
Chapter �

Limitations of the Discrete

My purpose here has been � � � to show that a speci�c G�odel
proposition � neither provable nor disprovable using the axioms
and rules of the formal system under consideration � is clearly
seen� using our insights into the meanings of the operations in
question� to be a true proposition�

� Roger Penrose �ENM� p� ���	

The import of Goedel
s conclusions is far�reaching� though it has
not yet been fully fathomed� � � � Goedel
s conclusions also have
a bearing on the question whether calculating machines can be
constructed which would be substitutes for a living mathemati�
cal intelligence� � � � There is no immediate prospect of replacing
the human mind by robots� � � � None of this is to be construed�
however� as an invitation to despair� or as an excuse for mystery
mongering�

� Ernest Nagel and James R� Newman �GP�WM	

In the preceding chapters we have discussed the ���� year history
of two related ideas� one epistemological� the other mathematical� The
epistemological idea is that knowledge can be represented in the for�
mulas of a calculus and that cognition is calculation � formal manipu�
lation of those formulas� The mathematical idea is the arithmetization

���
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of geometry� which is motivated by the belief that the discrete is funda�
mentally more comprehensible than the continuous� The latter theme
will be brought to its conclusion in this chapter� for we will consider
several results that place fundamental limits on the arithmetization of
geometry and on the axiomatization of mathematics� Although these
results were established in the 
���s and were well�known to the sci�
enti�c community by mid�century� philosophers� psychologists and AI
researchers continued to use discrete� symbolic representations through
most of the twentieth century� Therefore� the next two chapters will
continue the historical presentation� and discuss the use of calculi in
philosophy� cognitive science and arti�cial intelligence�

In this chapter we will consider important theorems proved by Godel�
Turing and other logicians� and I will try to explain the proofs of these
theorems� Nonmathematical readers may wonder why they are being
subjected to these proofs� but the quotations that open this chapter
show the reason� Godel�s theorem rivals quantum mechanics in the
number of unwarranted conclusions it has engendered� often by math�
ematically sophisticated commentators� No doubt I am also misinter�
preting the signi�cance of these results� but I hope at least that readers
who understand the proofs will be in a better position to draw their
own informed conclusions about their signi�cance� Nevertheless� some
technical issues have been separated out� and I suggest that the re�
mainder be skimmed if the going gets too tough� Be cognizant though
of the risk you run by taking this route��

Like a Rorshach test� quantum mechanics and Godel�s theorem in�
vite the projection of our fears and hopes� and the popular fascination
with these two ideas is perhaps a re�ection of profound societal changes
now in progress�

�Cognoscenti will no doubt be outraged by my informality� but I have tried to
steer a middle course� avoiding a myriad of uninteresting details� while allowing a
majority of readers to grasp the essence of the proofs�
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��� Undecidable Propositions

����� G�odel�s Incompleteness Theorem

If an axiomatic system is consistent and complete� then for each propo�
sition P � exactly one of the pair P and not�P is provable�� This is
clearly the most desirable situation� since then the axioms say neither
too much nor too little� One of the landmarks of twentieth century
logic is Kurt Godel�s 
��
 proof that no �reasonably powerful� ax�
iomatic system can be both consistent and complete� So that you will
understand the signi�cance of this theorem I will sketch its proof� �If
you are interested in the details� see the appendices to this section�
beginning on p� �����

I�ve said that Godel�s result applies to �reasonably powerful ax�
iomatic systems�� What exactly does this mean� It will be most clear
after we�ve completed the proof� for then you will be able to see what
we�ve assumed� But I can give a rough de�nition now� We will make
use of the usual laws of logic� including the law of the excluded mid�
dle� However� the proof is completely constructive� and appeals only
to simple properties of the natural numbers� Thus it is acceptable even
to intuitionists� Further we will assume that our axiomatic system is
completely formal� so that the axioms are just strings of characters and
the rules of inference are just string replacement rules �such as Markov
algorithms�� Since strings of characters can be encoded as integers
�just think of the bit strings representing both�� the resources of such
an axiomatic system are adequate for talking about axiomatic systems
�including itself�� In the following� let A be any reasonably powerful
axiomatic system�

To prove the completeness of an axiomatic system we must show
that every proposition is decidable� to prove its incompleteness we
must show that at least one is undecidable� Godel�s great accom�

�G�odel ��������	
� himself has provided a fairly readable� although somewhat
oversimpli�ed� overview of his proof in his original paper �Davis� Undec�� pp� ����
A well�known popular account is Nagel � Newman �GP�� which is abbreviated in
Nagel � Newman �GP�WM�� See also �G�odel�s Theorem� in Edwards �EP� Vol� ��
pp� ��
��	�� A good general reference for this chapter is Kneebone �MLFM��
although there are many other discussions of these topics�
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plishment was to consider the possibility that axiomatizations of sig�
ni�cant mathematics are incomplete� and thus to try to construct a
counterexample��

Our task is� given a consistent axiomatic system A� construct a
proposition � guaranteed to be undecidable in A� One way to ac�
complish this is to make � a proposition of A that asserts its own
unprovability� then assuming the decidability of � will lead to a con�
tradiction� For if � is provable then it�s true� and hence unprovable
�since � asserts its own unprovability�� Conversely� if �� is provable
�and hence true�� then � must not be provable �since A is consistent��
which means � is true �since it asserts ��s unprovability�� Again we
have a contradiction� Thus we will have the incompleteness of A if such
an � can be constructed�

If � asserts its own unprovability then it is a proposition about for�
mulas in A and their derivability from the axioms of A by its rules of
inference� Hence � is a proposition about strings and their relation�
ships� Thus� if � is to be expressible inA thenAmust be able to express
propositions about strings� Any reasonably powerful axiomatic system
can do so� in fact it�s su�cient that A be able to express propositions
in elementary number theory �such as divisibility and prime numbers�
see �Godel Numbers�� p� �����

Let � be the string representing �� we�ve seen that the incomplete�
ness of A will be established if � asserts its own unprovability�

� � �Provable���

Unfortunately we have no guarantee such an � exists� Indeed� since
this equation looks suspiciously like Russell�s paradoxical set �p� �����
we are well advised to question its existence and to seek a construc�
tive de�nition� Our doubts are con�rmed by attempting an explicit
de�nition of � by replacing � by ��Provable�����

� � �Provable���

�Mathematicians had good reason to be optimistic about proving consistency
and completeness� recall the consistency and completeness results discussed in Sec�
tion ��� Von Neumann is reported to have reproached himself for not proving the
incompleteness result because he had never seriously considered its possibility�
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� �Provable���Provable�����

� �Provable���Provable���Provable�������
���

Thus � looks like an in�nite formula� which violates the �nitary as�
sumptions of formal systems� Therefore the construction of � must
take a di�erent tack�

Suppose we make a list of all the decidable propositions of some
form� If we can then construct a proposition of this form that is guaran�
teed to not be in the list� then we will have constructed an undecidable
proposition� This suggests that we use a diagonalization proof such as
Cantor used to show that for any list of rational numbers there is a real
number that does not appear in that list �Section ��
����

Therefore we will consider propositions of the form P �s� where s

is a string and P is a property of strings� We call such a property
decidable if for each s the proposition P �s� is decidable� and we call
it undecidable if there is at least one s for which P �s� is undecidable�
Each property P is represented by a string p and each proposition P �s�
is represented by a string� which we write subst�p� s�� which refers to
the result of substituting s into p �see �Class Expressions�� p� ��� for
details��

Now consider all the strings p�� p�� � � � representing decidable prop�
erties of strings� let Pi be the corresponding properties� Since Pi�pj� is
decidable for every i and j� we can make a table showing the truth or
falsity of these propositions�

p� p� p� p� p� p� � � �

P� T T F F T F � � �

P� F T T F F T � � �

P� F F F F F F � � �

P� F T F T F T � � �
���

���
���

���
���

���
���

Since we assume the list includes all decidable properties of strings� we
can construct an undecidable property by making it the negation of the
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diagonal �shown in boxes��

p� p� p� p� � � �

Q F F T F � � �

Thus we want Q�pi� � �Pi�pi��
Since Q is a property of strings we must de�ne it in terms of the

string pi rather than the property Pi it represents� therefore we repre�
sent the proposition Pi�pi� by the string subst�pi� pi�� Further� since the
Pi are decidable properties� Pi�pi� is true just when Provable�subst�pi� pi��
is true �see p� ����� These observations permit an explicit de�nition of
the property Q�

Q�p� � �Provable�subst�p� p�� ���
�

Clearly Q cannot appear in the list of decidable properties since Q�pi�
is the negation of Pi�pi� for every i�

Since Q is an undecidable property there must be at least one string
s for which Q�s� is an undecidable proposition� Taking a clue from
Russell�s Paradox� we try q� the string representing Q� Then we have�

Q�q� � �Provable�subst�q� q�� �����

This is exactly the string required� as we can see by letting � � Q�q�
and � � subst�q� q�� which is the string representing �� Then Eq� ���
becomes

� � �Provable��� �����

Thus � � Q�q� is exactly the undecidable proposition we sought� See
Figures ��
 and ����

In an inconsistent axiomatic system every formula is provable� On
the other hand� as we�ve just shown� in a consistent system that�s su��
ciently powerful �i�e�� powerful enough to talk about strings or numbers�
there is always a proposition � that�s undecidable� �And note that we
can actually construct this proposition� refer to �De�niteness of ���
p� ���� to see it�� Thus� if such a system is consistent� it cannot be
complete� and if it�s complete it cannot be consistent� Alternately� no
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hyp.

a

A

Pr (ω)Pr(ω) ≅≅

ϖω

 ΩΩ

axioms

Axioms

Figure ��
� G�odel
s Theorem� First Part� The diagram depicts the �rst
part of the proof of G�odel
s Incompleteness Theorem� showing that  is not
provable� The outer box represents the axiomatic system A� the inner box
represents a� the axiomatic system encoded in G�odel numbers or in some
other way that allows it to be a subject within A� Dotted arrows indi�
cate deductions from hypotheses later determined to be false� thin undotted
arrows indicate true deductions� Lines with dots on both ends connect con�
tradictory situations� Thick arrows indicate the possibility or impossibility
of derivations from �Axioms
� the axioms of A� or from �axioms
� the encoded
axioms of A in a� We begin at �hyp�
 with the hypothesis that  is derivable
from the axioms of A� The dotted arrow shows that �Provable��� is also
provable� But the latter is provable if and only if � is not derivable from
the encoded axioms of a� as indicated by the crossed arrow in the inner box�
Now derivations in a mirror those in A� so we must conclude that  is not
derivable in A� This contradicts the hypothesis so we conclude that  is not
provable in A�
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hyp.

a

A

Pr (ω)Pr(ω) ≅≅

ϖω

ΩΩ

axioms

Axioms

Figure ���� G�odel
s Theorem� Second Part� The diagram depicts the second
part of the proof of G�odel
s Incompleteness Theorem� showing that � is
not provable in A� Start with the hypothesis �marked �hyp�
	 that � is
derivable from the axioms of A� from which we conclude �� A dotted
line indicates that the consistency of A allows us to conclude that  is
not derivable� Therefore� in the encoded system a we know � is likewise
underivable� Hence we know �Provable��	� but this is exactly � which
contradicts �� Therefore we reject the hypothesis and conclude � is not
provable in A�
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reasonably powerful axiomatic system can be both consistent and com�
plete� This is G�odel�s Incompleteness Theorem� Clearly� this result was
devastating to the formalist program��

����� Corollaries to G�odel�s Theorem

Godel dealt an additional blow to the formalist program� for he showed
that a �su�ciently powerful� consistent axiomatic system cannot prove
its own consistency� This result is a simple corollary to the incom�
pleteness proof� To see this� let C be any proposition asserting the
consistency of A� since everything is provable in an inconsistent sys�
tem �p� �		�� C can be an assertion that some well�formed formula is
unprovable� This will do�

C � �Provable��� � 
��

The proof of Godel�s Theorem can be easily formalized in A� so we
know that if A is consistent� then � is not provable in it� Since C

implies the consistency of A we can prove the implication�

C � �Provable���

But � � �Provable���� so we can likewise prove in A the implication�

C � �

Thus� if C �the consistency of A� were provable in A� then � would
also be provable in A� But since we�ve seen that � is not provable in
A� the consistency of A must be likewise unprovable�

In summary� Godel showed that any reasonably powerful� consistent
axiomatic system must have undecidable propositions� and that among
these is the fact of its own consistency 

�The proof outlined above requires A to satisfy a stronger property than simple
consistency� it�s called ��consistency� I pass over this detail for three reasons�
��� reasonable axiomatic systems are ��consistent� ��� the use of ��consistency is
buried in the proof of the correctness of Provable �p� ����� which I�ve omitted� and
��� Rosser �ESTGC� showed that G�odel�s Theorem can be strengthened so as to
require only consistency�
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We turn to a surprising observation� We have seen that the for�
mula �� which asserts the unprovability of �� is undecidable in the
axiomatic system� Nevertheless� I claim that � is true� and prove it
by the following metamathematical reasoning� We supposed that � is
provable� and reached a contradiction� Therefore� applying the usual
proof by contradiction� we must conclude that � is unprovable� That is�
we have proved �metamathematically� that � is unprovable �in the ax�
iomatic system�� Since � asserts the unprovability of � in the axiomatic
system �recall � � �Provable����� we have proved � metamathemat�
ically� We�ve decided the undecidable proposition Of course there�s
no contradiction here� We proved that � was undecidable in the given
axiomatic system� It was this very fact that allowed us to then decide
� by metamathematical reasoning � outside the system�

Although this is an important point� too much can be made of it�
For example� the metamathematical proof has been the basis for claims
that informal mathematics is inherently more powerful than formal
mathematics �Penrose� ENM�� Therefore the metamathematical proof
deserves some scrutiny�

To many people the term metamathematical suggests some kind of
supramathematical intuition� but� as we�ve seen� it simply denotes the
use of mathematical techniques to reason about mathematics �see Sec�
tion ��
�	�� This is exactly what we did in Godel�s proof when we de�
�ned predicates such as Provable and IsaProof �p� ����� Thus Godel�s
proof is metamathematical� Also� contrary to some claims �Penrose�
ENM�� there is nothing inherently unformalizable about the meta�
mathematical proof �see �Formalizing the Metamathematical Proof��
p� ����� It is di�erent from Godel�s proof in that it talks about the
truth of propositions� whereas Godel�s talks only about their provabil�
ity� Nevertheless� it�s a routine exercise �see below� to construct a
formal system A� capable of expressing propositions about the truth
of the propositions of another system A� Similarly an A�� can be con�
structed that can express the semantics of A�� and so on as necessary�
It could be objected that this very argument shows the greater power
of informal mathematics� since the informal metamathematical proof
is valid for any axiomatic system A� whereas the formal version re�
quires constructing a new axiomatic system A� for each A� Indeed�
informal mathematics can talk about the truth of its own propositions�
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But even this self�descriptive ability may be formalized� since we can
construct an axiomatic system A� capable of expressing propositions
about its own semantics� If we do so� however� we will make an inter�
esting discovery� such an axiomatic system must be inconsistent since
it is powerful enough to express a contradiction analogous to the Liar
Paradox �p� ��
�� De�ne the predicate Q�p� � �P �p�� where P is
the interpretation of p� and consider the truth of Q�q�� where q is the
encoded representation of Q��

Again it might seem that the greater power of informal mathematics
has been established� since a formal system with its expressive power
must be inconsistent� but this does not follow� Since the Liar Paradox
can also be expressed in informal mathematics� it follows that infor�

mal mathematics is inconsistent� just like A�� Indeed� the original Liar
Paradox �p� ��
� is a creature of informal logic� which is also inconsis�
tent�

The phenomenon to be explained is not the power of informal rea�
soning� since it�s already so powerful that it permits the Liar Paradox�
Rather� the mystery to be solved is the process by which the commu�
nity of mathematicians avoids perpetually encountering contradictions�
It seems there must be nonlogical constraints that keep reasoning in
check� I will address this issue in more detail in Section �� �see also
MacLennan� DD��

In the �� years since Godel published his result there has been little
consensus about its implications� However� we can make the following
observations� First� the result is extremely robust� it does not depend
on details of the formal system� Obvious escapes� such as going to mul�
tivalued logics �logics with truth values in addition to true and false��
do not change the result� There are systems ��semiformal� systems�
that are complete and su�ciently powerful to prove their own consis�
tency� but they diverge radically from the �nitary goals of formalism�
For example� some have in�nitely large rules of inference� while others

�This assumes the axiomatic system assigns a truth value to every proposition
and so also to Q�q�� It is of course possible to design a self�referential axiomatic
system if it does not assign a truth value to propositions such as Q�q�� It also
assumes A� is powerful enough to talk about its own syntax �for which arithmetic
is su�cient�� and to talk about its own semantics �for which set theory is su�cient��
See Beth �FM� pp� ������ for a detailed discussion�
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permit in�nitely long proofs �Edwards� EP� Vol� �� p� �����
Certainly� if we restrict our attention to formal systems in the con�

ventional sense� which presumes that they are �nite �Section ����� then
Godel�s theorem applies� Any such system �unless it�s extraordinar�
ily weak� must have at least one undecidable proposition �unless the
additional proposition made it inconsistent�� And even if we add this
proposition as an additional axiom� the resulting formal system must
still have undecidable propositions� And yet all these propositions may
be decided by metamathematical reasoning �which is just the garden
variety mathematical reasoning applied to formal systems�� Thus it
seems that there is a sense in which a formal system can never capture
the process of mathematics� This much is clear� Further implications
are much less apparent� �See also Section ��	��
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G�odel Numbers

G�odel wanted to reason about proofs� so he needed a representa�
tion for formulas and sequences of formulas� Now we would use
strings of characters or linked lists� but G�odel didn
t have these
computer programming concepts� so he represented a sequence
of numbers n�� n�� � � � � nk by the number

N � pn�
�
� pn�

�
� � � � � pnkk

where p�� � � � � pk are the �rst k prime numbers� By the prime
factorization theorem� the i�th element of the sequence could be
extracted by calculating the exponent of pi in N � Sequences of
characters were then represented by sequences of numbers� each
number representing a character �now� we would probably use
its ASCII code	� Recall that Leibniz used the prime factoriza�
tion theorem to represent �nite sets �p� ���	�

When we deal with an axiomatic system metamathematically�
we treat formulas and proofs as string of characters �or� equiv�
alently� natural numbers	� Thus a relationship among formu�
las� such as being derivable by a given rule of inference� is just
a relationship among strings �or natural numbers	� Although
it
s tedious� it
s not hard to de�ne a predicate Provable so that
Provable�p	 means that the string p is derivable in the axiomatic
system A from its axioms and by its rules of inference� Just to
give the idea� here is the beginning of the top�down de�nition
of this predicate�

Provable�e	 � �pfProofOf�p� e	g

ProofOf�p� e	 � IsaProof�p	� e � last�p	

IsaProof�p	 � Axiom�p	�

�q �sfp � post�x�q� s	� DerivableFrom�s� q	g

These de�nitions make use of simple operations on sequences
of strings �such as last� which returns the last element of the
sequence� and post�x� which adds an element to the end of the
sequence	� which also must be de�ned� Ultimately we get down
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to basic properties of strings �such as one being a substring of
another	� but these are easy to de�ne in any reasonably powerful
axiomatic system� If these de�nitions are carried out correctly�
then we will be able to prove�

P is provable in A if and only if Provable�p	 is prov�
able in A� where p is the string representing proposi�
tion P �

Class Expressions

By formula we mean a syntactically legal string in the language
of the formal system A� and by class expression we mean a
formula with one free variable �i�e�� one variable not �bound�
by a quanti�er	� This is an example of a class expression�

��mfn � ��mg


�In this case �n
 is a free variable and �m
 a bound variable�	
Intuitively� this formula denotes the class of all even numbers�

It is simple to write a program that substitutes one string for
another� Therefore we assume that we have a function subst such
that subst�p� s	 replaces the free variable of the class expression
p by the string s� For example� if p ���mfn � � �mg
� then
subst�p� ���
	 replaces �n
 by ���
 yielding�

subst�p� ���
	 � ��mf�� � ��mg


As we
ve said� a class expression is intended to represent the
class of numbers possessing the denoted property� Thus the
formula returned by subst�p� s	 can be interpreted as the propo�
sition that s is a member of the class de�ned by p�
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De�niteness of �

Notice that we have constructed the undecidable proposition �
To see this� recall

Q�q	 � �Provable�subst�s� s	� and

q � ��Provable�subst�s� s	�


Then expand the de�nition of �

 � Q�q	

� �Provable�subst�q� q	�

� �Provable�subst���Provable�subst�s� s	�
�

��Provable�subst�s� s	�
	�

� �Provable���Provable�subst���Provable�subst�s� s	�
�

��Provable�subst�s� s	�
	�
	

You can now see that  is a perfectly de�nite proposition� it and
the corresponding string � are �� characters long �not counting
blanks	�

Formalizing the Metamathematical Proof

To carry out a formal equivalent of the metamathematical proof
would require many tedious constructions that would add little
to understanding� Therefore my goal here will be to give just
enough detail to make it plausible that the proof can be for�
malized� As before� we have the axiomatic system A and the
undecidable proposition  constructed according to the G�odel
procedure� Since  � �Provable��	 means that �� the embed�
ded replica of � is not provable in a� the embedded replica of
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A� we see that  makes a true assertion� However� since the
proof refers to the meaning of � it
s necessary to construct
a model for A� Therefore� the formal system A� in which the
metamathematical proof will be expressed must be su�ciently
powerful to allow the construction of formal interpretations� To
accomplish this we need to be able to talk about the formulas
of A� for which arithmetic is su�cient� as we
ve seen� and we
need to be able to de�ne functions mapping these formulas into
various subsets of the domain of interpretation� which is a set�
Therefore� the mathematical apparatus of set theory is su�cient
for de�ning interpretations� and set theory can be formalized by
means of the Zermelo�Fraenkel axioms �p� ���	 � though no
one knows if they are consistent� Since ZF is su�cient to de�ne
arithmetic� we can take A� to be ZF without loss of generality�

To show in A� that  is true� we must formally derive Ifg� the
interpretation in A� of � First express G�odel
s proof formally
in A�� it should be clear that this can be done� because the proof
uses only the most elementary proof techniques� Suppose the
formal expression of the result is the following proposition of A��

Consistent�A	� �ProvableIn��A	�

Now G�odel
s proof hinges on the construction of the embedded
system a so that �Provable��	
 is derivable in A just when  is
derivable in A� Expressed formally in A� this is�

ProvableIn��A	� ProvableIn��Provable��	
�A	�

The interpretation of the latter proposition is�

ProvableIn��Provable��	
�A	� ProvableIn��� a	�

Now notice that the interpretation in A� of  is�

Ifg � If��Provable��	
g � �ProvableIn��� a	�

Combining the implications we have�

Consistent�A	� Ifg�

Therefore� we have a formal proof that if A is consistent then
its G�odel proposition  is true� �Of course� an inconsistent
axiomatic system has no models� and so we cannot even talk of
its propositions being true or false�	
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��� The Undecidable and the Uncomputable

����� Introduction

In this section we investigate Alan Turing�s �
�
�!
��	� famous proof
of the undecidability of the halting problem�� This result and its gen�
eralization � Rice�s theorem � demonstrate inherent limitations to
digital computation� and reveal an essential unpredictability in formal
systems�

If you have ever programmed a computer you know that if you make
a mistake your program may �go into an in�nite loop�� That is� it will
run forever �or as long as you let it run�� without ever stopping and
returning an answer� A common predicament� when running a new
program� is not knowing whether it�s in an in�nite loop� It�s run for
a minute so far� which is longer than you thought it should run� But
does that mean that it�s in an in�nite loop� or only that it�s slower
than expected� You let it run another �ve minutes� and it still hasn�t
halted� Now you�re becoming very suspicious� but you�re still not sure
that it won�t return its answer in the next second or so� The trouble
is of course that you never know for sure whether it will halt until in
fact it does halts� It would surely be useful to have a way of telling
in advance whether the program will halt� Then we would know we�re
not waiting in vain� This is the halting problem�

Since a program may halt on some inputs but not on others� we
would like to know whether a given program will halt when run on a
given input� A procedure �i�e�� a program� for deciding this is called
a decision procedure for the halting problem� We can imagine that
this would be a very complicated procedure� analyzing the text of the
program� and tracing its behavior on the given input� Nevertheless

�The primary source for this section is Turing �OCN�� which is reprinted in Davis
�Undec�� pp� �������� Turing�s proof is discussed in most books on computability
theory and theoretical computer science�
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it would be valuable� There are of course many other questions we
would like to ask about programs �when run on given inputs�� such as
whether they will ever try to divide by zero� whether they will return a
particular output� and on and on� It would be useful to have decision
procedures for all these problems� The remarkable thing that Turing
proved is that there is no decision procedure for the halting problem�
and a simple extension of his proof shows that there is no decision
procedure for just about any property of interest� To understand this
fundamental limitation of computers� it�s important to see how it�s
proved� Therefore I�ll present an informal overview of Turing�s proof
�using modern programming notations rather than Turing machines��
The similarity to Godel�s proof will be apparent�

����� Undecidability of the Halting Problem

This will be a proof by contradiction� much like Godel�s proof� There�
fore we suppose that we have a Boolean�valued procedure Halts�p� i�
which returns true if program P halts on input i� and returns false
otherwise� We assume that the program P is represented as a string of
characters p in the obvious way�� Technically� p is a string representing
a procedure declaration� For simplicity we will also assume that the
input i is a string of characters� it will become clear that this does not
limit the generality of the proof� In the Pascal� programming language
the declaration of Halts would look like this�

procedure Halts �p� i� string�� Boolean�

�I will use capital letters such as P to refer to programs �you can think of them
as machine code loaded into the computer�s memory�� I will use small letters such
as p to refer to the source code for the program� a string of characters in some
programming language� Strictly speaking� a program P can be applied to some
input� but program text p cannot� Also� a decision procedure can analyze program
text p� but not the program P itself� For the most part these distinctions can be
ignored� however�

�Pascal is one of the most popular modern programming languages� Although
I use its notation� it should be clear that the proof could be carried through using
any programming notation� including Markov algorithms� Turing of course used
Turing machines �Section ������ The principal reference for Pascal is Jensen �
Wirth �PUMR��
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� � �
begin
� � �
end fHaltsg�

Turing�s proof� like Cantor�s and Godel�s� is a diagonalization ar�
gument� In this case� since we are considering programs whose inputs
are strings� the diagonal is where the program is applied to itself �more
precisely� to the string representing itself�� When a program is �self
applied� in this way it will either halt or not� As is usual in diagonal
proofs� we will construct a procedure that alters the diagonal� This pro�
cedure Q will halt if a given program does not halt when self applied�
and will not halt� if the given program does halt under self�application�
More precisely� Q�p� halts if and only if P �p� doesn�t�

procedure Q �p� string��
� � � declaration of Halts � � �
begin
if Halts �p� p� then �� goto ��
end fQg�

This is how Q works� It takes the input string p �representing a
program� and passes it to Halts as both the program and the input�
Halts�p� p�� We have assumed that Halts will tell us correctly whether
P �p� halts� If P �p� does halt� then Q goes into an in�nite loop ��� goto
��� otherwise it returns immediately �and therefore halts��

It should now be obvious how we will get our contradiction� Let q

be the program text representing the declaration of Q�

q ��procedure Q �p� string�� � � � end fQg��

Consider the result of applying Q to this string� Q�q�� As we saw�
Q�p� halts if and only if P �p� doesn�t halt� Therefore Q�q� halts if and
only if Q�q� doesn�t halt� which is a contradiction� More carefully� in
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executing Q�q� we compute Halts�q� q�� We have assumed that this tells
us correctly whether Q�q� halts� But whatever Halts says is contravened
by Q� if it says Q�q� halts� then Q loops forever� if it says it loops forever�
then Q halts immediately� Thus our assumption� that Halts correctly
decides the halting problem� must be wrong� We are forced to conclude
that there is no decision procedure for the halting problem �see also
�Picture of the Diagonal�� p� ��	��

����� General Undecidability

We have seen that the halting problem is undecidable� You might sus�
pect that this is a peculiarity of this problem� and that other interesting
problems might be decidable� Unfortunately this is not the case� There
is a generalization of Turing�s results� known as Rice�s theorem �Rice�
CRES�� which says that all interesting problems are undecidable� It
will be easier to say what is meant by �interesting� after I sketch the
proof�

The proof follows the same outline as Turing�s� Assume that we
have a decision procedure DoesX�p� i�� which tells us if a program P

does something interesting X when applied to an input i� Then con�
struct a diagonal procedure Q as before�

procedure Q �p� string��
� � � declaration of DoesX � � �
begin
if DoesX �p� p� then don�t do X

else do X�
end fQg�

In other words� if P �p� does X� then Q�p� doesn�t do X� if P �p�
doesn�t do X then Q�p� does do it� The contradiction arises when we
ask whether Q�q� does X� for Q is constructed so that Q�q� does X

if and only if Q�q� doesn�t do X� Therefore there can be no decision
procedure for determining whether a program does X� But what is X�

It is virtually anything� The only real restriction is that it must be
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in the power of the program to do it or not do it� otherwise we cannot
construct Q� This includes just about any property of interest �e�g��
dividing by zero� returning a particular number�� Roughly� if it�s not
in the power of the language to do X� then there�s not much point in a
decision procedure that tells if a program does X� since in fact it never
will�

If we look carefully at the proof of these undecidability results� then
we can see some hidden assumptions in them� Bringing these assump�
tions to light will help us to understand the scope and limitations of
these results� We have already noted that the proof assumes that it�s
possible to �do� or �not do� the thing in question� In general� most
logical properties of the program are controllable� although some phys�
ical properties �such as the amount of space or time used by the pro�
gram� may not be� Another assumption is that the procedure Q can
be constructed� For example� we have assumed that we can perform a
conditional test �if � � � then � � � else � � ��� although this is hardly a ques�
tionable assumption� More signi�cantly� we have assumed that there is
no limit on the size of a program� For example� if the largest program
allowed were one million characters� and if it took ��� ��� characters
to de�ne DoesX� then we would not be able to construct Q� it would be
too big� Of course� when we de�ne programming languages� and study
the logical properties of computers� we avoid putting arbitrary limits
on the sizes of things� On the other hand� it�s important to keep in
mind that most of these results depend on the potential in�nities �i�e�
in�nite producibility� p� ���� that abound in the theory of computation
and formal language theory� All real computers are �nite� as are the
programs that run on them� Real computers are equivalent to �nite�
state machines� not Turing Machines� Therefore we must be careful in
applying these undecidability results to real computers and programs�
�See the appendices beginning on p� ��	 for the halting problem for
�nite state machines� and for an example of a property to which Rice�s
theorem does not apply��

We have been talking about programs� but they are just the ��
nal culmination of the idea of a calculus� �nite arrangements of unin�
terpreted tokens manipulated mechanically according to �nite� formal
rules� Thus these undecidability results inform us of the inherent limita�
tions of discrete formal systems �calculi�� On one hand� formal systems
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are too weak� they are incapable of deciding many interesting ques�
tions� in particular� most any property of formal systems in general�
On the other hand� they are too powerful� They are so unpredictable
that most of their interesting properties are undecidable by any rigor�
ous �mechanizable� process� Formal systems are too weak to determine
their own power�

Picture of the Diagonal

Let p�� p�� � � � be a list of all the procedure declarations and
P�� P�� � � � the corresponding procedures� Then we can make a
table of the truth value returned for each pair �Pi� pj	� The table
might look like this�

p� p� p� p� p� p� � � �

P� T T F F T F � � �

P� F T T F F T � � �

P� F F F F F F � � �

P� F T F T F T � � �
���

���
���

���
���

���
���

The diagonal elements are in boxes� We have constructed a
procedure Q whose halting behavior di�ers from the diagonal�

p� p� p� p� � � �

Q F F T F � � �

Now we can see the contradiction directly� We have assumed
that every program appears somewhere in the list P�� P�� � � �

But by construction Q di�ers in its halting behavior from every
program in the list� Therefore Q cannot appear in the list� Since
the existence of the procedure Halts is the only questionable
thing required for the de�nition of Q� it must be Halts that
doesn
t exist�

Example of a Property Not Covered
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For an example of a propertyX not under the control of the pro�
cedure Q� consider �halts in ten seconds�� Intuitively is seems
like this property ought to be decidable� just run the program
for ten seconds� and at the end of that time return true if the
program has halted and false if it hasn
t� And in fact our proof
of the general undecidability result does not contradict this� for
it
s not necessarily in our power to �do X�� For example� sup�
pose DoesX requires at least ten seconds to run �as it would for
our hypothesized decision procedure	� Then it
s no longer in Q
s
power to halt within ten seconds� since more than ten seconds
have already elapsed� Of course this does not mean that �halts
in ten seconds� is decidable� it only means that our proof does
not show that it
s undecidable� However� our intuitive argument
suggests it is decidable�

Decidability of Halting Problem for FSMs

All real computers are �nite state machines �all the memory
cells� registers� etc� together can be in only a �nite � though
very large � number of states	� But we can decide the halting
problem for an N �state �nite state machine as follows� Run
the machine for N � � cycles� If it has not halted by N �
� cycles� then it
s in an in�nite loop� since there are only N

states� and whenever it returns to a previously visited state it
must thereafter repeat the states that followed that state� �This
assumes that the machine is deterministic� i�e�� that its future
action is determined by its present state�	

Although real computers are �nite�state machines� computer sci�
ence theory uses the Turing machine model� since the number
of states is so large� �If a computer has one megabyte of mem�
ory� then the number of states is ����

��

	 � � ���������� and
this doesn
t count internal registers or auxiliary memory� such
as disks� In e�ect� it
s presumed that this number is su�ciently
large that it
s a good approximation to in�nity� Nevertheless�
it
s worth keeping in mind that real computers are not in fact
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equivalent to Turing machines� In�nite producibility is an ide�
alizing assumption�

Relation of Turing�s and G�odel�s Theorems

It is not coincidental that G�odel
s and Turing
s proofs are so sim�
ilar� they are really equivalent results� For example� you can see
that Turing
s theorem implies G�odel
s as follows� It is straight�
forward� though rather tedious� to de�ne in an axiomatic system
A a predicate Halts�p� i	 that is true just when the procedure P
�de�ned by string p	 halts on input string i� �This assumes that
A is su�ciently rich to express the semantics of a programming
language� but this requires nothing beyond elementary number
theory�	 The proposition Halts�q� q	 �where q is the string repre�
senting procedure Q	 must be undecidable in A� since otherwise
we could solve the halting problem as follows� Program a pro�
cedure to enumerate in order of increasing length all the proofs
in A� If Halts�q� q	 is decidable� then we must eventually enu�
merate a proof of either Halts�q� q	 or �Halts�q� q	� Whichever
we enumerate �rst gives the solution to the halting problem�
but since this is unsolvable� the proposition Halts�q� q	 must be
undecidable� Thus A is incomplete�
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��� The L�owenheim�Skolem Theorem

����� Background

Godel�s Theorem says that we can never adequately axiomatize a mod�
estly rich body of knowledge� since our axioms must be either incon�
sistent or incomplete� This is an important limitation on the power of
formal systems� Before we leave this topic� however� we must discuss
another result� which limits them in a di�erent but equally signi�cant
way� This is the Lowenheim�Skolem Theorem �
�
�� 
����� which im�
plies that no axiomatic system can uniquely characterize the real num�
bers� or even the integers�� However� to state this theorem� we will
need some terminology�

In Section ��� we said that a model is an interpretation that results
in the axioms and theorems being true of the domain� Thus� in trying
to axiomatize any body of knowledge it�s important that the intended
interpretation be a model of the axioms� and � if we want our axioms
to uniquely characterize that body � that that interpretation be the
only model� Axiomatic systems with only one model are sometimes
called categorical axiom systems� �See also �Uniqueness of Models�� on
p� �����

There is of course no guarantee that an axiomatic system has a
model� For example� as we would expect� inconsistent systems have no
models� because their doing so would require contradictions to hold in
fact� Technically� we say that an inconsistent system is not satis�able�
It is certainly not obvious that even consistent systems are in general
satis�able� but this is in fact the case� a result �rst proved by Godel and
sometimes known as his Completeness Theorem� To prove this result
we construct ad hoc interpretations in which the symbols are essentially
interpreted as themselves� Thus the domain of the interpretation is a
set of formulas �symbol strings�� and the function and relation symbols
denote functions and relations on symbol strings� This is a technical
trick that allows the theorem to be proved� but it also has important

�Leopold L�owenheim� �
	
���	� Thoralf Skolem� �

	������ Discussions of
the L�owenheim�Skolem Theorem can be found in Kneebone �MLFM� pp� 	��	
�
������	� and the article �Systems� Formal� and Models of Formal Systems� in
Edwards �EP� Vol� 
� pp� ���	���
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implications� to which we now turn�

����� The Theorem

We�ve argued that any consistent axiomatic system has a model in
which the domain is a set of formulas� But formulas are �nite strings
of characters from a �nite alphabet� and so the set of formulas must be
at most denumerable �see below� p� �
��� Thus a consistent axiomatic
system has a denumerable model� This is essentially the Lowenheim�
Skolem Theorem�

Now this is a remarkable result� To see this� consider a typical
axiomatization of set theory� such as the Zermelo�Fraenkel axioms� so
long as expressed in �nite texts over a �nite alphabet� These axioms
are often taken as the foundations of all mathematics �see p� �
��� In
particular� the ZF �Zermelo�Fraenkel� axioms are su�ciently powerful
to prove the existence of the real numbers� and to express Cantor�s
diagonalization proof of the nondenumerability of the reals� Thus the
ZF axioms assert the existence of a nondenumerable domain of objects�
But the Lowenheim�Skolem Theorem tells us that these axioms �if they
are consistent� must have a denumerable model� Thus� even though we
can prove in this system that there�s no one�to�one correspondence be�
tween the integers and the real numbers� there is some denumerable
domain of objects� which includes all the objects that are called real
numbers in the system� This is Skolem�s Paradox� In our system we
prove the theorem that the individuals are not denumerable� By def�
inition� the theorems make true statements about the domains of the
system�s models� But we know that this system has a model with a
denumerable domain� How can this be�

The explanation of Skolem�s Paradox seems to be this� The denu�
merable model of ZF set theory contains objects� functions and rela�
tions corresponding to the symbols of the axiom system� Suppose �
represents the set of real numbers in this system� Since the model is
denumerable� there will be a denumerable number of objects in the do�
main that make the proposition �x � �� true� Therefore� relative to the
model� the reals are denumerable� On the other hand� we can prove in
the system that there is no enumeration of all the x such that x � ��
But this means that there is no function in the domain capable of enu�
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merating the objects that correspond to these x� Thus� although these
objects are denumerable relative to the model� they are nondenumer�
able relative to the formal system� Although this explanation resolves
the paradox� it leaves us without any absolute notion of denumerability�
What had been well understood is now problematic�

It must be noted that Skolem�s Paradox is not a �aw in some par�
ticular axiomatic system �such as Zermelo�Fraenkel set theory�� It is a
property of any consistent axiomatic system� From it we conclude that
any attempt to axiomatize the real numbers �or any other nondenumer�
able domain� must fail� because the axioms permit as models essentially
di�erent �non�isomorphic�� denumerable domains� We cannot have a
categorical axiomatization of the real numbers �p� ����� In this sense
the attempt to reduce the continuous to the discrete has failed� But the
situation is worse than this� for a corollary of the Lowenheim�Skolem
Theorem shows that a consistent axiomatic system must have models of
all trans�nite cardinalities �Edwards� EP� Vol� �� p� ���� For example�
an axiomatization of the integers must have models that are nondenu�
merable� and hence essentially di�erent from the intended model� Thus
we are denied even a categorical axiomatization of the integers 

Uniqueness of Models

It
s easy to see that in a strict sense models cannot be unique�
For example� the natural numbers �� �� �� � � � �with the usual
interpretations	 form a model for the Peano axioms� but so do
the symbols ��������� � � � �Interpret ��
 as the symbol � and
interpret �succ�n	
 to mean �append the symbol � on the right
end of the string n
�	 Thus� the best that we can hope for
is that all the models are isomorphic �i�e�� there is a one�to�
one relationship between the objects of the two domains that
preserves the functions and relations on the domains	� In this
case we have the correspondences

� 
 �� � 
 ��� � 
 ���� � � �

Also� corresponding to the successor function on the natural
numbers we have the operation of appending � on the end of a
string� Thus when we say that an axiomatic system is categor�
ical� or that it has one model� we will intend by this that all its
models are equivalent �up to isomorphism��



�
� CHAPTER �� LIMITATIONS OF THE DISCRETE

Why a Set of Formulas Must be Denumerable

To see why a set of formulas must be denumerable� suppose we
have an alphabet ofN characters� then every string of characters
can be thought of as a base N number� Therefore to every
formula there will correspond a natural number� and so there
can be at most as many formulas as there are natural numbers�

Notice that this argument depends on both the alphabet and the
sizes of the formulas being �nite� As we
ve seen �Sec� ���	� these
have been characteristics of formal systems since Pythagoras

time�

Zermelo�Fraenkel Axioms

The Zermelo�Fraenkel axioms refers to the most commonly ac�
cepted axiomatization of set theory� Zermelo ����� �!��	 pro�
posed seven axioms in �!��� these were revised and two addi�
tional axioms were added in �!�� by Fraenkel ���!� �!��	 and
Skolem ����� �!��	� These Zermelo�Fraenkel�Skolem axioms
are the most commonly used� and a version of them is shown
below� Another common axiomatization was developed from
�!�� �!�� by von Neumann ��!�� �!��	 and Bernays ����� 
"	� See Beth �FM� pp� ��� �!�	 for a discussion�

Axiom of Extensionality �S�T ��x�x � S � x � T 	 � S �
T �� That is� if two sets have the same members� then they
are the same set�

Axiom of Empty Set �S�x���x � S	�� That is� there is a set
with no members�

Axiom of Coupling �x�y�S�z�z � S � �z � x � z � y	��
That is� for any x and y� there is a set whose only members
are x and y�
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Axiom of Power Sets �S�P�T �T � P � T  S	� That is�
for any set S there is a set �the power set of S	 whose
members are the subsets of S�

Axiom of Union �S�U�x�x � U � �T �x � T � T � S	�� If S
is a set of sets� then there is a set whose members are just
the members of the members of S�

Axiom of In�nity �S�� � S � �x�x � S � x � fxg � S	��
This guarantees the existence of at least one in�nite set�
corresponding to the natural numbers� that
s constructed
from nested empty sets�

f fg� ffgg� fffggg� � � � g �

Axiom of Regularity �S�T �S � � � �T � S � �x�x � S �
��x � T 	�	�� This axiom prohibits S � S and �unfounded�
sets with in�nite descending chains of members� S� � S� �
S� � � � ��

Schema for Axioms of Replacement �x�y�y���F �x� y	� �x� y�		�
y � y�� � �S�x�x � S � �w�w � T � F �w� x		�� where
F �x� y	 does not contain y�� T or w� This is an axiom

schema� that is� a pattern for generating an axiom for each
suitable� expressible relation F � This says� roughly� that
there is a set corresponding to any �reasonable� property
expressible in the system� More precisely� it says that for
each expressible function F and each set T there is a set
S � F �T � that is the image of T under F �

Axiom of Choice �y�z��y � S � z � S � y �� z	� �v�w�v �
y � �w �� y � w �� z�	� � �u�y�y � S � �v�t�t � v � �t �
u � t � y�	�� This says� roughly� that for any indexed set
of nonempty sets� there is a function of the indices that
�chooses� members of the sets� That is� if Sa is nonempty
for each a � I � then there is a function F on I such that
F �a	 � Sa�
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��� Epistemological Implications

The conclusion is inescapable that even for such a �xed� well de�
�ned body of mathematical propositions� mathematical thinking

is� and must remain� essentially creative� To the writer
s mind�
this conclusion must inevitable result in at least a partial re�
versal of the entire axiomatic trend of the later nineteenth and
early twentieth centuries� with a return to meaning and truth
as being of the essence of mathematics�

� Emil Post

����� Limitations of the Discrete

It is important to realize that the results described in this chapter apply
to any body of formalizable �i�e� verbalizable� knowledge� not merely
to theories that are currently expressed as formal systems��	 Thus
these limitations apply to the very ideal to which scienti�c knowing has
aspired� for we expect that the basic truths of a scienti�c theory should
be expressible in a �nite number of words� and we also expect that at
each step in reasoning about this theory we need to consider only a �nite
number of words �and thus that the inferential processes are �nitary��
The result is that a reasonable scienti�c theory is formalizable� and
therefore the Godel and Lowenheim�Skolem results apply to it� In this
section we consider brie�y the implications of these results for scienti�c
knowing�

Godel�s Incompleteness Theorem shows us that a formalizable body
of knowledge must be incomplete� In other words� there must be some
questions about the subject matter that the theory does not permit
answering� Conversely� a reasonably rich� consistent� complete body
of knowledge cannot be expressed in a �nite number of words� Thus
the complete understanding of any subject matter must take a very

�	More accurately� they apply only if the required formal system is �reasonably
powerful� �p� �
� and consistent� Since it seems likely that any scienti�c theory
must include multiplication and division� the hypothesis of �reasonable power� will
be suppressed in the following discussion�
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di�erent form from what has traditionally been expected of scienti�c
knowledge� In this sense we can never say all that there is to know

about a subject� �Compare Socrates� Section ��	����
Even if we cannot say everything about a subject� it would seem

that we ought at least to be able to uniquely characterize what it is we
are talking about� but the Lowenheim�Skolem Theorem says that this
is not so� For example� we cannot characterize the real continuum in
a �nite number of words� since any attempt must also apply to sets of
objects that are essentially di�erent from the reals �i�e�� that are not
isomorphic to the reals��

Although it appeared that the arithmetization of geometry � the
reduction of the continuous to the discrete � had been successfully ac�
complished �Section 	���� we now see that it hasn�t� Finite words cannot
exhaust the continuum� Eudoxus and Euclid eschewed the arithmeti�
zation of geometry and founded each science on its own axioms �p� �
��
but we now see that even this cannot succeed�

The limitations of the discrete go beyond its inability to encompass
the continuous� As noted �p� ����� a corollary of the Lowenheim�Skolem
Theorem shows that even the integers cannot be uniquely characterized
in a �nite number of words� Also� Godel�s Incompleteness Theorem
applies to the integers� Like the Pythagoreans ���� years ago� we have
discovered in number theory an element that is irreducibly irrational�
ultimately illogical� �Recall the full meanings of rational and logos�
Section ������� Thus the most important limitation of the discrete is
not the lack of a theory of the continuous� Rather it is the weakness
of any body of knowledge that is in principle formalizable� for such
knowledge must be both incomplete and incapable of characterizing its
subject matter� except in the most trivial cases���

����� Transcending the Discrete

There seem to be several possible ways of escaping from the limitations
of the discrete� One comes from rejecting an assumption that we owe

��In general� none of these limitations apply to calculi with a �nite number of
possible formulas� or to �nite domains of interpretation� Nor do they apply to
certain simple in�nite systems� as we saw in Section ��� However we face these
limitations in any system powerful enough to be mathematically interesting�



�
	 CHAPTER �� LIMITATIONS OF THE DISCRETE

to Plato and Aristotle� the assumption that true knowledge can be
expressed in a closed deductive system� that is� in a system in which
all the truths derive from a �nite number of explicitly stated axioms�
What is the alternative� Since a formal system is de�ned by its axioms
and rules of inference� we may allow either or both of these to be open�
ended� I will brie�y discuss the possibilities�

If the set of axioms is to be open�ended� then we must provide a
nondeductive process for extending it� �The process must be nonde�
ductive� since otherwise the new �axioms� are just theorems in a con�
ventional axiomatic system�� Examples are such ampliative inferential
processes as induction and abduction� these may lead to the invention
or revision of axioms on the basis of observation �see �De�nitions��
p� �
����

Ampliative inferential processes cannot be considered merely tem�
porary measures necessary only until a science is completed� Rather�
the practice of observation� invention and revision must be considered
an integral part of the body of knowledge� The nature of such �practi�
cal knowledge� or skill is a central topic of Part III�

Traditionally� it has been assumed that there is a �xed set of �nitary
inferential processes � the laws of logic� Therefore� one possible means
of transcending the discrete is to allow the set of inferential processes to
be open�ended� to recognize situations in which the inferential resources
of a formal system can be extended� Notice� however� that there cannot
be formal rules for this extension� otherwise they could be made a part
of a formal system� and the usual limitations would apply� This means
that we cannot expect precise speci�cations of when an extension is
allowed or of the results of the extension�

How then does inferential extension take place� It seems that there
must be some process for proposing possible extensions and for judging
if they should be made �else we will have no con�dence in the resulting
formal systems�� There are several possibilities� One is that we may
discover new� intuitively valid inferential principles that can be formal�
ized as deductive rules� However� in the ���� years since Aristotle �rst
formalized logic� this has rarely happened� so it seems unlikely that this
process will be a continuing source of new inference rules� �Remember�
our goal is not to �ll in the gaps in an otherwise complete theory �which
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De�nitions

Ampliative� �In �ampliative inference� the facts summed up in
the conclusion are not among those stated in the premisses�
� � � These are the only inferences which increase our real
knowledge� however useful the others may be�� �Peirce�
CP� ����! �!�	

Abduction� �Abduction consists in studying facts and devis�
ing a theory to explain them�� �Peirce� CP� �����	

Induction� �Induction is the experimental testing of a theory��
�Peirce� CP� �����	

On Peirce
s notions of ampliative �or synthetic	 inference� ab�
duction �or hypothesis	 and induction� see Buchler �PWP�
Ch� ��	� Goudge �ToP� Ch� �	 and Rescher �PPS� Ch� �	�

is impossible�� but to �nd processes that are continually productive of
new rules of inference��

A more likely possibility is that new rules will be identi�ed and
justi�ed by their consequences� For example� new deductive rules may
be accepted because they allow the derivation of classes of theorems
for which we have empirical or other informal reasons to want to be
provable� This is� necessarily� an informal� ampliative process� As
in the case of open�ended axioms� we see that a body of knowledge
with open�ended inferential processes must include a set of ampliative
practices that cannot be expressed as formal rules�

Is there any sense in which an open body of knowledge could be
considered complete� For this to be the case we would have to believe
that the ampliative processes are adequate to answer any question ask�
able in the system� Are there such processes� Many people believe that
the empirical methods of the sciences are complete in this way� but the
claim needs justi�cation�

More generally we can ask� �What would be the nature of amplia�
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Open�ended Mathematics

The need for nondeductive processes for extending the basic
truths of a body of knowledge may not seem surprising for
those sciences traditionally considered empirical �physics� bi�
ology� psychology� etc�	� However the G�odel and L�owenheim�
Skolem results show that ampliative inference is also necessary
in mathematics� Although this is not widely acknowledged� the
history of mathematics exhibits many nondeductive processes�
see Section ���

tive processes that could be complete�� In e�ect we want processes that
are guaranteed to gives answers but that satisfy certain criteria of ob�
jectivity �e�g�� public accessibility� replicability� criticizability�� These
are essentially social criteria� and their roles in a theory of knowledge
are discussed later �Sections ��� �� and ����

There is a more radical way by which we may transcend the dis�
crete� As noted previously �p� ����� there are �semiformal� systems
that are both consistent and complete� but they diverge radically from
the �nitary assumptions that underlie the traditional view of scienti�c
knowledge� We can entertain systems that are in�nitary in either their
axioms or rules of inference �or both��

Since the time of Pythagoras it has been assumed that the basic
truths of a science must be �de��nite �i�e�� �nite and de�nite�� One
way to escape the limitations of the discrete is to reject this assump�
tion by permitting axioms that are essentially in�nite� either in number
or structure��� For example certain propositions about all the points of
a continuum cannot be expressed in a �nite number of discrete symbols�
although they could be �nitely expressed in a continuous language �for
example a language whose �formulas� are images drawn from a contin�

��By �essentially in�nite� I mean that they cannot be generated by some regular
�i�e� �nitely speci�able� way�
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Figure ���� Simple Example of a Continuous Rule� Just as an discrete axiom
�P �P � P 
 shows how to map the formulas of one discrete space into those
of another �for example� this one takes �A � A
 into �A
� ��p � q	 � �p � q	

into ��p � q	
	� so the graph above shows how each point in one continuum
�represented by the x axis	 can be mapped into a point in another continuum
�the y axis	� Note that the graph �the curved line	 itself is the �nite� written
representation of the correspondence� just as the string �P � P � P 
 is in
the discrete case� Note also that there are in�nitely many graphs arbitrarily
similar to the graph shown above�

uum�� Further� if the axioms are themselves drawn from a continuum�
then there will be axioms that are arbitrarily �close� to one another�
in this sense we may call them inde�nite axioms �Fig� �����

There are two senses in which inference may be in�nitary� in the
rules of inference or in proofs� Traditionally� semiformal systems per�
mit rules of inference with an in�nite number of premises� such as the
�rule of in�nite induction� �Edwards� EP� Vol� �� p� ����� For example�
in�nitary rules of inference could embody continua in their antecedent�
it would be natural to have continuous inferential rules of this kind to
go with the continuous axioms described above� Such rules could be
�nitely speci�able in a continuous language �as would continuous ax�
ioms�� but the decision as to whether a rule is applicable might require
arbitrarily precise discriminations�

Another source of in�nitary inference is to allow in�nite proofs�
These could of course be proofs with an in�nite number of discrete
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steps of the usual kind� but �nite proof length can be preserved in
a system with continuous proofs� in which the theorems evolve from
the axioms by a continuous process� �Think of classical mechanics to
picture this possibility��

What are the implications of in�nitary systems for knowledge rep�
resentation� Here it will be helpful to distinguish the two senses of
the �de��nite� the de�nite �or discrete� and the �nite �or bounded�� for
while we�ve found the limitations of the discrete� there are still advan�
tages to hewing to the bounded� The reason is that if we are interested
in the representation of knowledge in people and computers� then we
must limit ourselves to representations that are physically realizable�
which means that they must be bounded �require �nite matter� energy
and time��

Hence� it seems that we may escape the limitations of calculi while
saving their physical realizability by representing knowledge in contin�
uous� bounded structures � what topologists call continua��� When
analyzed independently of its physical embodiment� such a structure
may be called a continuous formal system or a formal continuum� the
principal topic of Part IV���

��This term is de�ned in slightly di�erent ways by di�erent authors� I will take
a continuum to be a connected compact metric space with more than one point
�Iyanaga � Kawada� EDM� x
�C��

��MacLennan �LNAI� argues for the necessity of �continuous logics� and presents
two examples� Both are based on continuous �propositions� and continuous rules
of inference� but one has the traditional discrete derivations while the other uses
continuous derivation� Some steps toward continuous formal systems can be found
in MacLennan �CCKR� CSS� GAC� WLIOW� IS�� Already a number of theoretical
results show the ability of continuous computational models to transcend the limits
of Turing computability �Pour�El � Richards� ��	�� ��
�� ��
�� Stannett� ������


