substring of
another), but these are easy to define in any reasonably powerful
axiomatic system. If these definitions are carried out correctly,
then we will be able to prove:

P is provable in A if and only if Provable(p) is prov-
able in A, where p is the string representing proposi-
tion P.

Class Expressions

By formula we mean a syntactically legal string in the language
of the formal system A, and by class expression we mean a
formula with one free variable (i.e., one variable not “bound”
by a quantifier). This is an example of a class expression:

‘In{n =2 x m}’

(In this case ‘n’ is a free variable and ‘m’ a bound variable.)
Intuitively, this formula denotes the class of all even numbers.

It is simple to write a program that substitutes one string for
another. Therefore we assume that we have a function subst such
that subst(p, s) replaces the free variable of the class expression
p by the string s. For example, if p =‘Im{n = 2 x m}’, then
subst(p, ‘17’) replaces ‘n’ by ‘17’ yielding:

subst(p, ‘177) = “Im{17 =2 x m}’

As we've said, a class expression is intended to represent the
class of numbers possessing the denoted property. Thus the
formula returned by subst(p, s) can be interpreted as the propo-
sition that s is a member of the class defined by p.

6.1.

UNDECIDABLE PROPOSITIONS

Definiteness of (2

Notice that we have constructed the undecidable proposition €2.
To see this, recall

Q(q) = -—Provable[subst(s,s)] and
q ‘=Provable[subst (s, s)]’

Then expand the definition of €2:

Q(q)
—Provable[subst(q, ¢)]

—Provable[subst (‘-Provable[subst (s, s)]’,
‘=Provable[subst (s, s)])]

—Provable(‘—~Provable[subst (‘~Provable[subst (s, s)]’,
‘=Provable[subst (s, 5)]")]")

Q

You can now see that is a perfectly definite proposition; it and
the corresponding string w are 65 characters long (not counting

blanks).

Formalizing the Metamathematical Proof

To carry out a formal equivalent of the metamathematical proof
would require many tedious constructions that would add little
to understanding. Therefore my goal here will be to give just
enough detail to make it plausible that the proof can be for-
malized. As before, we have the axiomatic system A and the
undecidable proposition €2 constructed according to the Godel
procedure. Since © = —Provable(w) means that w, the embed-
ded replica of €2, is not provable in a, the embedded replica of

298 CHAPTER 6. LIMITATIONS OF THE DISCRETE

A, we see that 2 makes a true assertion. However, since the
proof refers to the meaning of €2, it’s necessary to construct
a model for A. Therefore, the formal system A’ in which the
metamathematical proof will be expressed must be sufficiently
powerful to allow the construction of formal interpretations. To
accomplish this we need to be able to talk about the formulas
of A, for which arithmetic is sufficient, as we’ve seen, and we
need to be able to define functions mapping these formulas into
various subsets of the domain of interpretation, which is a set.
Therefore, the mathematical apparatus of set theory is sufficient
for defining interpretations, and set theory can be formalized by
means of the Zermelo-Fraenkel axioms (p. 310) — though no
one knows if they are consistent. Since ZF is sufficient to define
arithmetic, we can take A’ to be ZF without loss of generality.

To show in A’ that Q is true, we must formally derive Z{Q2}, the
interpretation in A’ of Q. First express Godel’s proof formally
in A’; it should be clear that this can be done, because the proof
uses only the most elementary proof techniques. Suppose the
formal expression of the result is the following proposition of A’

Consistent(A) — —Provableln(£2, .A).

Now Godel’s proof hinges on the construction of the embedded
system a so that ‘Provable(w)’ is derivable in A just when § is
derivable in A. Expressed formally in A" this is:

Provableln(€2, . A) <+ Provableln(‘Provable(w)’, A).
The interpretation of the latter proposition is:
Provableln(‘Provable(w)’, A) <+ Provableln(w, a).
Now notice that the interpretation in A’ of is:
I{Q} <> Z{‘—Provable(w)’} <+ —Provableln(w, a).
Combining the implications we have:
Consistent (A) — Z{Q}.

Therefore, we have a formal proof that if A is consistent then
its Godel proposition Q is true. (Of course, an inconsistent
axiomatic system has no models, and so we cannot even talk of
its propositions being true or false.)

6.2. THE UNDECIDABLE AND THE UNCOMPUTABLE 299

6.2 The Undecidable and the Uncomputable

6.2.1 Introduction

In this section we investigate Alan Turing’s (1912-1954) famous proof
of the undecidability of the halting problem.® This result and its gen-
eralization — Rice’s theorem — demonstrate inherent limitations to
digital computation, and reveal an essential unpredictability in formal
systems.

If you have ever programmed a computer you know that if you make
a mistake your program may “go into an infinite loop.” That is, 1t will
run forever (or as long as you let it run), without ever stopping and
returning an answer. A common predicament, when running a new
program, is not knowing whether it’s in an infinite loop. It’s run for
a minute so far, which is longer than you thought it should run. But
does that mean that it’s in an infinite loop, or only that it’s slower
than expected? You let it run another five minutes, and it still hasn’t
halted. Now you’re becoming very suspicious, but you're still not sure
that it won’t return its answer in the next second or so. The trouble
is of course that you never know for sure whether it will halt until in
fact it does halts. It would surely be useful to have a way of telling
in advance whether the program will halt. Then we would know we’re
not waiting in vain. This is the halting problem.

Since a program may halt on some inputs but not on others, we
would like to know whether a given program will halt when run on a
given input. A procedure (i.e., a program) for deciding this is called
a decision procedure for the halting problem. We can imagine that
this would be a very complicated procedure, analyzing the text of the
program, and tracing its behavior on the given input. Nevertheless

SThe primary source for this section is Turing (OCN), which is reprinted in Davis
(Undec., pp. 116-154). Turing’s proof is discussed in most books on computability
theory and theoretical computer science.

300 CHAPTER 6. LIMITATIONS OF THE DISCRETE

it would be valuable. There are of course many other questions we
would like to ask about programs (when run on given inputs), such as
whether they will ever try to divide by zero, whether they will return a
particular output, and on and on. It would be useful to have decision
procedures for all these problems. The remarkable thing that Turing
proved is that there is no decision procedure for the halting problem,
and a simple extension of his proof shows that there is no decision
procedure for just about any property of interest. To understand this
fundamental limitation of computers, it’s important to see how it’s
proved. Therefore I'll present an informal overview of Turing’s proof
(using modern programming notations rather than Turing machines).
The similarity to Godel’s proof will be apparent.

6.2.2 Undecidability of the Halting Problem

This will be a proof by contradiction, much like Godel’s proof. There-
fore we suppose that we have a Boolean-valued procedure Halts(p,)
which returns true if program P halts on input 7, and returns false
otherwise. We assume that the program P is represented as a string of
characters p in the obvious way.” Technically, p is a string representing
a procedure declaration. For simplicity we will also assume that the
input ¢ is a string of characters; it will become clear that this does not
limit the generality of the proof. In the Pascal® programming language
the declaration of Halts would look like this:

procedure Halts (p, i: string): Boolean;

I will use capital letters such as P to refer to programs (you can think of them
as machine code loaded into the computer’s memory). T will use small letters such
as p to refer to the source code for the program: a string of characters in some
programming language. Strictly speaking, a program P can be applied to some
input, but program text p cannot. Also, a decision procedure can analyze program
text p, but not the program P itself. For the most part these distinctions can be
ignored, however.

8Pascal is one of the most popular modern programming languages. Although
I use 1ts notation, it should be clear that the proof could be carried through using
any programming notation, including Markov algorithms. Turing of course used
Turing machines (Section 5.4.2). The principal reference for Pascal is Jensen &

Wirth (PUMR).

6.2. THE UNDECIDABLE AND THE UNCOMPUTABLE 301

begin

end {Halts};

Turing’s proof, like Cantor’s and Godel’s, is a diagonalization ar-
gument. In this case, since we are considering programs whose inputs
are strings, the diagonal is where the program is applied to itself (more
precisely, to the string representing itself). When a program is “self
applied” in this way it will either halt or not. As is usual in diagonal
proofs, we will construct a procedure that alters the diagonal. This pro-
cedure) will halt if a given program does not halt when self applied,
and will not halt, if the given program does halt under self-application.
More precisely, Q(p) halts if and only if P(p) doesn’t.

procedure Q (p: string);

.. . declaration of Halts . . .
begin

if Halts (p, p) then 1: goto 1;
end {Q};

This is how @ works. It takes the input string p (representing a
program) and passes it to Halts as both the program and the input:
Halts(p, p). We have assumed that Halts will tell us correctly whether
P(p) halts. If P(p) does halt, then @) goes into an infinite loop (1: goto
1); otherwise it returns immediately (and therefore halts).

It should now be obvious how we will get our contradiction. Let ¢
be the program text representing the declaration of Q:

q =‘procedure Q (p: string); . . . end {Q};’

Consider the result of applying @ to this string, Q(gq). As we saw,
Q(p) halts if and only if P(p) doesn’t halt. Therefore Q)(¢) halts if and
only if Q(¢) doesn’t halt, which is a contradiction. More carefully, in

302 CHAPTER 6. LIMITATIONS OF THE DISCRETE

executing ()(¢) we compute Halts(q, ¢). We have assumed that this tells
us correctly whether Q(¢) halts. But whatever Halts says is contravened
by Q; if it says Q(q) halts, then @) loops forever; if it says it loops forever,
then () halts immediately. Thus our assumption, that Halts correctly
decides the halting problem, must be wrong. We are forced to conclude
that there is no decision procedure for the halting problem (see also
“Picture of the Diagonal,” p. 304).

6.2.3 General Undecidability

We have seen that the halting problem is undecidable. You might sus-
pect that this is a peculiarity of this problem, and that other interesting
problems might be decidable. Unfortunately this is not the case. There
is a generalization of Turing’s results, known as Rice’s theorem (Rice,
CRES), which says that all interesting problems are undecidable. It
will be easier to say what is meant by “interesting” after I sketch the
proof.

The proof follows the same outline as Turing’s. Assume that we
have a decision procedure DoesX(p,), which tells us if a program P
does something interesting X when applied to an input :. Then con-
struct a diagonal procedure () as before:

procedure Q (p: string);

. . . declaration of DoesX . . .
begin

if DoesX (p, p) then don’t do X
else do X;

end {Q};

In other words, if P(p) does X, then Q(p) doesn’t do X; if P(p)
doesn’t do X then Q(p) does do it. The contradiction arises when we
ask whether Q(q) does X, for @) is constructed so that Q(q) does X
if and only if Q(¢) doesn’t do X. Therefore there can be no decision
procedure for determining whether a program does X. But what is X7

It is virtually anything. The only real restriction is that it must be

6.2. THE UNDECIDABLE AND THE UNCOMPUTABLE 303

in the power of the program to do it or not do it, otherwise we cannot
construct). This includes just about any property of interest (e.g.,
dividing by zero, returning a particular number). Roughly, if it’s not
in the power of the language to do X, then there’s not much point in a
decision procedure that tells if a program does X, since in fact it never
will.

If we look carefully at the proof of these undecidability results, then
we can see some hidden assumptions in them. Bringing these assump-
tions to light will help us to understand the scope and limitations of
these results. We have already noted that the proof assumes that it’s
possible to “do” or “not do” the thing in question. In general, most
logical properties of the program are controllable, although some phys-
ical properties (such as the amount of space or time used by the pro-
gram) may not be. Another assumption is that the procedure @) can
be constructed. For example, we have assumed that we can perform a
conditional test (if ... then ... else ...), although this is hardly a ques-
tionable assumption. More significantly, we have assumed that there is
no limit on the size of a program. For example, if the largest program
allowed were one million characters, and if it took 999999 characters
to define DoesX, then we would not be able to construct @); it would be
too big. Of course, when we define programming languages, and study
the logical properties of computers, we avoid putting arbitrary limits
on the sizes of things. On the other hand, it’s important to keep in
mind that most of these results depend on the potential infinities (i.e.
infinite producibility, p. 255) that abound in the theory of computation
and formal language theory. All real computers are finite, as are the
programs that run on them. Real computers are equivalent to finite-
state machines, not Turing Machines. Therefore we must be careful in
applying these undecidability results to real computers and programs.
(See the appendices beginning on p. 304 for the halting problem for
finite state machines, and for an example of a property to which Rice’s
theorem does not apply.)

We have been talking about programs, but they are just the fi-
nal culmination of the idea of a calculus: finite arrangements of unin-
terpreted tokens manipulated mechanically according to finite, formal
rules. Thus these undecidability results inform us of the inherent limita-
tions of discrete formal systems (calculi). On one hand, formal systems

304 CHAPTER 6. LIMITATIONS OF THE DISCRETE

are too weak: they are incapable of deciding many interesting ques-
tions, in particular, most any property of formal systems in general.
On the other hand, they are too powerful. They are so unpredictable
that most of their interesting properties are undecidable by any rigor-
ous (mechanizable) process. Formal systems are too weak to determine
their own power.

Picture of the Diagonal

Let pq,ps2,... be a list of all the procedure declarations and
Py, P, ... the corresponding procedures. Then we can make a
table of the truth value returned for each pair (F;, p;). The table
might look like this:

Pr P2 P33 P4 P5 Ds
Py T F F T F
P | F T F F T
Ps| FF F F F
Pl F T T

F [T] F

The diagonal elements are in boxes. We have constructed a
procedure () whose halting behavior differs from the diagonal:

‘Pl P2 P3 P4
Q|F F T F

Now we can see the contradiction directly. We have assumed
that every program appears somewhere in the list P, P, ...
But by construction ¢} differs in its halting behavior from every
program in the list. Therefore () cannot appear in the list. Since
the existence of the procedure Halts is the only questionable
thing required for the definition of), it must be Halts that
doesn’t exist.

Example of a Property Not Covered

6.2.

THE UNDECIDABLE AND THE UNCOMPUTABLE

For an example of a property X not under the control of the pro-
cedure (), consider “halts in ten seconds”. Intuitively is seems
like this property ought to be decidable: just run the program
for ten seconds, and at the end of that time return true if the
program has halted and false if it hasn’t. And in fact our proof
of the general undecidability result does not contradict this, for
it’s not necessarily in our power to “do X”. For example, sup-
pose DoesX requires at least ten seconds to run (as it would for
our hypothesized decision procedure). Then it’s no longer in @’s
power to halt within ten seconds, since more than ten seconds
have already elapsed. Of course this does not mean that “halts
in ten seconds” is decidable; it only means that our proof does
not show that it’s undecidable. However, our intuitive argument
suggests it is decidable.

305

Decidability of Halting Problem for FSMs

All real computers are finite state machines (all the memory
cells, registers, etc. together can be in only a finite — though
very large — number of states). But we can decide the halting
problem for an N-state finite state machine as follows: Run
the machine for N 4+ 1 cycles. If it has not halted by N +
1 cycles, then it’s in an infinite loop, since there are only N
states, and whenever it returns to a previously visited state it
must thereafter repeat the states that followed that state. (This
assumes that the machine is deterministic, i.e., that its future
action is determined by its present state.)

Although real computers are finite-state machines, computer sci-
ence theory uses the Turing machine model, since the number
of states is so large. (If a computer has one megabyte of mem-
ory, then the number of states is 28X2% 4 % 102525222 and
this doesn’t count internal registers or auxiliary memory, such
as disks. In effect, it’s presumed that this number is sufficiently
large that it’s a good approximation to infinity. Nevertheless,
it’s worth keeping in mind that real computers are not in fact

306 CHAPTER 6. LIMITATIONS OF THE DISCRETE

equivalent to Turing machines. Infinite producibility is an ide-
alizing assumption.

Relation of Turing’s and Godel’s Theorems

It is not coincidental that Godel’s and Turing’s proofs are so sim-
ilar; they are really equivalent results. For example, you can see
that Turing’s theorem implies Godel’s as follows. It is straight-
forward, though rather tedious, to define in an axiomatic system
A a predicate Halts(p, ¢) that is true just when the procedure P
(defined by string p) halts on input string ¢. (This assumes that
A is sufficiently rich to express the semantics of a programming
language, but this requires nothing beyond elementary number
theory.) The proposition Halts(q, ¢) (where ¢ is the string repre-
senting procedure)) must be undecidable in A, since otherwise
we could solve the halting problem as follows: Program a pro-
cedure to enumerate in order of increasing length all the proofs
in A. If Halts(q, ¢) is decidable, then we must eventually enu-
merate a proof of either Halts(q, ¢) or —=Halts(q, ¢). Whichever
we enumerate first gives the solution to the halting problem,
but since this is unsolvable, the proposition Halts(q, ¢) must be
undecidable. Thus A is incomplete.

6.3. THE LOWENHEIM-SKOLEM THEOREM 307
6.3 The Lowenheim-Skolem Theorem

6.3.1 Background

Godel’s Theorem says that we can never adequately axiomatize a mod-
estly rich body of knowledge, since our axioms must be either incon-
sistent or incomplete. This is an important limitation on the power of
formal systems. Before we leave this topic, however, we must discuss
another result, which limits them in a different but equally significant
way. This is the Lowenheim-Skolem Theorem (1915, 1920), which im-
plies that no axiomatic system can uniquely characterize the real num-
bers, or even the integers.? However, to state this theorem, we will
need some terminology.

In Section 5.2 we said that a model is an interpretation that results
in the axioms and theorems being true of the domain. Thus, in trying
to axiomatize any body of knowledge it’s important that the intended
interpretation be a model of the axioms, and — if we want our axioms
to uniquely characterize that body — that that interpretation be the
only model. Axiomatic systems with only one model are sometimes
called categorical axiom systems. (See also “Uniqueness of Models,” on
p. 309.)

There is of course no guarantee that an axiomatic system has a
model. For example, as we would expect, inconsistent systems have no
models, because their doing so would require contradictions to hold in
fact. Technically, we say that an inconsistent system is not satisfiable.
It is certainly not obvious that even consistent systems are in general
satisfiable, but this is in fact the case, a result first proved by Godel and
sometimes known as his Completeness Theorem. To prove this result
we construct ad hoc interpretations in which the symbols are essentially
interpreted as themselves. Thus the domain of the interpretation is a
set of formulas (symbol strings), and the function and relation symbols
denote functions and relations on symbol strings. This is a technical
trick that allows the theorem to be proved, but it also has important

9Leopold Lowenheim: 1878-1957; Thoralf Skolem: 1887-1963. Discussions of
the Lowenheim-Skolem Theorem can be found in Kneebone (MLF'M, pp. 70-78,
303-307) and the article “Systems, Formal, and Models of Formal Systems” in
Edwards (P, Vol. 8, pp. 61-74).

308 CHAPTER 6. LIMITATIONS OF THE DISCRETE

implications, to which we now turn.

6.3.2 The Theorem

We’ve argued that any consistent axiomatic system has a model in
which the domain is a set of formulas. But formulas are finite strings
of characters from a finite alphabet, and so the set of formulas must be
at most denumerable (see below, p. 310). Thus a consistent axiomatic
system has a denumerable model. This is essentially the Lowenheim-
Skolem Theorem.

Now this is a remarkable result. To see this, consider a typical
axiomatization of set theory, such as the Zermelo-Fraenkel axioms, so
long as expressed in finite texts over a finite alphabet. These axioms
are often taken as the foundations of all mathematics (see p. 310). In
particular, the ZF (Zermelo-Fraenkel) axioms are sufficiently powerful
to prove the existence of the real numbers, and to express Cantor’s
diagonalization proof of the nondenumerability of the reals. Thus the
7ZF axioms assert the existence of a nondenumerable domain of objects.
But the Lowenheim-Skolem Theorem tells us that these axioms (if they
are consistent) must have a denumerable model. Thus, even though we
can prove in this system that there’s no one-to-one correspondence be-
tween the integers and the real numbers, there is some denumerable
domain of objects, which includes all the objects that are called real
numbers in the system. This is Skolem’s Paradox: In our system we
prove the theorem that the individuals are not denumerable. By def-
inition, the theorems make true statements about the domains of the
system’s models. But we know that this system has a model with a
denumerable domain. How can this be?

The explanation of Skolem’s Paradox seems to be this. The denu-
merable model of ZF set theory contains objects, functions and rela-
tions corresponding to the symbols of the axiom system. Suppose R
represents the set of real numbers in this system. Since the model is
denumerable, there will be a denumerable number of objects in the do-
main that make the proposition ‘z € R’ true. Therefore, relative to the
model, the reals are denumerable. On the other hand, we can prove in
the system that there is no enumeration of all the x such that = € R.
But this means that there is no function in the domain capable of enu-

6.3. THE LOWENHEIM-SKOLEM THEOREM 309

merating the objects that correspond to these x. Thus, although these
objects are denumerable relative to the model, they are nondenumer-
able relative to the formal system. Although this explanation resolves
the paradox, it leaves us without any absolute notion of denumerability.
What had been well understood is now problematic.

It must be noted that Skolem’s Paradox is not a flaw in some par-
ticular axiomatic system (such as Zermelo-Fraenkel set theory). It is a
property of any consistent axiomatic system. From it we conclude that
any attempt to axiomatize the real numbers (or any other nondenumer-
able domain) must fail, because the axioms permit as models essentially
different (non-isomorphic), denumerable domains. We cannot have a
categorical axiomatization of the real numbers (p. 307). In this sense
the attempt to reduce the continuous to the discrete has failed. But the
situation is worse than this, for a corollary of the Lowenheim-Skolem
Theorem shows that a consistent axiomatic system must have models of
all transfinite cardinalities (Edwards, EP, Vol. 8, p. 72). For example,
an axiomatization of the integers must have models that are nondenu-
merable, and hence essentially different from the intended model. Thus
we are denied even a categorical axiomatization of the integers!

Uniqueness of Models

It’s easy to see that in a strict sense models cannot be unique.
For example, the natural numbers 0,1,2,... (with the usual
interpretations) form a model for the Peano axioms, but so do
the symbols O, Ob, Obb, ... (Interpret ‘0’ as the symbol O and
interpret ‘succ(n)’ to mean ‘append the symbol b on the right
end of the string n’.) Thus, the best that we can hope for
is that all the models are isomorphic (i.e., there is a one-to-
one relationship between the objects of the two domains that
preserves the functions and relations on the domains). In this
case we have the correspondences

0~ O, 1~0b 2~ Obb,

Also, corresponding to the successor function on the natural
numbers we have the operation of appending b on the end of a
string. Thus when we say that an axiomatic system is categor-
ical, or that it has one model, we will intend by this that all its
models are equivalent “up to isomorphism.”

310 CHAPTER 6. LIMITATIONS OF THE DISCRETE

Why a Set of Formulas Must be Denumerable

To see why a set of formulas must be denumerable, suppose we
have an alphabet of N characters; then every string of characters
can be thought of as a base N number. Therefore to every
formula there will correspond a natural number, and so there
can be at most as many formulas as there are natural numbers.

Notice that this argument depends on both the alphabet and the
sizes of the formulas being finite. As we’ve seen (Sec. 5.5), these
have been characteristics of formal systems since Pythagoras’
time.

Zermelo-Fraenkel Axioms

The Zermelo-Fraenkel axioms refers to the most commonly ac-
cepted axiomatization of set theory. Zermelo (1871-1953) pro-
posed seven axioms in 1908; these were revised and two addi-
tional axioms were added in 1922 by Fraenkel (1891-1965) and
Skolem (1887-1963). These Zermelo-Fraenkel-Skolem axioms
are the most commonly used, and a version of them is shown
below. Another common axiomatization was developed from
1925-1954 by von Neumann (1903-1957) and Bernays (1888-
7). See Beth (F'M, pp. 381-398) for a discussion.

Axiom of Extensionality VSVI'[Va(z € S« a2 €T) — S =
T]. That is, if two sets have the same members, then they
are the same set.

Axiom of Empty Set 3SVa[-(z € S)]. That is, there is a set
with no members.

Axiom of Coupling VaVy3dSVz[z € S < (z = 2V z = y)].
That is, for any « and y, there is a set whose only members
are x and .

6.3. THE LOWENHEIM-SKOLEM THEOREM 311

Axiom of Power Sets VSIPVI'(I' € P <+ 1T C S). That is,
for any set S there is a set (the power set of S) whose
members are the subsets of S.

Axiom of Union VS3UVz[z € U <+ 3T (x e TAT € §)]. If S
is a set of sets, then there is a set whose members are just
the members of the members of 5.

Axiom of Infinity 35[0 € S AVa(x € S — zU {2z} € 9)].
This guarantees the existence of at least one infinite set,
corresponding to the natural numbers, that’s constructed
from nested empty sets:

{0)

Axiom of Regularity VSIT[S =0V (T € SAVz[z € S —
—(z € T)])]. This axiom prohibits S € S and “unfounded”
sets with infinite descending chains of members, S1 3 53 5
5’3 .,

Schema for Axioms of Replacement VaVyVy'[(F(z,y) A (z,y)) —
y =y — 3SVe[z € S & FJw(w € T A F(w,z))], where
F(z,y) does not contain y’, T or w. This is an aziom
schema, that is, a pattern for generating an axiom for each
suitable, expressible relation F. This says, roughly, that
there is a set corresponding to any “reasonable” property
expressible in the system. More precisely, it says that for
each expressible function F and each set T there is a set
S = F[T] that is the image of T" under F.

Axiom of Choice VyVz[(y € SAz € SNy # z) = FoVw(v €
yNwEgyVwdz])] - Juvyly €S - IoVtt =v e [t €
u At € y])]. This says, roughly, that for any indexed set
of nonempty sets, there is a function of the indices that
“chooses” members of the sets. That is, if .S, is nonempty
for each a € I, then there is a function F on I such that

F(a) € S,.

312 CHAPTER 6. LIMITATIONS OF THE DISCRETE

6.4 Epistemological Implications

The conclusion is inescapable that even for such a fixed, well de-
fined body of mathematical propositions, mathematical thinking
is, and must remain, essentially creative. To the writer’s mind,
this conclusion must inevitable result in at least a partial re-
versal of the entire axiomatic trend of the later nineteenth and
early twentieth centuries, with a return to meaning and truth
as being of the essence of mathematics.

— Emil Post

6.4.1 Limitations of the Discrete

It is important to realize that the results described in this chapter apply
to any body of formalizable (i.e. verbalizable) knowledge, not merely
to theories that are currently expressed as formal systems.l® Thus
these limitations apply to the very ideal to which scientific knowing has
aspired, for we expect that the basic truths of a scientific theory should
be expressible in a finite number of words, and we also expect that at
each step in reasoning about this theory we need to consider only a finite
number of words (and thus that the inferential processes are finitary).
The result is that a reasonable scientific theory is formalizable, and
therefore the Godel and Lowenheim-Skolem results apply to it. In this
section we consider briefly the implications of these results for scientific
knowing.

Godel’s Incompleteness Theorem shows us that a formalizable body
of knowledge must be incomplete. In other words, there must be some
questions about the subject matter that the theory does not permit
answering. Conversely, a reasonably rich, consistent, complete body
of knowledge cannot be expressed in a finite number of words. Thus
the complete understanding of any subject matter must take a very

10More accurately, they apply only if the required formal system is “reasonably
powerful” (p. 285) and consistent. Since it seems likely that any scientific theory
must include multiplication and division, the hypothesis of “reasonable power” will
be suppressed in the following discussion.

6.4. EPISTEMOLOGICAL IMPLICATIONS 313

different form from what has traditionally been expected of scientific
knowledge. In this sense we can never say all that there is to know
about a subject. (Compare Socrates, Section 2.4.3.)

Even if we cannot say everything about a subject, it would seem
that we ought at least to be able to uniquely characterize what it is we
are talking about, but the Lowenheim-Skolem Theorem says that this
is not so. For example, we cannot characterize the real continuum in
a finite number of words, since any attempt must also apply to sets of
objects that are essentially different from the reals (i.e., that are not
isomorphic to the reals).

Although it appeared that the arithmetization of geometry — the
reduction of the continuous to the discrete — had been successfully ac-
complished (Section 4.3), we now see that it hasn’t. Finite words cannot
exhaust the continuum. Eudoxus and Fuclid eschewed the arithmeti-
zation of geometry and founded each science on its own axioms (p. 61),
but we now see that even this cannot succeed.

The limitations of the discrete go beyond its inability to encompass
the continuous. As noted (p. 309), a corollary of the Léwenheim-Skolem
Theorem shows that even the integers cannot be uniquely characterized
in a finite number of words. Also, Godel’s Incompleteness Theorem
applies to the integers. Like the Pythagoreans 2500 years ago, we have
discovered in number theory an element that is irreducibly irrational,
ultimately illogical. (Recall the full meanings of rational and logos,
Section 2.2.2.) Thus the most important limitation of the discrete is
not the lack of a theory of the continuous. Rather it is the weakness
of any body of knowledge that is in principle formalizable, for such
knowledge must be both incomplete and incapable of characterizing its
subject matter, except in the most trivial cases.!!

6.4.2 Transcending the Discrete

There seem to be several possible ways of escaping from the limitations
of the discrete. One comes from rejecting an assumption that we owe

11n general, none of these limitations apply to calculi with a finite number of
possible formulas, or to finite domains of interpretation. Nor do they apply to
certain simple infinite systems, as we saw in Section 5.3. However we face these
limitations in any system powerful enough to be mathematically interesting.

314 CHAPTER 6. LIMITATIONS OF THE DISCRETE

to Plato and Aristotle, the assumption that true knowledge can be
expressed in a closed deductive system, that is, in a system in which
all the truths derive from a finite number of explicitly stated axioms.
What is the alternative? Since a formal system is defined by its axioms
and rules of inference, we may allow either or both of these to be open-
ended. 1 will briefly discuss the possibilities.

If the set of axioms is to be open-ended, then we must provide a
nondeductive process for extending it. (The process must be nonde-
ductive, since otherwise the new “axioms” are just theorems in a con-
ventional axiomatic system.) Examples are such ampliative inferential
processes as induction and abduction; these may lead to the invention
or revision of axioms on the basis of observation (see “Definitions,”
p. 315.).

Ampliative inferential processes cannot be considered merely tem-
porary measures necessary only until a science is completed. Rather,
the practice of observation, invention and revision must be considered
an integral part of the body of knowledge. The nature of such “practi-
cal knowledge” or skill is a central topic of Part III.

Traditionally, it has been assumed that there is a fixed set of finitary
inferential processes — the laws of logic. Therefore, one possible means
of transcending the discrete is to allow the set of inferential processes to
be open-ended, to recognize situations in which the inferential resources
of a formal system can be extended. Notice, however, that there cannot
be formal rules for this extension, otherwise they could be made a part
of a formal system, and the usual limitations would apply. This means
that we cannot expect precise specifications of when an extension is
allowed or of the results of the extension.

How then does inferential extension take place? It seems that there
must be some process for proposing possible extensions and for judging
if they should be made (else we will have no confidence in the resulting
formal systems). There are several possibilities. One is that we may
discover new, intuitively valid inferential principles that can be formal-
ized as deductive rules. However, in the 2300 years since Aristotle first
formalized logic, this has rarely happened, so it seems unlikely that this
process will be a continuing source of new inference rules. (Remember:
our goal is not to fill in the gaps in an otherwise complete theory (which

6.4. EPISTEMOLOGICAL IMPLICATIONS 315

Definitions

Ampliative: “In [ampliative inference] the facts summed up in
the conclusion are not among those stated in the premisses.
... These are the only inferences which increase our real
knowledge, however useful the others may be.” (Peirce,

CP, 2.669-693)

Abduction: “Abduction consists in studying facts and devis-
ing a theory to explain them.” (Peirce, C'P, 5.145)

Induction: “Induction is the experimental testing of a theory.”

(Peirce, C'P, 5.145)

On Peirce’s notions of ampliative (or synthetic) inference, ab-
duction (or hypothesis) and induction, see Buchler (PWP,
Ch. 11), Goudge (ToP, Ch. 6) and Rescher (PPS, Ch. 3).

is impossible), but to find processes that are continually productive of
new rules of inference.)

A more likely possibility is that new rules will be identified and
justified by their consequences. For example, new deductive rules may
be accepted because they allow the derivation of classes of theorems
for which we have empirical or other informal reasons to want to be
provable. This is, necessarily, an informal, ampliative process. As
in the case of open-ended axioms, we see that a body of knowledge
with open-ended inferential processes must include a set of ampliative
practices that cannot be expressed as formal rules.

Is there any sense in which an open body of knowledge could be
considered complete? For this to be the case we would have to believe
that the ampliative processes are adequate to answer any question ask-
able in the system. Are there such processes? Many people believe that
the empirical methods of the sciences are complete in this way, but the
claim needs justification.

More generally we can ask, “What would be the nature of amplia-

316 CHAPTER 6. LIMITATIONS OF THE DISCRETE

Open-ended Mathematics

The need for nondeductive processes for extending the basic
truths of a body of knowledge may not seem surprising for
those sciences traditionally considered empirical (physics, bi-
ology, psychology, etc.). However the G&del and Lowenheim-
Skolem results show that ampliative inference is also necessary
in mathematics. Although this is not widely acknowledged, the
history of mathematics exhibits many nondeductive processes;
see Section ?7?.

tive processes that could be complete?” In effect we want processes that
are guaranteed to gives answers but that satisfy certain criteria of ob-
jectivity (e.g., public accessibility, replicability, criticizability). These
are essentially social criteria, and their roles in a theory of knowledge
are discussed later (Sections 7?7, ?? and 77).

There is a more radical way by which we may transcend the dis-
crete. As noted previously (p. 293), there are “semiformal” systems
that are both consistent and complete, but they diverge radically from
the finitary assumptions that underlie the traditional view of scientific
knowledge. We can entertain systems that are infinitary in either their
axioms or rules of inference (or both).

Since the time of Pythagoras it has been assumed that the basic
truths of a science must be (de)finite (i.e., finite and definite). One
way to escape the limitations of the discrete is to reject this assump-
tion by permitting axioms that are essentially infinite, either in number
or structure.!? For example certain propositions about all the points of
a continuum cannot be expressed in a finite number of discrete symbols,
although they could be finitely expressed in a continuous language (for
example a language whose “formulas” are images drawn from a contin-

12By “essentially infinite” I mean that they cannot be generated by some regular
(i.e. finitely specifiable) way.

6.4. EPISTEMOLOGICAL IMPLICATIONS 317

y
A

= X

Figure 6.3: Simple Example of a Continuous Rule. Just as an discrete axiom
‘PV P = P’ shows how to map the formulas of one discrete space into those
of another (for example, this one takes ‘A V A’ into ‘A”, “(pAq)V (pAgq)
into ‘(p A ¢)’), so the graph above shows how each point in one continuum
(represented by the 2 axis) can be mapped into a point in another continuum
(the y axis). Note that the graph (the curved line) itself is the finite, written
representation of the correspondence, just as the string ‘PV P = P’ is in
the discrete case. Note also that there are infinitely many graphs arbitrarily
similar to the graph shown above.

uum). Further, if the axioms are themselves drawn from a continuum,
then there will be axioms that are arbitrarily “close” to one another;
in this sense we may call them indefinite axioms (Fig. 6.3).

There are two senses in which inference may be infinitary: in the
rules of inference or in proofs. Traditionally, semiformal systems per-
mit rules of inference with an infinite number of premises, such as the
“rule of infinite induction” (Edwards, EP, Vol. 3, p. 355). For example,
infinitary rules of inference could embody continua in their antecedent;
it would be natural to have continuous inferential rules of this kind to
go with the continuous axioms described above. Such rules could be
finitely specifiable in a continuous language (as would continuous ax-
ioms), but the decision as to whether a rule is applicable might require
arbitrarily precise discriminations.

Another source of infinitary inference is to allow infinite proofs.
These could of course be proofs with an infinite number of discrete

318 CHAPTER 6. LIMITATIONS OF THE DISCRETE

steps of the usual kind, but finite proof length can be preserved in
a system with continuous proofs, in which the theorems evolve from
the axioms by a continuous process. (Think of classical mechanics to
picture this possibility.)

What are the implications of infinitary systems for knowledge rep-
resentation? Here it will be helpful to distinguish the two senses of
the (de)finite: the definite (or discrete) and the finite (or bounded), for
while we’ve found the limitations of the discrete, there are still advan-
tages to hewing to the bounded. The reason is that if we are interested
in the representation of knowledge in people and computers, then we
must limit ourselves to representations that are physically realizable,
which means that they must be bounded (require finite matter, energy
and time).

Hence, it seems that we may escape the limitations of calculi while
saving their physical realizability by representing knowledge in contin-
uous, bounded structures — what topologists call continua.’® When
analyzed independently of its physical embodiment, such a structure
may be called a continuous formal system or a formal continuum, the
principal topic of Part IV."

13This term is defined in slightly different ways by different authors; I will take
a continuum to be a connected compact metric space with more than one point
(Iyanaga & Kawada, DM, §81C).

MMacLennan (LNAT) argues for the necessity of “continuous logics” and presents
two examples. Both are based on continuous “propositions” and continuous rules
of inference, but one has the traditional discrete derivations while the other uses
continuous derivation. Some steps toward continuous formal systems can be found
in MacLennan (CCKR, CSS, GAC, WLIOW, IS). Already a number of theoretical
results show the ability of continuous computational models to transcend the limits

of Turing computability (Pour-El & Richards, 1979, 1981, 1982; Stannett, 1990).

