

Development of a Simulator for
Universally Programmable Intelligent Matter:

Progress on Universally Programmable Intelligent Matter

UPIM Report 8

Technical Report UT-CS-04-519

Alex Andriopoulos*

Department of Computer Science

University of Tennessee, Knoxville

October 24, 2003

Abstract

This report describes the design and development of a prototype simulator for chemical
reactions under consideration for “Universally Programmable Intelligent Matter.” It also
describes simulator requirements, input file formats, Java classes and methods,
installation procedures, and usage.

* This research is supported by Nanoscale Exploratory Research grant CCR-0210094 from the
National Science Foundation. It has been facilitated by a grant from the University of Tennessee,
Knoxville, Center for Information Technology Research. This report may be used for any non-
profit purpose provided that the source is credited.

 1

The background on Universally Programmable Intelligent Matter (UPIM) is

virtually nonexistent. This research is exploratory in nature and has a limited number of

objectives. The first objective is to develop a model of computation compatible within

the constraints of molecular processes. The second is to identify at least two universal

sets of building blocks for programmable intelligent matter. The third is to develop

methods for interfacing with additional molecular building blocks for sensing conditions

and causing effects in the external environment. The fourth is to develop a prototype

simulator to investigate characteristics unique to molecular computation.

Intelligent matter is any material in which individual molecules or molecular

clusters can work together to accomplish a purpose. Intelligent matter comes in different

forms such as solid, liquid or gaseous. The most typical forms are liquids and

membranes. Universally programmable matter consists of a small set of molecular

building blocks. These individual blocks are universal because they can be arranged in

any way or order. The programmable part is used because a computer program can

describe what task is being accomplished by the rearrangement of individual blocks. A

computer program simulates the behavior of the material at the molecular level.

Instead of engineering materials that have only one purpose, Universally

Programmable Intelligent Matter is designed to be universal. Much like a computer is

designed to meet the needs of its particular user, universally programmable material is

designed to meet the needs of the programmer.

The research objective was the development of a prototype simulator, which can

simulate the molecular building blocks of programmable matter. Also, keep in mind that

the above stated objectives of developing a model of computation compatible to

molecular processes and identifying two universal sets of building blocks was actually

reached. These two objectives are being handled by SK calculus. I will not go into any

great detail concerning the validity of SK calculus because that was not my focus.

We have accomplished our task of designing and implementing a prototype

simulator. The simulator was designed in Java because Object Oriented programming

was the best choice for simulating molecules in action. Object Oriented programming

was seen also as the best choice for keeping the simulator very modular. The leading

thought behind this argument was the fact that this will be the first simulator created.

 2

Therefore, the potential for redesigning part or parts of the simulator were perceived to be

highly likely. In order to make this possible redesigning easier to accomplish modularity

was a seen as a main priority.

The simulator can read in a set of programming rules, which is also the

description of the allowable rearrangement of building blocks based on SK calculus.

Therefore, abiding by the rules of the model of computation compatible with the

constraints of molecular processes the simulator can read in an initial contents file, which

is the initial setup for the test to be run. One way to think of these initial contents is

analogous to a laboratory experiment, in which chemicals/molecules are being added to a

beaker. The reaction that is about to occur is based on the properties of the individual

molecules. The simulator represents these properties by the rules’ descriptions.

Therefore, the only reactions that can occur are the ones described by the rules. It

follows that, if a rule is not read in then it cannot be applied to a given set of molecules.

 Once the Simulator has read in the initial contents file and the rules file, then it is

ready to start simulation. The user will be prompted with a list of six choices, which

allow the user to determine the next course of action. Examples include:

• Run through the simulation sequence five more times.

• Display a graph, which shows all the possible reactions and the number of

times they occurred.

Also, you can add additional resources to continue looking for new possible reactions.

Resources are simple molecules made up of two, three, or four molecular groups bonded

together. They could potentially react with the contents of the Simulator if the conditions

are correct. The user can also choose the choice of stopping the simulation.

 These initial test files are ones that include functional groups, or chemical

reactions that are possible by programmable matter. These functional groups are

represented by species, which have bonds and names that represent their abilities. These

functional groups are often embedded within a cluster or arbitrary molecular network.

These arbitrary networks are represented by trees, which make understanding how they

are connected with each other easier to visualize.

Then by using SK calculus, which is our model of computation we can simulate

two simple substitution rules. The first rule is the delete rule, which is used for breaking

 3

down waste products formed by reactions. The initial molecular network you start with

will react with resources found within the simulator, and this will produce waste

products, which can be systematically broken down into smaller molecular networks by

the deletion rule. The second rule is the replicate rule, which is used for replicating

species found within molecular networks. By replicating species a molecular network

can be replicated until a progressively larger network is created. Also, each time a

functional group interacts within a larger molecular network it is accomplished by

following the rewrite rules of combinatorial logic. The two basic operations are the S and

K operations used in SK calculus, but what the simulator represents is, by using two

simple operations of S and K, we are able to delete and replicate anything that can be

computed on a computer.

Now we will discuss the initial simulator requirements. The general description

was a program which will consist of an interface of which there will be the ability to read

in a file. This initial file is composed of individual species, which represent different

functional groups. These species also contain a number of bonds. The number of bonds

cannot be changed after initially being set. Some species examples are A, R, and V, these

particular species have three bonds each, and they must be connected to three other

species. Below is Diagram 1 that contains an A species and three other species that are

bonded to it. This illustration will give you a better visualization of what is being

described.

 4

Diagram 1:
Example: Species A with three bonds

U

A

K

X

As you can see from Diagram 1, an A Species has three other species connected to it, a U

Species, a K Species, and an X Species. Also, note that the U, K, and X Species only

have one bond. A bond as described in Diagram 1 is similar to a chemical bond that

exists between two atoms. For instance, in a molecule of water there exist two hydrogen

atoms and one oxygen atom, which together make up one water molecule. Within the

research field of universally programmable intelligent matter the way the species are

bonded together is similar.

 The first requirement of the simulator is it must be able to read in the initial file.

We will sometimes refer to this file as input, template, or rules. This file is needed in

order for the simulator to establish internally what reactions are allowable. This file will

also be necessary later on to pattern match between what reactions are allowable and

what the actual internal molecular formation is composed of. The template or templates

contained inside of the input file are the actual description of the reaction definitions to

 5

be used. The template can be thought of as the laws of nature. These laws are constant

and do not change. As well, once the simulator is running you cannot change the already

described reaction definitions. If you want to do this you must quit the simulation and

then restart it with the reaction definitions you want.

 The second requirement for the simulator is to be able to produce output of the

results. An important result is a display of the new chains that have occurred during the

simulation process. The simulator can display the contents of the simulator any time

after the initial input and contents files have been read in. Once the simulator is running

there is a user menu that displays a list of potential options and one of the choices is to

display the contents of the simulator. Another option is to dump the contents of the

simulator into a file. This will give the user a chance to see what the new chains are as

well as the opportunity to have the contents of the simulator in the same format as the

contents or soup file. This is a handy feature because you can stop the current simulation

after the contents have been dumped into a file and then resume simulation with a new

input file, but with the remaining contents from the simulation previously ended.

 The third requirement was to be able to display the complexes matching specified

templates. This output can be reached from the menu list of options. The list of options

is displayed to the user after they select a particular item from the menu list. Once that

item has completed its assigned task the user will again be prompted to choose another

option. This form of output is under the print graph choice. After the simulator begins

executing you can request this option. The screen will then display a printed message

with instructions to view the newly created graph. This graph will display the number of

cycles run through by the simulator and the names of possible reactions and how many

times they have occurred.

 There are five other possible views for system output that were not deemed vitally

important to the completion of the prototype. Therefore, they were not implemented but

are left for the future. These views or structures that programs might create are to have

nanotubes of specified diameter and length. Another structure is of membranes with

pores of specified diameter and density. Another possible structure created is one that

would show membranes with cilia that flex in a specified direction upon command. Also,

a display of complexes at specified “addresses”, or to classify them according to provided

 6

templates. Since the simulator was programmed in an object oriented language with

many built in methods that allow for the creation of easily made graphical user interfaces,

these four structures can easily be created in the future.

 The fourth requirement is to be able to fill in the simulator with molecular chains

for testing. This specification can be reached through the menu list in which the user is

asked if they would like to read in additional soup files or reaction resources. This means

that any time a user would like to add more molecules or molecular chains they can do

so, which is useful for testing purposes.

 The molecular species names must be read into the simulator and their number of

bonds or binding sites must be stored as well. If a reaction is attempted that calls for the

number of bonds to be altered to a new specification this will cause an error. This error

will be displayed on the screen and the user will be given a descriptive message stating

this fact. The reaction definitions (or rules) must also be read in along with the species

names and their number of bonds. The reaction definitions are described in a particular

format that must be followed exactly or many errors will be generated. Before

continuing, into greater detail of the reaction definitions we will digress for a moment

with an example of a complete input file. This will help the reader to follow along in the

ensuing discussion. The input format will be further explained by looking at Diagram 2

below. Diagram 2 shows an example of a K Reaction input or rules file.

 7

Diagram 2:

Example: K Reaction Input File

Species: A 3

Species: D 1

Species: P 1

Species: Q 1

Species: Y 1

Species: X 1

Species: R 3

Species: U 1

Species: V 3

Species: K 1

Species: S 1

Species: N 1

Wildcard: * 4

MolecularTemp: temp1 species: * 0 3 5 species: A 1 2 species: K 4

 0 -> 1

 1 -> 2 -> 3

 2 -> 4 -> 5

END

MolecularTemp: temp2 species: D 0 species: Q 1

 0 -> 1

END

MolecularTemp: temp3 species: D 0 species: Q 1

 0 -> 1

END

Reaction: K_Reaction

 Probability: 0.20

 Requires: temp1 temp2 temp3

 Description:

 temp1.0-temp1.1 + temp1.1-temp1.2 + temp1.2-temp1.5 => temp1.0-temp1.5 +

 temp2.0-temp1.2 + temp3.0-temp1.1

END

 8

 Diagram 2 will be used to discuss the input format that is needed in order for the

simulator to be operational. Looking at the first twelve lines of the input file the word

Species: A 3 is found. The format of this first line is a description of the name of a

particular species and its number of bonds. There are different species possible and in

order to represent each individual one we will use a different name. The number of

binding sites is also different and is represented by the number immediately following the

species name. The line Wildcard: * 4 is next, this is our way of depicting that any species

is a potential candidate for a reaction to occur if located in a wildcard position. As the

name suggests the particular type of species is totally ignored and irrelevant when it is

listed in a molecular template. The next line has this form, “MolecularTemp: temp1

species: * 0 3 5 species: A 1 2 species: K 4”. The key word MolecularTemp is used to

signify that a molecular template is about to be read in. Molecular template is the way

we describe a rule. In this example, in order for a K Reaction to take place, this template

must be loaded into the simulator. If it is not loaded, then this reaction can never occur

because the simulator will not know how to complete the reaction. The word temp1

follows the key word MolecularTemp, and is also the name of the template being

described. Each template must have a name associated with it so we can specify which

template we are using. Then the words and numbers “species: * 0 3 5” are seen. The

word “species:” is another key word used during the parsing algorithm to designate that

what follows is the name of a species and its positions. The star “*” means that the K

Reaction template is looking for wildcards at the 0, 3, and 5 positions, which can be any

type of species. Then the key word “species: A 1 2” is seen and this means that 2 species

of type A are located in positions 1 and 2. Lastly, “species: K 4” means that a K species

is located in position 4.

Next are three lines of the form:

 0 -> 1

 1 -> 2 -> 3

 2 -> 4 -> 5

These are needed to show the actual connection of bonds between species. So “0 -> 1”

describes that the species in the zero position is connected to the species in the one

position. The “1 -> 2 -> 3” describes the connection between the species in the one

 9

position and the two species below, in the two and three positions. The next line is

describing a similar situation between the species at position two and the species at

positions four and five. Then the key word “END” is seen, which tells the simulator that

temp1 is now finished and the next template can be read in. The next six lines, which

describe temp2 and temp3, respectively can be described similarly. Below, Diagram 3 is

an example of the K Reaction’s positions diagram. There are three boxes depicting

templates 1, 2, and 3, along with their species and positions.

 10

Diagram 3:

Example: K Reaction Position’s Diagram
Temp1

A
2

Y
3

K
4

X
5

A
1

U
0

 11

Temp2

D
0

Q
1

Temp3

D
0

Q
1

 The next line contains the key word “Reaction:” the name of the reaction. It is

immediately followed by the key word “Probability:” and the probability of the reaction

occurring. This number must be in decimal format or it will cause an error. Next is the

line containing the key word “Requires:” and the template names. They are temp1,

temp2, and temp3; this is so the simulator can keep track of what templates are needed in

 12

order for the K Reaction to occur. Then the key word “Description:” is found, which

describes the reaction. The description is contained in the lines of the form:

temp1.0-temp1.1 + temp1.1-temp1.2 + temp1.2-temp1.5 + temp2.0-

temp2.1 + temp3.0-temp3.1 => temp1.0-temp1.5 + temp2.0-temp1.2 +

temp1.2-temp2.1 + temp3.0-temp1.1 + temp1.1-temp3.1

This tells the simulator that when a K Reaction has been picked, these are the bonds that

need to be broken and then reattached to create a new molecule or molecules. Everything

to the left of the “=>” symbol are the bonds that need to be broken or freed. Everything

to the right of the “=>” symbol are the bonds that need to be reattached. Everything in

between the “+” symbols are two species and where they are connected. Remember that

species can have more than one bond, so we need to be able to identify which bond or

two species we need. Since we have the correct two species, we then have to further

determine where they are located. This is accomplished by the “-“ symbol, which

separates the positions we are looking for. Then everything to the left of the decimal

point is the actual template name and everything to the right of it is the position of the

species. So, “temp1.0-temp1.1”, means that in “temp1”, position “0”, and “temp1”,

position “1”, we have a “bond” which needs to broken because it is left of the “=>”

symbol. Then you see a “+” which means that there is another bond which needs to be

broken. As long as you keep coming across plus symbols you will continue to break

bonds until you have reached the “=>” symbol, from then on we must reconnect the

bonds. So, “temp1.0-temp1.5”, means that in temp1 the species in position zero will

need to be connected with temp1 the species in position five.

 Now refer back to Diagram 2, which was an example of the K Reaction input file.

Also, refer back to Diagram 3, which was an example of the K Reaction position’s

diagram. Starting with Diagram 2, look at the MolecularTemp: line and notice that

temp1 has six species that make up one molecule. They are Species U, A, Y, K, and X,

and their position are 0, 1 and 2, 3, 4, and 5. Notice also that in Diagram 2 there are two

more molecular template lines and these refer to two additional molecules. Which are

composed of two species each with just one bond connecting the two. They are in fact

two copies of the same molecule. The reason they have two different template names is

because when the reaction occurs, their bonds need to be broken or reattached. How will

 13

it be possible for the simulator to know which instance of the molecule is being

referenced at a particular time? There will be no way to know for certain if temp2 or

temp3 is being changed. Therefore, we have adopted the convention that when using two

copies of the same molecule they will be named differently. Once again the line “END”

is reached and this means the end of this reaction description has been reached. Looking

at Diagram 4, below you can see what the actual completed reaction will look like.

Diagram 4:

Completed K Reaction

New Molecule # 1

X
1

U
0

 14

New Molecule # 2

New Molecule # 3

Y
3

Q
2

A
1

D
0

Q
3

K
2

A
1

D
0

 15

The fifth requirement is the ability to set the initial contents of the simulator. We

commonly refer to this file as the soup file because it is the initial complexes with their

corresponding concentrations. Referring to Diagram 5 below is an example of a K

Reaction soup file.

Diagram 5:
Example: K Reaction Soup File

Number: 1

Molecule: species: U 0 species: A 1 2 species: Y 3 species: K 4 species: X 5

 0 -> 1

 1 -> 2 -> 3

 2 -> 4 -> 5

END

Number: 2

Molecule: species: D 0 species: Q 1

 0 -> 1

END

The first line “Number: 1” means that one copy of a molecule is needed. The next line is

identified by the key word “Molecule:” which means that all the species named after this

word will be contained in this molecule. Which followed by “Species U 0” means that a

U Species will be located at the zero position and “species A 1 2” means this molecule

will contain two A Species in positions one and two. Again like previously discussed in

the K Reaction input file the bond connections are depicted by the “0 -> 1” lines and the

key word “END” means the molecule has no more information to gather. Then comes

the line “Number: 2”, which will give us two copies of this molecule. Just as the

requirement demanded, the control of the quantity and description of complexes is at our

disposal.

 16

 An additional requirement wanted the option of allowing a “tag” or “address” to

be associated with some of the program complexes to simulate complexes attached to a

fixed substrate. The simulator does not currently handle this option. This was not

implemented because it was a feature that was not seen as critically vital to the

completion of the prototype. The implementation of this feature is left for the future.

 These previous paragraphs mark the end of the input and output requirements

described for the simulator. Now we will discuss the actual work simulated and the

initial requirements for them. First the ability to perform substitutions based on provided

rewrite-rules the rewrite-rules are an analogous way of describing the reaction description

or the breaking and reattaching of bonds. In the previous paragraphs where we explained

the contents of the input file in great detail, we also described the rewrite rules. The only

way for a reaction to make substitutions between molecules is when there is a template

for each molecule and the templates have already been loaded into the simulator via the

input file. If the reaction and its required templates are not loaded then this reaction will

never happen.

The simulator was designed to be random in the way that it chooses reactions and

the way that it chooses molecules to perform those reactions. This was also a required

feature and has been completed, the details of which will be discussed later.

The probability of a particular reaction occurring is based on the concentration

level of the resources. If the simulator is filled up with many copies of molecules that

can perform a K Reaction then the probability of the K Reaction occurring is highly

likely. On the other hand, if the concentration of these molecules is low then the

probability is also very low.

Two other initial requirements deal with reactant depletion and replenishment.

The general idea here is that molecules will be naturally depleted after a number of

reactions have occurred. One analogy to depletion is firewood used by a fireplace, as the

wood is burned or consumed by the fire there will naturally be less wood in the fireplace.

Reactant replenishment is an option given to the user by the list of choices on the menu.

The list of choices is given to the user after every previous command has completed.

One option is to add additional soup files, or to add additional resources. So if the user

would like to add one, five, or one hundred new copies of a particular molecule or

 17

resource this can be accomplished. Adding additional resources or a new soup file are

the same choice because the simulator does not distinguish between the two. From the

simulator point of view they are two things that need to be added to its internal list of

molecules.

Two additional requirements for the simulator were spatially fixed networks

(embedded in gels) and free-floating (in fluids). These two were not implemented like

other previous requirements because they were not of vital importance. The goal of

completing a working prototype of the simulator took precedence.

The sixth requirement was the ability of the simulator to run for a specified

number of cycles or under interactive control. This requirement was fulfilled by the

creation of the execution method. This method is used to continually prompt the user for

further instructions. The instructions are listed in numerical order and by typing into the

keyboard the number representing the option requested. The simulator will complete the

assigned task by calling all necessary classes and methods until the action requested is

completed. One option is the request for additional cycles.

In one cycle of execution the simulator will randomly choose an integer by

seeding a random number generator. Once the integer is chosen it will be used to

randomly pick molecules contained within its list of possible molecules based on the

number of molecules within its list. If the number of molecules is three then the

simulator will randomly pick a number equal to or less than the number of molecules

contained in its list. In this example, the number of molecules is three so the generator

will randomly pick any number between zero and three. There is no reason to pick a

number greater than three because we do not want to pick more than three molecules if

there are no more than three molecules inside the simulator. However, if the number of

molecules were larger than three say one hundred, the random generator would set the

high bound to be one hundred.

After an integer is picked the simulator will randomly find that number of

molecules from its list of molecules. Then from this list of choices the simulator will

randomly pick templates to see if they match any of the molecules. If a match is found

they are then placed on a new list and based on the probabilities of the individual

reactions themselves a reaction is randomly picked. Then the reaction chosen will grab

 18

the molecules that matched the templates from its templates list. Then use these

molecules to complete the reaction and create the new resulting molecules. After the new

molecules are created they will be returned back to the contents list and are available for

any future reactions. Additionally, since the integers are chosen randomly it is possible

that the simulator will go through a cycle or several cycles and not complete any

reactions. It is also possible that the simulator can go through many cycles and pick a

new reaction each time.

For the K Reaction to occur as described previously through Diagrams 3 and 4.

The simulator must find three molecules that match the three molecular templates

described in the K Reaction rules file. Once the simulator has found three molecules

from within is contents list that match these templates a K Reaction will occur.

The seventh requirement was that at any stage of simulation, the simulator can

write the internal contents to a file. This requirement was met and through the options

menu, a user can at any time dump the contents of the simulator to a file. This file can

then be used to continue the simulation or for analysis. When this option is chosen, the

state of the simulation will be dumped to a file and this new file will have the same

format as the soup or initial contents file. Every molecule within the simulator will be

displayed in the exact format shown in Diagram 5.

Another initial requirement was to allow reactant concentrations to be changed

under interactive control or according to a pre-specified schedule. This requirement was

not completed or even attempted since it was not necessary to the completion of a

working prototype.

An additional requirement was that at the end of a simulation stage or specified

number of cycles, it should be possible to “flush out” all complexes meeting or not

meeting specified templates. The flushing might also take place continuously while the

simulator was executing. This additional feature was also not necessary because it was

not of vital importance for the initial prototype.

One more initial requirement that was not implemented was the option of

allowing instances of specified complexes to be introduced into the simulation that may

be directed to a specific “address”. This newly introduced complex would be able to only

 19

react with the complex at the specified address. This was also considered a feature that

could be implemented in the future after a working prototype was in place.

The eighth requirement of keeping a running record of the number of times a

reaction has occurred, and the ability to display them was incorporated into the simulator.

This is another option that is available through the list of menu options. This option will

display a graph that will show the number of cycles that are run by the simulator, and the

different possible reactions that have occurred with their frequencies. This is another

way the user can easily tell if the reactions being tested are the ones that are actually

occurring.

Another requirement was the ability to keep track of the total change of free

energy. This requirement was also purposely left out for future versions of the simulator.

Since the reactions are all completed with the breaking and creating of bonds, the ability

of keeping track of free energy, and the number of bonds that can possibly be broken in

the future is quite trivial.

That is all of the initial requirements and explanations describing why they were

or were not implemented. To reiterate the main reason to include a requirement was to

actually design a working prototype simulator. The amount of time required to complete

this prototype was limited and thus some tough decisions had to be made to hasten the

process. This basic first attempt simulator was needed in order to determine if future

exploratory research in the field of universally programmable matter was indeed

worthwhile. Therefore, the requirements met were the most basic ones needed in order to

reach this goal. The requirements that were left for future more robust versions were

purposely left out since they were not deemed essential, although they are important

features and will be incorporated into future versions of the simulator.

Next is a discussion of the actual Java classes and their methods along with the

data structures used to implement the simulator. This discussion will be brief and in list

form to make it easier to spot the individual topics of interest.

 20

Design Implementation:

Simulator Classes Used and their Methods

I. class Bond

A. The class Bond is used to handle the placement of bonds. Bonds are used

between two species, so they can be connected to each other. They are used

within the templates and also within molecules.

B. The methods contained within class Bond are:

 1. Bond(), this is the default constructor.

 2. addSpecies(Species sp1, Species sp2), this method adds a bond in

 between two species.

 3. getNext(Species sp), returns the next species.

 4. find(Species sp1, Species2), looks for a bond between the two species if

 found, returns it.

 5. createBond(Species sp1, Species sp2), creates a new bond between two

 species.

 6. breakBond(), nulls or breaks the bond between two species.

C. There are no data structures used in class Bond.

II. class ChemicalSimulator

A. The class ChemicalSimulator is where the main class method is contained and

 therefore is the heart of the Simulator. This class controls the Simulator

 options menu, which then calls all the other classes and methods contained

 within them to handle their specific tasks. The ChemicalSimulator class

 handles the reading in of the rules input file, and the initial specification soup

 files.

 21

B. The methods contained within class ChemicalSimulator are:

 1. main(), this method handles the command line error checking.

 2. ChemicalSimulator(String inputfile), this methods handles the parsing of

 the input file.

 3. addSoup(Soup sp), takes a soup file and makes it the current one in use.

 4. updateSoup(String file), takes a new soup file, and makes it the current

 one.

 5. execute(), controls the execution of the Simulator.

 6. userControl(int numberOfCycles), controls the options menu of the

 simulator.

 7. endOfLife(), removes any newly created reaction files, at the end of the

 simulation.

C. The data structures used and why:

 1. Hashtable, is used to keep track of species, templates, and reactions. The

 hashtables were used instead of other data structures because of their

 speed and efficiency.

 2. TreeMap, to keep a listing of positions. This was used for efficiency as

 well.

 3. Array, to print out the entire contents of the hashtables. This is the best

 way to enumerate the elements of the hashtables.

III. class Molecule

A. The Molecule class is used to read in the formation of the molecule. This

 gives the template the structure it needs to have for a reaction to take place.

 This class handles putting the species in their correct positions.

 22

B. The methods contained in the class Molecule:

 1. Molecule(), default constructor.

 2. Molecule(Object[] species), another constructor, takes an object array as

 input.

 3. Molecule(Object[] position, Hashtable speciestable, BufferedReader in),

 another constructor method, takes as input the position array, the

 speciestable, and input file line being read in.

 4. cloneMolecule(), this method creates a duplicate of an existing

 molecule.

C. The data structure used and why:

 1. Object array, to keep track of species and their positions. Which is very

 useful, when trying to make clones of molecules.

IV. class ReactionTemplate

A. The class ReactionTemplate is used to handle parsing of the input file, starting

 from the key word reaction, to dynamically create files based on reaction

 names, and to store their probabilities, and the templates required for a

 reaction to occur.

B. The methods contained in the class ReactionTemplate:

 1. ReactionTemplate(), default constructor method.

 2. defineReaction(String rname, BufferedReader input, ChemicalSimulator

 ChemSim), handles the parsing of the input file, and the storing of the

 reaction information.

 3. chooseReaction(Object[] availablereactions), seeds a random number

 generator, and then, based on the probabilities of the available reactions,

 randomly chooses a reaction. Then it does the reaction and updates the

 simulator contents.

 23

 C. The data structures used and why:

 1. Hashtable, efficiency and speed of use.

 2. ArrayList, speed of use, and storage of reaction information.

 3. TreeMap, to keep track of probabilities, speed.

 4. Object array, storage of new molecules, after reaction occurs.

V. class Soup

A. The class Soup is used to read in the soup file, which establishes the initial

 contents of the simulator, before reactions can take place.

B. The methods contained in the class Soup:

 1. Soup(ChemicalSimulator cs), establishes the current soup file.

 2. update(String filename), pulls in the soup file and reads its contents, then

 sets up and stores the number of molecules needed.

 3. getSampling(), used to randomly pick a molecule, so it can be used if

 needed.

 4. dumpToFile(String filename), dumps the contents of the simulator to a

newly created file.

C. The data structures used and why:

 1. Hashtable, keeps track of simulator contents, species and bonds, used

because of efficiency, speed, and storage.

 2. TreeMap, keep a listing of valid positions, fast

 3. Object array, to enumerate the elements contained in the hashtables.

 4. PrintWriter, to write to newly created file.

 5. StringBuffer, to hold information, before writing to file with printwriter,

efficient and fast, also less time consuming than having multiple I/O

calls.

 24

VI. class Species

A. The class Species is used to read in the name and number of bonds allowed by

a particular species.

B. The methods contained in the class Species:

 1. cloneSpecies(), takes a clone copy of a Species, and adds it to the soup

 file.

 2. Species(String name, int bond), sets the name and number of bonds of a

 species, also handles some initializations.

 3. addBondBit(Bond bit), places a bond between a species and its bit.

 4. addBond(Bond b), adds a Bond to species bondlist.

 5. numberOfBonds(), counts the number of bonds in a species bondlist.

 6. reset(), resets a species visited field to be false, to initialize the newly

 created bonds for use.

C. The data structures used and why:

 1. ArrayList, to keep track of the number of bonds, and whom they connect.

VII. class Statistics

A. The class Statistics is used to keep track of all simulator statistics when

 executing, the number of total cycles run, and the number of reactions

 occurring and which ones they are. It also produces a graph of reaction

 distributions.

B. The methods contained in the class Statistics:

 1. Statistics(Object[] reactions), sets up the necessary hashtables that will be

 responsible for tracking reaction frequency and distribution.

 2. update(String reactionName), keeps a running total of reaction

 occurrences.

 3. incrementCycles(), increments the number of cycles.

 25

 4. getCycles(), returns the amount of cycles run.

 5. printStatistics(String filename), would print out a histogram of reaction

 frequency, with *'s (not currently being used, was replaced with

 printJgraph()).

 6. printJgraph(), this method creates a new file called newin.jgr, this file is

 used to put the simulator statistics into jgraph form. It is just a

 black and white bar graph, to view the number of cycles the simulator

 completed and its number of completed reactions. Note: for more

 complete information on jgraph please visit Dr. Plank's webpage.

 7. convertToEps(), creates a new file called out.eps, which is where

 newin.jgr is redirected through.

C. The data structures used and why:

 1. Hashtable, keeps track of frequency and distribution of reactions, fast

 and efficient.

 2. ArrayList, to keep track of occurrences of cycles.

 3. PrintWriter, to write to newly created files.

 4. StringBuffer, to write to before writing to PrintWriter, saves time, makes

 execution of the program faster.

VIII. class Template

A. The class Template is used to create the necessary template classes. To make

 it possible to pattern match between what's in the soup and what template is

 needed for a particular reaction to occur. It also extends the Molecule class,

 this allows for code reuse.

 26

http://www.cs.utk.edu/%7Eplank

B. The methods contained in the class Template:

 1. Template(Object[] position, Hashtable speciestable, String name,

 BufferedReader in, ChemicalSimulator ChemSim), used to create the

 necessary templates.

 2. MaptoMolecule(Molecule M), goes through the soup contents and input

 file templates, trying to find matching patterns between the two. If a

 template is found that matches then it is returned, or else it keeps

 looking.

 3. mapRecursive(TemplateMapping TM, Molecule M, int Mindex, int

 Tindex), to recursively search the current species, and the current

 template against each other and to see if their bonds, and positions match.

 4. mapSampling(Molecule[] sampling), goes through the random sampling

 and maps templates to the samples found. Also makes a list of possible

 reactions that can happen and returns them.

 5. class TemplateMapping, to run through the available templates from the

 input file, and the simulator contents trying to find possible matches.

C. The data structures used:

 1. ArrayList, for mapping list, good for enumeration.

 2. Object arrays, for enumeration of hashtables that contain template and

 reaction information.

IX. class ConvertingLisp

A. The class ConvertingLisp is a method that needs to be used in order to convert

 Lisp program output which, must be in the BNC format that describes a tree.

 1. The class ConvertingLisp is not inside the Simulator, it is a stand-alone

 class, with its own main method declaration, and is self-contained. It

 was created to convert the BNC file (which is created by the Lisp

 programming language) into a format that the Simulator can read in and

 understand.

 27

B. The methods contained within class ConvertingLisp are:

 1. Node(), to describe the position of the node within the tree.

 2. setPosition(int p), takes an integer value as input and uses this value to

 set the position of the node within the tree.

 3. addBond(Node n), takes a Node as input and adds it to the current nodes

 arraylist.

 4. setName(String t), takes the species name as input and sets it to be the

 current species.

 5. numberOfBonds(), returns the number of bonds for the current species.

 6. getPosition(), returns the position of the current species in the tree.

 7. getName(), returns the name of the current species.

 8. getBonds(), makes an Object array out of all the bond list arrays in the

 tree.

 9. main(), checks the command line arguments for errors, and reads in the

 input file for parsing.

 10. ConvertingLisp(String infile), is responsible for parsing the LISP file,

 and then storing its information into the necessary data structures.

 11. print(), is used to print out the new file newsoup.txt, which is in the

 correct soup format.

C. The data structures used and why:

 1. Hashtable, to keep track of the species needed, and bond connections,

 fast and efficient.

 2. ArrayList, to keep track of bonds, good for enumeration of lists.

 3. PrintWriter, to print to newly created file, fast and reliable.

 4. StringBuffer, to write information to the PrintWriter, fast saves from

 doing multiple I/O calls.

 28

 This is the end of the list of all of the classes and methods created and used by the

simulator. We have tried to describe their purpose and the data structures used to

implement them. Java is a robust and plentiful programming language that has many

methods built in for easy of use. We have tried to incorporate as many of these features

as possible. Also, in the future, if necessary to revise a class and its methods, it should be

fairly easy to implement these changes without affecting the entire simulation process.

Clearly, one can see that we have just barely begun to delve into the many

possibilities that exist in the future for universally programmable intelligent matter. We

will now only briefly sum up the areas in which the simulator falls short. These areas are

the previously listed requirements that we have not implemented. The main reason we

have neglected to address some of the many initial objectives is that we came to the

conclusion early on in this research, that if a specific objective was not vital to the

creation of the initial prototype simulator, then we would hold off on the design an

implementation of this objective. One example of an uncompleted requirement is the

requirement for the development of a method for sensing conditions and causing effects

in the external environment. This requirement, like many other requirements, where

reasoned to be logical additional enhancements for the base model simulator. These

goals and requirements are certainly attainable and will be reached in the future. They

certainly will enhance the overall power of the simulation and give researchers more

valuable insights.

 29

APPENDIX:

A. Quick Java User's Guide

 I. Compile all the Java files

A. This can be accomplished by first making sure that all of your ".java" files are

 located in the same directory. One side note, the reason I'm calling the files

 .java is because in the Java programming language once you create a file that

 contains your source code, you should end it with the file extension .java. This

 is how you can tell your source code from your compiled code.

B. Then, from the same window or a different window, try to compile all of your

 .java files. Use the following command line arguments (javac *java), and this

 will compile all the files simultaneously.

C. After you execute this command all the files in your directory will be converted

 into .class files. This is Java's way of telling you that your source code has just

 been compiled and is now in the correct format. The program is now ready to be

 executed from the command line.

D. Once you have successfully compiled all of your .java files you can then look

 inside your directory and all the .java files will be converted into .class files.

 This is Java's way of telling you that your source code file has just been

 compiled into byte code. Now the Java Virtual Machine (JVM), which is an

 interpreter, will be able to translate and run the byte code instructions whenever

 your program needs it. If this seems unclear to you, please visit

 www.java.sun.com. The java.sun website has a lot of excellent tutorials and

 explanations available to you. Of course you can also purchase a Java book,

 30

http://www.java.sun.com/

 which will also explain more of this to you.

E. If you only want to compile one source file instead of all of them you will have

 to type this command. (javac filename.java).

F. Remember that Java is case sensitive, so if your filename begins with a

 capitalized letter, you will have to name the file you are trying to compile as

 such or it will not work.

G. In the simulator if you try to compile a file separately it will not work because

 all the class files are accessed through one main file. This is the file that

 contains the main class within it. The main class for the simulator is contained

 in the file ChemicalSimulator.java.

H. If you are going to compile the .java files from a different directory then the one

 they are all currently held in type the following command line arguments. (javac

 directory name/*java).

I. This will work if the directory is below the one you are currently using, but if it is

 contained in the directory above the directory you are using, then you will have

 to type this command. (javac ../*java).

II. Some reasons why your java files will not compile successfully

A. The most common reason for your code not to compile is errors.

 Unfortunately, these will have to be corrected in order to progress with the

 rest of your coding.

B. The best way to fix these types of errors if you are not very familiar with Java,

 is to develop your source code files within a solution's package. A solution

 package is also commonly referred to as an Integrated Development

 31

 Environment (IDE), which is a collection of integrated programs that

 facilitates software development. Some common IDE examples are

 Metrowerks CodeWarrior, Enprise's JBuilder, Microsoft's Visual J++,

 Symantec's Visual Cafe, or IBM's VisualAge, just to name a few. I used

 Jbuilder, which is available for, free and can be downloaded from

 www.borland.com.

C. Another possible cause for error is that the version of Java you are trying to

 use is not installed on your system correctly. The version I used is Java 1.4

 Standard Edition. Any version of Java starting from Java 1.4 and newer

 should work correctly.

D. Another possibility is that the version of Java you are using is installed

 correctly, but your system does not know where it is installed, then the system

 could be looking down the wrong class path, and is not able to determine the

 correct path. Then you will have to change the system PATH variable. If this

 is the case and you know how to change the PATH variable go ahead.

 However, if you are unsure how to change the PATH variable then you should

 try to get some help, because it could be more complicated then you think.

 Unfortunately, it is also beyond the scope and detail of this help section

B. Simulator User's Guide

 I. List of items needed to run the simulator

A. First you will need all of the .java source files.

B. Second you will need the source files compiled into .class files.

 C. Third you will need the initial specification files (input files). I have named

 them all ReactionName.txt files. The way to determine which type of reaction

 32

http://www.borland.com/

 you will be testing for is by the beginning part of the .txt file.

D. Fourth you will need the corresponding reaction specification files (soup files)

 for the reaction you are testing. I have named them all

 ReactionName_soup.txt. The way to determine which type of soup file you

 will be using is by the beginning part of the _soup.txt.

Some Input/Soup file Examples:
1. kr.txt stands for K_Reaction (input file), refer to Diagram 2.

2. kr_soup.txt stands for K_Reaction (soup file), refer to Diagram 5.

3. sr.txt stands for S_Reaction (input file), refer to Diagram 6 below.

Diagram 6:

 33

 Example: S Reaction Input File
Species: A 3

Species: R 3

Species: Q 1

Species: P 1

Species: Y 1

Species: X 1

Species: Z 1

Species: U 1

Species: S 1

Wildcard: * 4

MolecularTemp: temp80 species: * 0 3 5 7 species: A 1 2 4 species: S 6

 0 -> 1

 1 -> 2 -> 3

 2 -> 4 -> 5

 4 -> 6 -> 7

END

MolecularTemp: temp45 species: P 0 1 species: R 2 species: Q 3

 0 -> 2

 1 -> 2

 2 -> 3

END

Reaction: S_Reaction

 Probability: 0.50

 Requires: temp45 temp80

 Description:

 temp45.1-temp45.2 + temp80.1-temp80.3 + temp80.2-temp80.5 + temp80.2-temp80.4 +

 temp80.4-temp80.6 + temp45.0-temp45.2 + temp45.2-temp45.3 + temp80.4-temp80.7

temp45.2-temp80.3 + temp45.0-temp80.6 + temp45.1-temp45.3 + temp80.1-temp80.4 +

temp80.4-temp80.5 + temp80.4-temp45.2 + temp80.2-temp80.7 + temp80.2-temp45.2

END

 34

4. sr_soup.txt stands for S_Reaction (soup file), refer to Diagram 7 below.

Diagram 7:

 Example: S Reaction Soup File

Number: 1

Molecule: species: U 0 species: A 1 2 4 species: X 3 species: Y 5 species: S 6 species: Z 7

 0 -> 1

 1 -> 2 -> 3

 2 -> 4 -> 5

 4 -> 6 -> 7

END

Number: 1

Molecule: species: P 0 1 species: R 2 species: Q 3

 0 -> 2

 1 -> 2

 2 -> 3

END

5. dfs1.txt stands for Delete_Final_Sharing1 (input file), refer to

Diagram 8 below.

 35

Diagram 8:

 Example: Delete Final Sharing1 Input File

Species: D 1

Species: P 1

Species: Q 1

Species: X 1

Species: V 3

Wildcard: * 4

MolecularTemp: temp13 species: P 1 species: V 2 species: D 0 species: * 3

 0 -> 2

 1 -> 2

 2 -> 3

END

MolecularTemp: temp49 species: P 0 species: Q 1

 0 -> 1

END

Reaction: Delete_final_sharing1

 Probability: 0.05

 Requires: temp13 temp49

 Description:

 temp13.0-temp13.2 + temp13.2-temp13.3 + temp49.0-temp49.1 => temp49.0-temp13.2

 + temp49.1-temp13.2 + temp13.0-temp13.3

END

6. dfs1_soup.txt stands for Delete_Final_Sharing1 (soup file), refer to

 Diagram 9 below.

 36

Diagram 9:

 Example: Delete Final Sharing1 Soup File

Number: 1000

Molecule: species: D 0 species: P 1 species: V 2 species: X 3

 0 -> 2

 1 -> 2

 2 -> 3

END

Number: 1000

Molecule: species: P 0 species: Q 1

 0 -> 1

END

a. All the other reactions I have tested also have their own

 individual (ReactionName.txt) file, and corresponding

 (ReactionName_soup.txt) file. These can all be tested

 individually to make sure the Simulator is working correctly.

 All you would have to do is change the number of molecules

 you are copying into the simulator. For an example, just

 look at Diagrams 5 and 9 above.

i. You will notice that in Diagram 5 there are three

molecules, one molecule of six species and then two

molecules with just two species apiece. That is all

that is needed for one K_Reaction to occur.

 37

ii. Looking at Diagram 9 you will see two thousand

 molecules total. One thousand molecules

 containing four species, and one thousand

 molecules containing just two species. This

 scenario would fill the simulator with enough

 molecules to produce one thousand

 Delete_Final_Sharing1 reactions.

b. If you would like to test some BNC_files (LISP version of

 Reactions). You will have to convert these into the correct

 soup format. Which can be accomplished by executing the

 ConvertLisp program. This program takes in a BNC_file and

 converts it into a new soup file, which is a form that the

 simulator can understand. There is an example of a BNC file

 in Diagram 10 before conversion. There is another example in

 Diagram 11 of the same file after it has been converted into the

 correct soup file format.

 38

Diagram 10:

 Example BNC File

a282
a282: A,
a281: A,
c280: S,
c279: S,
a278: A,
a277: A,
c276: K,
c275: S,
a274: A,
c273: K,
c272: S.
a282_1 a278,
a282_2 a281,
a281_1 c279,
a281_2 c280,
a278_1 a274,
a278_2 a277,
a277_1 c275,
a277_2 c276,
a274_1 c272,
a274_2 c273.

Diagram 11:

 Newly Converted BNC Soup File

Number: 1
Molecule: species: Root 0 species: A 1 2 3 4 5 species: S 6 7 8 10 species: K 9 11
 0 -> 1
 1 -> 2 -> 3
 2 -> 4 -> 5
 3 -> 6 -> 7
 4 -> 8 -> 9
 5 -> 10 -> 11
END

 39

E. The previous instructions should be sufficient to get the simulator up and

 running. Once the simulator is executing there is an options menu that you

 can follow which will also list other features available to you.

II. How to run the Simulator

A. You will need to have all the necessary files, and they will have to be in the

 correct format or they will not work.

1. The correct input file format will look like Diagram 2, which is an

example K Reaction input file.

2. If you choose to create your own file everything in it will have to be in

 this format.

a. The first line of the file will have to hold the key word Species

 followed by its name and number of Bonds. Once this input

 file is loaded into the Simulator you will not be able to change

 it! It is analogous to the laws of nature in that they are constant

 and are not allowed to change.

 i. This line can be followed by any number of additional

 Species lines that you plan on testing for a particular

 reaction scenario. Make sure that each species name

 is different. There cannot be multiple species with

 identical names, but having different bond numbers.

 Here is an example, (“Species: A 3, and Species: A 1”, in

 the same input or soup file) this will not work because

 40

 the simulator will throw an exception error.

b. After the Species line or lines you will have the Wildcard line.

 This is necessary to have if you are doing a reaction, but unsure

 what type of species will be in that position the * indicates it

 can be any type of species. You can have one Wildcard line,

 but anything more will cause an exception error.

c. Next is the MolecularTemp line, which contains a specific name

 for the molecule you will be looking for. I have named them

 temp1, temp2, and temp3.

i. After the template name you will see “species: * 0 3

5 species: A 1 2 species K 4”. What this means is:

a. species: * is located at positions 0, 3, and 5.

b. species: A is located at positions 1, and 2.

c. species: K is in position 4.

 If you where to conceptualize this template using a

diagram it would look something like Diagram 3,

which was previously described. After the template

line you will come across a series of lines that look

like this.

 0 -> 1

 1 -> 2 -> 3

 2 -> 4 -> 5

Which tells you is how the molecule is connected

by positions. Since a Wildcard species is in

position 0 you know that it is bonded to Species

 41

 A, which is in the 1 position (0 -> 1). The next

 line says (1 -> 2 -> 3), which means that Species

 A in position 1, is bonded to Species A in

 position 2, and is also bonded to a Wildcard

 species in position 3. The next line is similar,

 Species A in position 2, is bonded to Species K in

 position 4, and is also bonded to a Wildcard

 Species in position 5 (2 -> 4 -> 5).

 e. The line directly after the last position line is the

 key word END. Which lets you know the

 Molecule is finished.

f. The next line is another MolecularTemp line,

 which has no position lines after it. So

 Species D is the only member of this molecule,

 and is not connected to any other species.

g. Then there is another MolecularTemp line which

 is identical to the previous one, except it is

 named temp3.

i. This is done because for the K_Reaction

 to take place there needs to be two

 Delete molecules present. In order to

 distinguish which D Species you are

 referring to it is easier to simply give

 them different names.

h. The next line is the Reaction line which tells

you the name of the reaction. All the previous

 42

 lines are just descriptions of what the molecule

 looks like. For the K_Reaction to take place

 there needs to be three molecules present within

 the simulator. The molecules are represented

 by the MolecularTemp lines and that is why

 there are three of them.

i. The next line is the Probability line which

 tells you the probability at which this

 reaction is expected to occur.

i. The following line is the Requires line which

 lists the required templates needed for the

 reaction to occur.

j. The Description line follows which describes

the bond changes that are needed, in order for

 the K_Reaction to occur. First preexisting

 bonds needs to be broken. Second new bonds

 will need to be created. The line beginning with

 temp1.0-temp1.1 and ending with temp3.0-

 temp1.1 describes these bond details.

 Everything to the left of the "=>" symbol

 represents a bond that needs to be broken. All

 the bonds that need to be broken are separated

 by "+" symbol's. Everything to the right of the

 "=>" symbol is a bond which needs to be

 created. All of the bonds that need to be

 created are separated by a "+". Please refer to

 the K_Reaction (input file) as I explain the

 following.

 43

1. temp1.0-temp1.1 is a bond that needs to

 be broken. The bond is in temp1, and is

 located between Species * (position 0)

 and Species A (position 1). How do I

 know this? Simple, everything to the

 left of the period is the template name

 and everything to the right of the period

 is the position. The minus sign between

 the two template names represents that

 they are bonded together. To reiterate,

 in temp1 positions 0 and 1, there are two

 species bonded to each other and this

 bond needs to be broken.

2. temp1.0-temp1.5 is a bond that needs to

 be created because it is to the right of the

 "=>" symbol. In order for this bond to

 be created you have to know what

 template or templates you need for this

 to occur. Then you also need to know

 the positions you are referring to. So

 just like the previous explanation, in

 temp1, positions 0 and 5, there are two

 species where a new bond needs to be

 created.

k. We will now discuss how we control the

position by which a species gets connected to

another species. First, the convention we are

using is depicted below in Diagram 12.

 44

Diagram 12:

 Example: Bit Positions

 0

 1 2

 A

 We have created a method in class Species that is

 called addBondBit and whenever we create a

 bond between two species we immediately call

 this method. As seen in Diagram 12 above,

 Species A is allowed to have three bonds. We

 distinguish between the bonds by giving them bit

 positions 0, 1, and 2. Bit 0 is the species

 connected above Species A, which can also be

 called its argument. Bits 1 and 2 are called

 results, and they are the species that are

 connected below Species A.

Using this convention we can distinguish

 between an A species that is connected to a

 Species A in its bit 0 position, Species K in its bit

 1 position, and a Species S in its bit 2 position.

 From an A species that is connected to a Species

 A in its bit 0 position, Species S in its bit 1

 position, and a Species K in its bit 2 position.

B. Second copy all the of the corresponding soup files you plan to be using into the same

 directory. This way they can both be in the same area and easier for you to find.

 45

 1. The correct soup file format will look like Diagram 5, which was previously

 described.

 2. Everything in this file will have to be in this format for the simulator to work

correctly.

 a. The first line will be the Number line which tells you the

 number of molecules that will be made by the simulator. In

 this case, the number is 1, but it could just as easily be 100,000.

 This will initially load the simulator with 1 copy of the

 molecule.

 b. The second line reads “Molecule: species: U 0 species: A 1

 2 species: Y 3 species: K 4 species: X 5”. This tells you the

 shape of the molecule. Species U is in position 0 and Species A

 is in positions 1 and 2. Species Y, K, and X, are in positions 3,

 4, and 5, respectively. Remember that Species U, X, and Y are

 not actual species they are wildcards.

c. Then the position lines.

 0 -> 1

1 -> 2 -> 3

2 -> 4 -> 5

 This is visualized in the same way as step c above where I

referred you to the position's diagram.

d. Then the key word END signifies the end of the molecule.

 46

e. The second molecule is started by line “Number: 2”. This

 means that two copies of the Delete molecule will be in the

 simulator.

i. If you run the Simulator with the K_Reaction (input

file) and the K_Reaction (soup file), as I have

described, then the simulator should only allow one

 K_Reaction to occur, as long as it is run for a

 sufficient number of cycles. Since the K_Reaction

 needs three molecules present for a reaction to

 occur, and there are only three copies being made,

 then it stands to reason that only one K_Reaction is

 possible.

ii. If you decide you would like to see more

K_Reactions occur then you will need to change the

 K_Reaction (soup file). The first Number line will

 need to be increased to ten, and the second Number

 line will need to be increased to twenty. Then run

 the simulator for a sufficiently large amount of

 cycles and you should have ten K_Reactions that

 occurred, but no more than ten.

a. I say sufficiently large number of cycles

because the simulator is probability based, so

there is no guarantee that ten cycles run will be

enough to produce ten K_Reactions. It could

take twenty, fifty, or even one hundred cycles

to get the number of K_Reactions you think

you should get.

 47

	Example: Species A with three bonds
	Example: K Reaction Input File
	Example: K Reaction Position’s Diagram
	Temp2
	Temp3
	Completed K Reaction
	New Molecule # 1
	New Molecule # 2
	New Molecule # 3
	Example: K Reaction Soup File

	Simulator Classes Used and their Methods
	I. class Bond
	II. class ChemicalSimulator
	III. class Molecule
	V. class Soup
	VI. class Species
	VII. class Statistics
	VIII. class Template
	IX. class ConvertingLisp
	A. Quick Java User's Guide
	I. Compile all the Java files
	B. Simulator User's Guide
	 I. List of items needed to run the simulator
	Example: S Reaction Input File
	Example: S Reaction Soup File
	Example: Delete Final Sharing1 Soup File
	Example BNC File
	Newly Converted BNC Soup File

	II. How to run the Simulator
	Example: Bit Positions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

