
A

Analog Computation

Bruce J. MacLennan
Department of Electrical Engineering &
Computer Science, University of Tennessee,
Knoxville, TN, USA

Glossary

Accuracy The closeness of a
computation to the
corresponding primary
system

BSS The theory of computation
over the real numbers
defined by Blum, Shub, and
Smale

Church–Turing
(CT) computation

The model of computation
based on the Turing machine
and other equivalent abstract
computing machines
commonly accepted as
defining the limits of digital
computation

EAC Extended analog computer
defined by Rubel

GPAC General-purpose analog
computer

Nomograph A device for the graphical
solution of equations by

means of a family of curves
and a straightedge

ODE Ordinary differential
equation

PDE Partial differential equation
Potentiometer A variable resistance

adjustable by the computer
operator, used in electronic
analog computing as an
attenuator for setting
constants and parameters in
a computation

Precision The quality of an analog
representation or
computation which depends
on both resolution and
stability

Primary system The system being simulated,
modeled, analyzed, or
controlled by an analog
computer, also called the
target system

Scaling The adjustment by constant
multiplication of variables in
the primary system
(including time) so that the
corresponding variables in
the analog systems are in an
appropriate range

TM Turing machine

Springer Science+Business Media LLC 2017
R.A. Meyers (ed.), Encyclopedia of Complexity and Systems Science,
https://doi.org/10.1007/978-3-642-27737-5_19-6

https://doi.org/10.1007/978-3-642-27737-5_19-6

Introduction

Definition of the Subject
Although analog computation was eclipsed by
digital computation in the second half of the twen-
tieth century, it has returned as an important alter-
native computing technology. Indeed, as
explained in this article, theoretical results imply
that analog computation can escape the limita-
tions of digital computation. Furthermore, analog
computation has emerged as an important theoret-
ical framework for discussing computation in the
brain and other natural systems.

Analog computation gets its name from an
analogy, or systematic relationship, between the
physical processes in the computer and those in
the system it is intended to model or simulate (the
primary system). For example, the electrical quan-
tities voltage, current, and conductance might be
used as analogs of the fluid pressure, flow rate,
and pipe diameter. More specifically, in traditional
analog computation, physical quantities in the
computation obey the same mathematical laws
as physical quantities in the primary system.
Thus, the computational quantities are propor-
tional to the modeled quantities. This is in contrast
to digital computation, in which quantities are
represented by strings of symbols (e.g., binary
digits) that have no direct physical relationship
to the modeled quantities. According to the
Oxford English Dictionary (2nd ed., s.vv. ana-
logue, digital), these usages emerged in the 1940s.

However, in a fundamental sense, all comput-
ing is based on an analogy, that is, on a systematic
relationship between the states and processes in
the computer and those in the primary system. In a
digital computer, the relationship is more abstract
and complex than simple proportionality, but even
so simple an analog computer as a slide rule goes
beyond strict proportion (i.e., distance on the rule
is proportional to the logarithm of the number). In
both analog and digital computation – indeed in
all computation – the relevant abstract mathemat-
ical structure of the problem is realized in the
physical states and processes of the computer,
but the realization may be more or less direct
(MacLennan 1994a, b, 2004).

Therefore, despite the etymologies of the terms
“digital” and “analog,” in modern usage the prin-
cipal distinction between digital and analog com-
putation is that the former operates on discrete
representations in discrete steps, while the latter
operates on continuous representations by means
of continuous processes (e.g., MacLennan 2004;
Siegelmann 1999, p. 147; Small 2001, p. 30;
Weyrick 1969, p. 3).

That is, the primary distinction resides in the
topologies of the states and processes, and it
would be more accurate to refer to discrete and
continuous computation (Goldstine 1972, p. 39).
(Consider so-called analog and digital clocks. The
principal difference resides in the continuity or
discreteness of the representation of time; the
motion of the two (or three) hands of an “analog”
clock does not mimic the motion of the rotating
earth or the position of the sun relative to it.)

History

Preelectronic Analog Computation
Just like digital calculation, analog computation
was originally performed by hand. Thus, we find
several analog computational procedures in the
“constructions” of Euclidean geometry (Euclid,
fl. 300 BCE), which derive from techniques used
in ancient surveying and architecture. For exam-
ple, Problem II.51 is “to divide a given straight
line into two parts, so that the rectangle contained
by the whole and one of the parts shall be equal to
the square of the other part.” Also, Problem VI.13
is “to find a mean proportional between two given
straight lines,” and VI.30 is “to cut a given straight
line in extreme and mean ratio.” These procedures
do not make use of measurements in terms of any
fixed unit or of digital calculation; the lengths and
other continuous quantities are manipulated
directly (via compass and straightedge). On the
other hand, the techniques involve discrete, pre-
cise operational steps, and so they can be consid-
ered algorithms, but over continuous magnitudes
rather than discrete numbers.

It is interesting to note that the ancient Greeks
distinguished continuous magnitudes (Grk.,
megethoi), which have physical dimensions

2 Analog Computation

(e.g., length, area, rate), from discrete numbers
(Grk., arithmoi), which do not (Maziarz and
Greenwood 1968). Euclid axiomatizes them sep-
arately (magnitudes in Book V, numbers in Book
VII), and a mathematical system comprising both
discrete and continuous quantities was not
achieved until the nineteenth century in the work
of Weierstrass and Dedekind.

The earliest known mechanical analog com-
puter is the “Antikythera mechanism,” which
was found in 1900 in a shipwreck under the sea
near the Greek island of Antikythera (between
Kythera and Crete). It dates to the second century
BCE and performs astronomical calculations. The
device is sophisticated (at least 70 gears) and well
engineered, suggesting that it was not the first of
its type and therefore that other analog computing
devices may have been used in the ancient Med-
iterranean world (Freeth et al. 2006). Indeed,
according to Cicero (Rep. 22) and other authors,
Archimedes (c. 287-c. 212 BCE) and other
ancient scientists also built analog computers,
such as armillary spheres, for astronomical simu-
lation and computation. Other antique mechanical
analog computers include the astrolabe, which is
used for determination of longitude and a variety
of other astronomical purposes, and the
torquetum, which converts astronomical measure-
ments between equatorial, ecliptic, and horizontal
coordinates.

A class of special-purpose analog computer,
which is simple in conception but may be used for
a wide range of purposes, is the nomograph (also,
nomogram, alignment chart). In its most common
form, it permits the solution of quite arbitrary equa-
tions in three real variables, f (u, v, w) = 0.
The nomograph is a chart or graph with scales for
each of the variables; typically, these scales are
curved and have nonuniform numerical markings.
Given values for any two of the variables, a
straightedge is laid across their positions on their
scales, and the value of the third variable is read off
where the straightedge crosses the third scale.
Nomographs were used to solve many problems
in engineering and applied mathematics. They
improve intuitive understanding by allowing the
relationships among the variables to be visualized
and facilitate exploring their variation by moving

the straightedge. Lipka (1918) is an example of a
course in graphical and mechanical methods of
analog computation, including nomographs and
slide rules.

Until the introduction of portable electronic
calculators in the early 1970s, the slide rule was
the most familiar analog computing device. Slide
rules use logarithms for multiplication and divi-
sion, and they were invented in the early seven-
teenth century shortly after John Napier’s
description of logarithms.

The mid-nineteenth century saw the develop-
ment of the field analogy method by G. Kirchhoff
(1824–1887) and others (Kirchhoff 1845). In this
approach an electrical field in an electrolytic tank
or conductive paper was used to solve two-
dimensional boundary problems for temperature
distributions and magnetic fields (Small 2001,
p. 34). It is an early example of analog field
computation (see ▶ “Field Computation in Natu-
ral and Artificial Intelligence”).

In the nineteenth century, a number of mechan-
ical analog computers were developed for integra-
tion and differentiation (e.g., Lipka 1918,
pp. 246–256; Clymer 1993). For example, the
planimeter measures the area under a curve or
within a closed boundary. While the operator
moves a pointer along the curve, a rotating
wheel accumulates the area. Similarly, the
integraph is able to draw the integral of a given
function as its shape is traced. Other mechanical
devices can draw the derivative of a curve or
compute a tangent line at a given point.

In the late nineteenth century, William Thom-
son, Lord Kelvin, constructed several analog
computers, including a “tide predictor” and a
“harmonic analyzer,”which computed the Fourier
coefficients of a tidal curve (Thomson 1878,
1938). In 1876 he described how the mechanical
integrators invented by his brother could be
connected together in a feedback loop in order to
solve second- and higher-order differential equa-
tions (Small 2001, pp. 34–35, 42; Thomson
1876). He was unable to construct this differential
analyzer, which had to await the invention of the
torque amplifier in 1927.

The torque amplifier and other technical
advancements permitted Vannevar Bush at MIT

Analog Computation 3

http://link.springer.com/Field Computation in Natural and Artificial Intelligence
http://link.springer.com/Field Computation in Natural and Artificial Intelligence

to construct the first practical differential analyzer
in 1930 (Small 2001, pp. 42–45). It had six inte-
grators and could also do addition, subtraction,
multiplication, and division. Input data were
entered in the form of continuous curves, and the
machine automatically plotted the output curves
continuously as the equations were integrated.
Similar differential analyzers were constructed at
other laboratories in the USA and the UK.

Setting up a problem on the MIT differential
analyzer took a long time; gears and rods had to be
arranged to define the required dependencies
among the variables. Bush later designed a much
more sophisticated machine, the Rockefeller Dif-
ferential Analyzer, which became operational in
1947. With 18 integrators (out of a planned 30), it
provided programmatic control of machine setup
and permitted several jobs to be run simulta-
neously. Mechanical differential analyzers were
rapidly supplanted by electronic analog com-
puters in the mid-1950s, and most were
disassembled in the 1960s (Bowles 1996; Owens
1986; Small 2001, pp. 50–45).

During World War II, and even later wars, an
important application of optical and mechanical
analog computation was in “gun directors” and
“bomb sights,” which performed ballistic compu-
tations to accurately target artillery and dropped
ordnance.

Electronic Analog Computation in the
Twentieth Century
It is commonly supposed that electronic analog
computers were superior to mechanical analog
computers, and they were in many respects,
including speed, cost, ease of construction, size,
and portability (Small 2001, pp. 54–56). On the
other hand, mechanical integrators produced
higher precision results (0.1% vs. 1% for early
electronic devices) and had greater mathematical
flexibility (they were able to integrate with respect
to any variable, not just time). However, many
important applications did not require high preci-
sion and focused on dynamic systems for which
time integration was sufficient.

Analog computers (nonelectronic as well as
electronic) can be divided into active-element
and passive-element computers; the former

involve some kind of amplification, the latter do
not (Truitt and Rogers 1960, pp. 2-1–4). Passive-
element computers included the network ana-
lyzers, which were developed in the 1920s to
analyze electric power distribution networks and
which continued in use through the 1950s (Small
2001, pp. 35–40). They were also applied to prob-
lems in thermodynamics, aircraft design, and
mechanical engineering. In these systems net-
works or grids of resistive elements or reactive
elements (i.e., involving capacitance and induc-
tance as well as resistance) were used to model the
spatial distribution of physical quantities such as
voltage, current, and power (in electric distribu-
tion networks), electrical potential in space, stress
in solid materials, temperature (in heat diffusion
problems), pressure, fluid flow rate, and wave
amplitude (Truitt and Rogers 1960, p. 2-2). That
is, network analyzers dealt with partial differential
equations (PDEs), whereas active-element com-
puters, such as the differential analyzer and its
electronic successors, were restricted to ordinary
differential equations (ODEs) in which time was
the independent variable. Large network ana-
lyzers are early examples of analog field com-
puters (see ▶ “Field Computation in Natural and
Artificial Intelligence”).

Electronic analog computers became feasible
after the invention of the DC operational amplifier
(“op amp”) c. 1940 (Small 2001, pp. 64, 67–72).
Already in the 1930s scientists at Bell Telephone
Laboratories (BTL) had developed the
DC-coupled feedback-stabilized amplifier, which
is the basis of the op amp. In 1940, as the USA
prepared to enter World War II, DL Parkinson at
BTL had a dream in which he saw DC amplifiers
being used to control an antiaircraft gun. As a
consequence, with his colleagues CA Lovell and
BT Weber, he wrote a series of papers on “electri-
cal mathematics,” which described electrical cir-
cuits to “operationalize” addition, subtraction,
integration, differentiation, etc. The project to
produce an electronic gun director led to the
development and refinement of DC op amps suit-
able for analog computation.

The wartime work at BTL was focused primar-
ily on control applications of analog devices, such
as the gun director. Other researchers, such as

4 Analog Computation

http://link.springer.com/Field Computation in Natural and Artificial Intelligence
http://link.springer.com/Field Computation in Natural and Artificial Intelligence

Lakatos at BTL, were more interested in applying
them to general-purpose analog computation for
science and engineering, which resulted in the
design of the general-purpose analog computer
(GPAC), called “Gypsy” and completed in 1949
(Small 2001, pp. 69–71). Building on the BTL op
amp design, fundamental work on electronic ana-
log computation was conducted at Columbia Uni-
versity in the 1940s. In particular, this research
showed how analog computation could be applied
to the simulation of dynamic systems and to the
solution of nonlinear equations.

Commercial general-purpose analog com-
puters (GPACs) emerged in the late 1940s and
early 1950s (Small 2001, pp. 72–73). Typically,
they provided several dozen integrators, but sev-
eral GPACs could be connected together to solve
larger problems. Later, large-scale GPACs might
have up to 500 amplifiers and compute with
0.01–0.1% precision (Truitt and Rogers 1960,
pp. 2–33).

Besides integrators, typical GPACs provided
adders, subtracters, multipliers, fixed function
generators (e.g., logarithms, exponentials, trigo-
nometric functions), and variable function gener-
ators (for user-defined functions) (Truitt and
Rogers 1960, chapters 1.3 and 2.4). A GPAC
was programmed by connecting these compo-
nents together, often by means of a patch panel.
In addition, parameters could be controlled by
adjusting potentiometers (attenuators), and arbi-
trary functions could be entered in the form of
graphs (Truitt and Rogers 1960, pp. 1-72–81,
2-154–156). Output devices plotted data continu-
ously or displayed it numerically (Truitt and
Rogers 1960, pp. 3-1–30).

The most basic way of using a GPAC was in
single-shot mode (Weyrick 1969, pp. 168–170).
First, parameters and initial values were entered
into the potentiometers. Next, putting a master
switch in “reset” mode controlled relays to apply
the initial values to the integrators. Turning the
switch to “operate” or “compute” mode allowed
the computation to take place (i.e., the integrators
to integrate). Finally, placing the switch in “hold”
mode stopped the computation and stabilized the
values, allowing them to be read from the com-
puter (e.g., on voltmeters). Although single-shot

operation was also called “slow operation”
(in comparison to “repetitive operation,”
discussed next), it was in practice quite fast.
Because all of the devices computed in parallel
and at electronic speeds, analog computers usu-
ally solved problems in real time but often much
faster (Truitt and Rogers 1960, pp. 1-30–32;
Small 2001, p. 72).

One common application of GPACs was to
explore the effect of one or more parameters on
the behavior of a system. To facilitate this explo-
ration of the parameter space, some GPACs pro-
vided a repetitive operation mode, which worked
as follows (Weyrick 1969, p. 170: Small 2001,
p. 72). An electronic clock switched the computer
between reset and compute modes at an adjustable
rate (e.g., 10–1,000 cycles per second) (Ashley
1963). In effect the simulation was rerun at the
clock rate, but if any parameters were adjusted,
the simulation results would vary along with
them. Therefore, within a few seconds, an entire
family of related simulations could be run. More
importantly, the operator could acquire an intui-
tive understanding of the system’s dependence on
its parameters.

The Eclipse of Analog Computing
It is commonly supposed that electronic analog
computers were a primitive predecessor of the
digital computer and that their use was just a
historical episode, or even a digression, in the
inevitable triumph of digital technology. It is sup-
posed that the current digital hegemony is a sim-
ple matter of technological superiority. However,
the history is much more complicated and
involves a number of social, economic, historical,
pedagogical, and also technical factors, which are
outside the scope of this article (see Small 1993,
2001, especially chapter 8, for more information).
In any case, beginning after World War II and
continuing for 25 years, there was lively debate
about the relative merits of analog and digital
computation.

Speed was an oft-cited advantage of analog
computers (Small 2001, chapter 8). While early
digital computers were much faster than mechan-
ical differential analyzers, they were slower (often
by several orders of magnitude) than electronic

Analog Computation 5

analog computers. Furthermore, although digital
computers could perform individual arithmetic
operations rapidly, complete problems were
solved sequentially, one operation at a time,
whereas analog computers operated in parallel.
Thus, it was argued that increasingly large prob-
lems required more time to solve on a digital
computer, whereas on an analog computer, they
might require more hardware but not more time.
Even as digital computing speed was improved,
analog computing retained its advantage for sev-
eral decades, but this advantage eroded steadily.

Another important issue was the comparative
precision of digital and analog computation
(Small 2001, chapter 8). Analog computers typi-
cally computed with three or four digits of preci-
sion, and it was very expensive to do much better,
due to the difficulty of manufacturing the parts
and other factors. In contrast, digital computers
could perform arithmetic operations with many
digits of precision, and the hardware cost was
approximately proportional to the number of
digits. Against this, analog computing advocates
argued that many problems did not require such
high precision because the measurements were
known to only a few significant figures and the
mathematical models were approximations. Fur-
ther, they distinguished between precision and
accuracy, which refers to the conformity of the
computation to physical reality, and they argued
that digital computation was often less accurate
than analog due to numerical limitations (e.g.,
truncation, cumulative error in numerical integra-
tion). Nevertheless, some important applications,
such as the calculation of missile trajectories,
required greater precision, and for these, digital
computation had the advantage. Indeed, to some
extent precision was viewed as inherently desir-
able, even in applications where it was
unimportant, and it was easily mistaken for accu-
racy. (See section “Precision” for more on preci-
sion and accuracy.)

There was even a social factor involved, in that
the written programs, precision, and exactness of
digital computation were associated with mathe-
matics and science, but the hands-on operation,
parameter variation, and approximate solutions of
analog computation were associated with

engineering, and so analog computing inherited
“the lower status of engineering vis-à-vis science”
(Small 2001, p. 251). Thus, the status of digital
computing was further enhanced as engineering
became more mathematical and scientific after
World War II (Small 2001, pp. 247–251).

Already by the mid-1950s, the competition
between analog and digital had evolved into the
idea that they were complementary technologies.
This resulted in the development of a variety of
hybrid analog/digital computing systems (Small
2001, pp. 251–253, 263–266). In some cases, this
involved using a digital computer to control an
analog computer by using digital logic to connect
the analog computing elements, to set parameters,
and to gather data. This improved the accessibility
and usability of analog computers but had the
disadvantage of distancing the user from the phys-
ical analog system. The intercontinental ballistic
missile program in the USA stimulated the further
development of hybrid computers in the late
1950s and 1960s (Small 1993). These applica-
tions required the speed of analog computation
to simulate the closed-loop control systems and
the precision of digital computation for accurate
computation of trajectories. However, by the early
1970s hybrids were being displaced by all digital
systems. Certainly, part of the reason was the
steady improvement in digital technology, driven
by a vibrant digital computer industry, but con-
temporaries also pointed to an inaccurate percep-
tion that analog computing was obsolete and to a
lack of education about the advantages and tech-
niques of analog computing.

Another argument made in favor of digital
computers was that they were general purpose,
since they could be used in business data pro-
cessing and other application domains, whereas
analog computers were essentially special pur-
pose, since they were limited to scientific compu-
tation (Small 2001, pp. 248–250). Against this, it
was argued that all computing is essentially com-
puting by analogy, and therefore, analog compu-
tation was general purpose because the class of
analog computers included digital computers!
(See also section “Definition of the Subject” on
computing by analogy.) Be that as it may, analog
computation, as normally understood, is restricted

6 Analog Computation

to continuous variables, and so it was not imme-
diately applicable to discrete data, such as that
manipulated in business computing and other
nonscientific applications. Therefore, business
(and eventually consumer) applications motivated
the computer industry’s investment in digital
computer technology at the expense of analog
technology.

Although it is commonly believed that analog
computers quickly disappeared after digital com-
puters became available, this is inaccurate, for
both general-purpose and special-purpose analog
computers have continued to be used in special-
ized applications to the present time. For example,
a general-purpose electrical (vs. electronic) ana-
log computer, the Anacom, was still in use in
1991. This is not technological atavism, for
“there is no doubt considerable truth in the fact
that Anacom continued to be used because it
effectively met a need in a historically neglected
but nevertheless important computer application
area” (Aspray 1993). As mentioned, the reasons
for the eclipse of analog computing were not
simply the technological superiority of digital
computation; the conditions were much more
complex. Therefore, a change in conditions has
necessitated a reevaluation of analog technology.

Analog VLSI
In the mid-1980s, Carver Mead, who already had
made important contributions to digital VLSI
technology, began to advocate for the develop-
ment of analog VLSI (Mead 1987, 1989). His
motivation was that “the nervous system of even
a very simple animal contains computing para-
digms that are orders of magnitude more effective
than are those found in systems made by humans”
and that they “can be realized in our most com-
monly available technology – silicon integrated
circuits” (Mead 1989, pp. xi). However, he
argued, since these natural computation systems
are analog and highly nonlinear, progress would
require understanding neural information pro-
cessing in animals and applying it in a new analog
VLSI technology.

Because analog computation is closer to the
physical laws by which all computation is realized
(which are continuous), analog circuits often use

fewer devices than corresponding digital circuits.
For example, a four-quadrant adder (capable of
adding two signed numbers) can be fabricated
from four transistors (Mead 1989, pp. 87–88),
and a four-quadrant multiplier from 9 to
17, depending on the required range of operation
(Mead 1989, pp. 90–96). Intuitions derived from
digital logic about what is simple or complex to
compute are often misleading when applied to
analog computation. For example, two transistors
are sufficient to compute the logarithm or expo-
nential, five for the hyperbolic tangent (which is
very useful in neural computation), and three for
the square root (Mead 1989, pp. 70–71, 97–99).
Thus, analog VLSI is an attractive approach to
“post-Moore’s Law computing” (see section
“Future Directions” below). Mead and his col-
leagues demonstrated a number of analog VLSI
devices inspired by the nervous system, including
a “silicon retina” and an “electronic cochlea”
(Mead 1989, chapters 15–16), research that has
lead to a renaissance of interest in electronic ana-
log computing.

Field Programmable Analog Arrays
Field programmable analog arrays (FPAAs) per-
mit the programming of analog VLSI systems
analogously to the use of field programmable
gate arrays (FPGAs) for digital systems (Basu
et al. 2010). An FPAA comprises a number of
identical computational analog blocks (CABs),
each of which contains a small number of analog
computing elements. Programmable switching
matrices control the interconnections among the
elements of a CAB and the interconnections
between the CABs. Contemporary FPAAs make
use of floating-gate transistors, in which the gate
has no DC connection to other circuit elements
and thus is able to hold a charge indefinitely.
Therefore, the floating gate can be used to store
a continuous value that governs the impedance of
the transistor by several orders of magnitude. The
gate charge can be changed by processes such as
electron tunneling, which increases the charge,
and hot-electron injection, which decreases
it. Digital decoders allow individual floating-gate
transistors in the switching matrices to be
addressed and programmed. At the extremes of

Analog Computation 7

zero and infinite impedance, the transistors operate
as perfect switches, connecting or disconnecting
circuit elements.

Programming the connections to these extreme
values is time consuming, however, and so in
practice some trade-off is made between program-
ming time and switch impedance. Each CAB con-
tains several operational transconductance
amplifiers (OTAs), which are op amps whose
gain is controlled by a bias current. They are the
principal analog computing elements, since they
can be used for operations such as integration,
differentiation, and gain amplification. Other
computing elements may include tunable band-
pass filters, which can be used for Fourier signal
processing, and small matrix–vector multipliers,
which can be used to implement linear operators.
Current FPAAs can compute with a resolution of
ten bits (precision of 10–3).

Nonelectronic Analog Computation
As will be explained in the body of this article,
analog computation suggests many opportunities
for future computing technologies. Many physical
phenomena are potential media for analog com-
putation provided they have useful mathematical
structure (i.e., the mathematical laws describing
them are mathematical functions useful for
general- or special-purpose computation), and
they are sufficiently controllable for practical use.

Article Road Map

The remainder of this article will begin by sum-
marizing the fundamentals of analog computing,
starting with the continuous state space and the
various processes by which analog computation
can be organized in time. Next, it will discuss
analog computation in nature, which provides
models and inspiration for many contemporary
uses of analog computation, such as neural net-
works. Then, we consider general-purpose analog
computing, both from a theoretical perspective
and in terms of practical general-purpose analog
computers (GPACs). This leads to a discussion of
the theoretical power of analog computation and
in particular to the issue of whether analog

computing is in some sense more powerful than
digital computing. We briefly consider the cogni-
tive aspects of analog computing, and whether it
leads to a different approach to computation than
does digital computing. Finally, we conclude with
some observations on the role of analog compu-
tation in “post-Moore’s Law computing.”

Fundamentals of Analog Computing

Continuous State Space
As discussed in section “Introduction,” the funda-
mental characteristic that distinguishes analog
from digital computation is that the state space is
continuous in analog computation and discrete in
digital computation. Therefore, it might be more
accurate to call analog and digital computation
continuous and discrete computation, respec-
tively. Furthermore, since the earliest days, there
have been hybrid computers that combine contin-
uous and discrete state spaces and processes.
Thus, there are several respects in which the
state space may be continuous.

In the simplest case, the state space comprises a
finite (generally modest) number of variables,
each holding a continuous quantity (e.g., voltage,
current, charge). In a traditional GPAC, they cor-
respond to the variables in the ODEs defining the
computational process, each typically having
some independent meaning in the analysis of the
problem. Mathematically, the variables are taken
to contain bounded real numbers, although
complex-valued variables are also possible (e.g.,
in AC electronic analog computers). In a practical
sense, however, their precision is limited by noise,
stability, device tolerance, and other factors
(discussed below, section “Characteristics of Ana-
log Computation”).

In typical analog neural networks, the state
space is larger in dimension but more structured
than in the former case. The artificial neurons are
organized into one or more layers, each composed
of a (possibly large) number of artificial neurons.
Commonly, each layer of neurons is densely
connected to the next layer. In general, the layers
each have some meaning in the problem domain,
but the individual neurons constituting them do

8 Analog Computation

not (and so, in mathematical descriptions, the
neurons are typically numbered rather than
named).

The individual artificial neurons usually per-
form a simple computation such as this:

y ¼ s sð Þ, where s ¼ bþ
Xn
i¼1

wixi,

where y is the activity of the neuron, x1, . . ., xn are
the activities of the neurons that provide its inputs,
b is a bias term, and w1,. . ., wn are the weights or
strengths of the connections. Often, the activation
function s is a real-valued sigmoid (“S-shaped”)
function, such as the logistic sigmoid,

s sð Þ ¼ 1

1þ e�s
,

in which case the neuron activity y is a real num-
ber, but some applications use a discontinuous
threshold function, such as the Heaviside
function,

U sð Þ ¼ þ1 if s � 0

0 if s < 0

�

in which case the activity is a discrete quantity.
The saturated-linear or piecewise-linear sigmoid
is also used occasionally:

s sð Þ ¼
þ1 if s > 1

s if 0 � s � 1

0 if s < 0:

8<
:

Regardless of whether the activation function
is continuous or discrete, the bias b and connec-
tion weights w1,. . .,wn are real numbers, as is the
“net input” s = �iwixi to the activation function.
Analog computation may be used to evaluate the
linear combination s and the activation function
s(s), if it is real valued. The biases and weights are
normally determined by a learning algorithm
(e.g., back-propagation), which is also a good
candidate for analog implementation.

In summary, the continuous state space of a
neural network includes the bias values and net

inputs of the neurons and the interconnection
strengths between the neurons. It also includes
the activity values of the neurons, if the activation
function is a real-valued sigmoid function, as is
often the case. Often, large groups (“layers”) of
neurons (and the connections between these
groups) have some intuitive meaning in the prob-
lem domain, but typically, the individual neuron
activities, bias values, and interconnection
weights do not.

If we extrapolate the number of neurons in a
layer to the continuum limit, we get a field, which
may be defined as a continuous distribution of
continuous quantity (see ▶ “Field Computation
in Natural and Artificial Intelligence”). Treating
a group of artificial or biological neurons as a
continuous mass is a reasonable mathematical
approximation if their number is sufficiently
large and if their spatial arrangement is significant
(as it generally is in the brain). Fields are espe-
cially useful in modeling cortical maps, in which
information is represented by the pattern of activ-
ity over a region of neural cortex.

In field computation, the state space is contin-
uous in two ways: it is continuous in variation but
also in space. Therefore, field computation is
especially applicable to solving PDEs and to pro-
cessing spatially extended information such as
visual images. Some early analog computing
devices were capable of field computation (Truitt
and Rogers 1960, pp. 1-14–1-17, 2-2–2-16). For
example, as previously mentioned (section “Intro-
duction”), large resistor and capacitor networks
could be used for solving PDEs such as diffusion
problems. In these cases, a discrete ensemble of
resistors and capacitors was used to approximate a
continuous field, while in other cases, the com-
puting medium was spatially continuous. The lat-
ter made use of conductive sheets (for two-
dimensional fields) or electrolytic tanks (for two-
or three-dimensional fields). When they were
applied to steady-state spatial problems, these
analog computers were called field plotters or
potential analyzers.

The ability to fabricate very large arrays of
analog computing devices, combined with the
need to exploit massive parallelism in real-time
computation and control applications, creates new

Analog Computation 9

http://link.springer.com/Field Computation in Natural and Artificial Intelligence
http://link.springer.com/Field Computation in Natural and Artificial Intelligence

opportunities for field computation (MacLennan
1987, 1990, 1999). There is also renewed interest
in using physical fields in analog computation.
For example, Rubel (1993) defined an abstract
extended analog computer (EAC), which aug-
ments Shannon’s (1993) general-purpose analog
computer with (unspecified) facilities for field
computation, such as PDE solvers (see sections
“Shannon’s Analysis” and “Rubel’s Extended
Analog Computer” below). JW Mills has
explored the practical application of these ideas
in his artificial neural field networks and VLSI
EACs, which use the diffusion of electrons in
bulk silicon or conductive gels and plastics for
2D and 3D field computation (Mills 1996; Mills
et al. 2006).

Computational Process

We have considered the continuous state space,
which is the basis for analog computing, but there
are a variety of ways in which analog computers
can operate on the state. In particular, the state can
change continuously in time or be updated at
distinct instants (as in digital computation).

Continuous Time
Since the laws of physics on which analog com-
puting is based are differential equations, many
analog computations proceed in continuous real
time. Also, as we have seen, an important appli-
cation of analog computers in the late nineteenth
and early twentieth centuries was the integration
of ODEs in which time is the independent vari-
able. A common technique in analog simulation
of physical systems is time scaling, in which the
differential equations are altered systematically so
the simulation proceeds either more slowly or
more quickly than the primary system (see section
“Characteristics of Analog Computation” for
more on time scaling). On the other hand, because
analog computations are close to the physical
processes that realize them, analog computing is
rapid, which makes it very suitable for real-time
control applications.

In principle, any mathematically describable
physical process operating on time-varying

physical quantities can be used for analog compu-
tation. In practice, however, analog computers
typically provide familiar operations that
scientists and engineers use in differential
equations (Rogers and Connolly 1960; Truitt and
Rogers 1960). These include basic arithmetic
operations, such as algebraic sum and difference
(u(t) = v(t) � w(t)), constant multiplication or
scaling (u(t) = cv(t)), variable multiplication and
division (u(t) = v(t) w(t), u(t) = v(t)/ w(t)), and
inversion (u(t) = � v(t)). Transcendental
functions may be provided, such as the exponen-
tial (u(t) = exp v(t)), logarithm (u(t) = ln v(t)),
trigonometric functions (u(t) = sin v(t), etc.), and
resolvers for converting between polar and rect-
angular coordinates. Most important, of course, is
definite integration u tð Þ ¼ u0 þ

Ð t
0
u tð Þdt� �

,
but differentiation may also be provided
u tð Þ ¼ _u tð Þð Þ. Generally, however, direct differen-
tiation is avoided, since noise tends to have a
higher frequency than the signal, and therefore,
differentiation amplifies noise; typically, prob-
lems are reformulated to avoid direct differentia-
tion (Weyrick 1969, pp. 26–27). As previously
mentioned, many GPACs include (arbitrary) func-
tion generators, which allow the use of functions
defined only by a graph and for which no mathe-
matical definition might be available; in this
way empirically defined functions can be used
(Rogers and Connolly 1960, pp. 32–42). Thus,
given a graph (x, f(x)), or a sufficient set of sam-
ples, (xk, f(xk)), the function generator approxi-
mates u(t) = f(v(t)). Rather less common are
generators for arbitrary functions of two variables,
u(t) = f(v(t), w(t)), in which the function may be
defined by a surface, (x, y, f(x, y)), or by sufficient
samples from it.

Although analog computing is primarily con-
tinuous, there are situations in which discontinu-
ous behavior is required. Therefore, some analog
computers provide comparators, which produce a
discontinuous result depending on the relative
value of two input values. For example,

10 Analog Computation

u ¼ k if u � w,
0 if u < w:

�

Typically, this would be implemented as a
Heaviside (unit step) function applied to the dif-
ference of the inputs, u = k U(v � w). In addition
to allowing the definition of discontinuous func-
tions, comparators provide a primitive decision-
making ability and may be used, for example, to
terminate a computation (switching the computer
from “operate” to “hold” mode).

Other operations that have proved useful in
analog computation are time delays and noise
generators (Howe 1961, chapter 7). The function
of a time delay is simply to retard the signal by an
adjustable delay T> 0, that is, u(t + T)= v(t). One
common application is to model delays in the
primary system (e.g., human response time).

Typically, a noise generator produces time-
invariant Gaussian-distributed noise with zero
mean and a flat power spectrum (over a band
compatible with the analog computing process).
The standard deviation can be adjusted by scaling,
the mean can be shifted by addition, and the
spectrum can be altered by filtering, as required
by the application. Historically, noise generators
were used to model noise and other random
effects in the primary system, to determine, for
example, its sensitivity to effects such as turbu-
lence. However, noise can make a positive contri-
bution in some analog computing algorithms
(e.g., for symmetry breaking and in simulated
annealing, weight perturbation learning, and sto-
chastic resonance).

As already mentioned, some analog computing
devices for the direct solution of PDEs have been
developed. In general, a PDE solver depends on
an analogous physical process, that is, on a pro-
cess obeying the same class of PDEs that it is
intended to solve. For example, in Mill’s EAC,
diffusion of electrons in conductive sheets or
solids is used to solve diffusion equations (Mills
1996; Mills et al. 2006). Historically, PDEs were
solved on electronic GPACs by discretizing all but
one of the independent variables, thus replacing
the differential equations by difference equations
(Rogers and Connolly 1960, pp. 173–193). That

is, computation over a field was approximated by
computation over a finite real array.

Reaction–diffusion computation is an impor-
tant example of continuous-time analog comput-
ing ▶ “Reaction–Diffusion Computing.” The
state is represented by a set of time-varying chem-
ical concentration fields, c1,. . ., cn. These fields
are distributed across a one-, two-, or three-
dimensional space O so that, for x � O, ck(x, t)
represents the concentration of chemical k at loca-
tion x and time t. Computation proceeds in con-
tinuous time according to reaction–diffusion
equations, which have the form:

@c=@t ¼ D∇2cþ F cð Þ,

where c = (c1,. . ., cn)
T is the vector of concentra-

tions, D = diag(d1,. . ., dn) is a diagonal matrix of
positive diffusion rates, and F is a nonlinear vector
function that describes how the chemical reactions
affect the concentrations.

Some neural net models operate in continuous
time and thus are examples of continuous-time
analog computation. For example, Grossberg
(1967, 1973, 1976) defines the activity of a neuron
by differential equations such as this:

_xi ¼ �aixi þ
Xn
j¼1

bijw
þð Þ
ij f j xj

� �

�
Xn
j¼1

cijw
�ð Þ
ij gj xj

� �þ Ii:

This describes the continuous change in the
activity of neuron i resulting from passive decay
(first term), positive feedback from other neurons
(second term), negative feedback (third term), and
input (last term). The fj and gj are nonlinear acti-

vation functions, and the w
þð Þ
ij and w

�ð Þ
ij are

adaptable excitatory and inhibitory connection
strengths, respectively.

The continuous Hopfield network is another
example of continuous-time analog computation
(Hopfield 1984). The output yi of a neuron is a
nonlinear function of its internal state xi, yi =
s(xi), where the hyperbolic tangent is usually
used as the activation function, s(x) = tanh x,

Analog Computation 11

http://link.springer.com/Reaction–Diffusion Computing

because its range is [�1,1]. The internal state is
defined by a differential equation:

ti _xi ¼ �aixi þ bi þ
Xn
j¼1

wijyj,

where ti is a time constant, ai is the decay rate, bi is
the bias, and wij is the connection weight to neu-
ron i from neuron j. In a Hopfield network, every
neuron is symmetrically connected to every other
(wij = wji) but not to itself (wii = 0).

Of course analog VLSI implementations of
neural networks also operate in continuous time
(e.g., Fakhraie and Smith 1997; Mead 1989).
Concurrent with the resurgence of interest in ana-
log computation have been innovative
reconceptualizations of continuous-time compu-
tation. For example, Brockett (1988) has shown
that dynamical systems can solve certain prob-
lems normally considered to be intrinsically
sequential. For example, a certain system of
ODEs (a nonperiodic finite Toda lattice) can sort
a list of numbers by continuous-time analog com-
putation. The system is started with the vector x
equal to the values to be sorted and a vector y
initialized to small nonzero values; the y vector
converges to a sorted permutation of x.

Analog computation can be used for solving
discrete constraint satisfaction problems, such as
Boolean satisfiability, a well-known NP-complete
problem. Given a Boolean expression with
N variables, the problem is to determine an assign-
ment of Boolean values to the variables that will
make the expression true (if such an assignment
exists). Without loss of generality, the expression
is a conjunction of M clauses, each of which is a
disjunction of k > 2 literals. A literal is either a
plain variable or a negated variable. Ercsey-
Ravasz and her colleagues have designed contin-
uous time dynamical systems for which the only
attractors are solutions to Boolean satisfiability
problems (Ercsey-Ravasz and Toroczkai 2011;
Molnár and Ercsey-Ravasz 2013). A particular
instance to be solved is defined by an M � N
matrix C in which Cmi is +1 if variable i is in
clause m, �1 if it is negated in clause m, and 0 if
it does not occur in clause m. N continuous

variables s1, . . ., sN � [�1, +1] represent the
Boolean variables, which will approach +1 for a
true value, and �1 for a false value. In addition,
there are M continuous auxiliary variables a1, . . .,
aM � [0, 1], one for each clause, which will repre-
sent the “urgency” of satisfying an individual
clause. The dynamics of the si variables are given by

_si tð Þ ¼ �si tð Þ þ Af si tð Þ½ � þ
XM
m¼1

Cmig am tð Þ½ �,

where A is a constant, and f and g are linear
squashing functions. The dynamics of the auxil-
iary variables is defined

_am tð Þ¼�am tð ÞþBg am tð Þ½ ��
XN
i¼1

cmif si tð Þ½ �þ1�k,

where B is a constant. These differential equations
are implemented by the analog program shown in
Fig. 1 with M + N integrators for the am and si
variables. Analog computations such as these are
suitable for implementation in analog electronics
(Basford et al. 2016; Yin et al. 2016).

Sequential Time
Sequential-time computation refers to computa-
tion in which discrete computational operations
take place in succession but at no definite interval
(van Gelder 1997). Ordinary digital computer pro-
grams take place in sequential time, for the oper-
ations occur one after another, but the individual
operations are not required to have any specific
duration, so long as they take finite time.

One of the oldest examples of sequential ana-
log computation is provided by the compass-and-
straightedge constructions of traditional Euclid-
ean geometry (section “Introduction”). These
computations proceed by a sequence of discrete
operations, but the individual operations involve
continuous representations (e.g., compass set-
tings, straightedge positions) and operate on a
continuous state (the figure under construction).
Slide rule calculation might seem to be an exam-
ple of sequential analog computation, but if we
look at it, we see that although the operations are
performed by an analog device, the intermediate

12 Analog Computation

results are recorded digitally (and so this part of
the state space is discrete). Thus, it is a kind of
hybrid computation.

The familiar digital computer automates
sequential digital computations that once were
performed manually by human “computers.”
Sequential analog computation can be similarly
automated. That is, just as the control unit of an
ordinary digital computer sequences digital com-
putations, so a digital control unit can sequence
analog computations. In addition to the analog
computation devices (adders, multipliers, etc.),
such a computer must provide variables and

registers capable of holding continuous quantities
between the sequential steps of the computation
(see also section “Discrete Time” below).

The primitive operations of sequential-time
analog computation are typically similar to those
in continuous-time computation (e.g., addition,
multiplication, transcendental functions), but inte-
gration and differentiation with respect to sequen-
tial time do not make sense. However,
continuous-time integration within a single step,
and space-domain integration, as in PDE solvers
or field computation devices, is compatible with
sequential analog computation.

++

A

+
+

B

Cmi

-Cmi

si

am

-1

-1

1-k

0

output

Analog Computation, Fig. 1 Analog program for Boolean satisfiability

Analog Computation 13

In general, any model of digital computation
can be converted to a similar model of sequential
analog computation by changing the discrete state
space to a continuum and making appropriate
changes to the rest of the model. For example,
we can make an analog Turing machine by al-
lowing it to write a bounded real number (rather
than a symbol from a finite alphabet) onto a tape
cell. The Turing machine’s finite control can be
altered to test for tape markings in some specified
range.

Similarly, in a series of publications, Blum,
Shub, and Smale developed a theory of computa-
tion over the reals, which is an abstract model of
sequential-time analog computation (Blum et al.
1988, 1998). In this “BSS model,” programs are
represented as flowcharts, but they are able to
operate on real-valued variables. Using this
model, they were able to prove a number of theo-
rems about the complexity of sequential analog
algorithms.

The BSS model, and some other sequential
analog computation models, assumes that it is
possible to make exact comparisons between real
numbers (analogous to exact comparisons
between integers or discrete symbols in digital
computation) and to use the result of the compar-
ison to control the path of execution. Comparisons
of this kind are problematic because they imply
infinite precision in the comparator (which may be
defensible in a mathematical model but is impos-
sible in physical analog devices) and because they
make the execution path a discontinuous function
of the state (whereas analog computation is usu-
ally continuous). Indeed, it has been argued that
this is not “true” analog computation (Siegelmann
1999, p. 148).

Many artificial neural network models are
examples of sequential-time analog computation.
In a simple feed-forward neural network, an input
vector is processed by the layers in order, as in a
pipeline. That is, the output of layer n becomes the
input of layer n + 1. Since the model does not
make any assumptions about the amount of time it
takes a vector to be processed by each layer and to
propagate to the next, execution takes place in
sequential time. Most recurrent neural networks,
which have feedback, also operate in sequential

time, since the activities of all the neurons are
updated synchronously (that is, signals propagate
through the layers, or back to earlier layers, in
lockstep).

Many artificial neural net learning algorithms
are also sequential-time analog computations. For
example, the back-propagation algorithm updates
a network’s weights, moving sequentially back-
ward through the layers.

In summary, the correctness of sequential-time
computation (analog or digital) depends on the
order of operations, not on their duration, and
similarly, the efficiency of sequential computa-
tions is evaluated in terms of the number of oper-
ations, not on their total duration.

Discrete Time
Discrete-time analog computation has similarities
to both continuous-time and sequential analog
computation. Like the latter, it proceeds by a
sequence of discrete (analog) computation steps;
like the former, these steps occur at a constant rate
in real time (e.g., some “sample rate”). If the real-
time rate is sufficient for the application, then
discrete-time computation can approximate
continuous-time computation (including integra-
tion and differentiation).

Some electronic GPACs implemented discrete-
time analog computation by a modification of
repetitive operation mode, called iterative analog
computation (Ashley 1963, chapter 9). Recall
(section “Electronic Analog Computation in the
Twentieth Century”) that in repetitive operation
mode, a clock rapidly switched the computer
between reset and compute modes, thus repeating
the same analog computation, but with different
parameters (set by the operator). However, each
repetition was independent of the others. Iterative
operation was different in that analog values com-
puted by one iteration could be used as initial
values in the next. This was accomplished by
means of an analog memory circuit (based on an
op amp) that sampled an analog value at the end of
one compute cycle (effectively during hold mode)
and used it to initialize an integrator during the
following reset cycle. (A modified version of the
memory circuit could be used to retain a value
over several iterations.) Iterative computation was

14 Analog Computation

used for problems such as determining, by itera-
tive search or refinement, the initial conditions
that would lead to a desired state at a future time.
Since the analog computations were iterated at a
fixed clock rate, iterative operation is an example
of discrete-time analog computation. However,
the clock rate is not directly relevant in some
applications (such as the iterative solution of
boundary-value problems), in which case iterative
operation is better characterized as sequential ana-
log computation.

The principal contemporary examples of
discrete-time analog computing are in neural net-
work applications to time-series analysis and
(discrete-time) control. In each of these cases,
the input to the neural net is a sequence of
discrete-time samples, which propagate through
the net and generate discrete-time output signals.
Many of these neural nets are recurrent, that is,
values from later layers are fed back into earlier
layers, which allows the net to remember infor-
mation from one sample to the next.

Analog Computer Programs

The concept of a program is central to digital
computing, both practically, for it is the means
for programming general-purpose digital com-
puters, and theoretically, for it defines the limits
of what can be computed by a universal machine,
such as a universal Turing machine. Therefore, it
is important to discuss means for describing or
specifying analog computations.

Traditionally, analog computers were used to
solve ODEs (and sometimes PDEs), and so in one
sense, a mathematical differential equation is one
way to represent an analog computation. How-
ever, since the equations were usually not suitable
for direct solution on an analog computer, the
process of programming involved the translation
of the equations into a schematic diagram show-
ing how the analog computing devices
(integrators, etc.) should be connected to solve
the problem. These diagrams are the closest anal-
ogies to digital computer programs and may be
compared to flowcharts, which were once popular
in digital computer programming. It is worth

noting, however, that flowcharts (and ordinary
computer programs) represent sequences among
operations, whereas analog computing diagrams
represent functional relationships among vari-
ables and therefore a kind of parallel data flow.

Differential equations and schematic diagrams
are suitable for continuous-time computation, but
for sequential analog computation, something
more akin to a conventional digital program can
be used. Thus, as previously discussed (section
“Sequential Time”), the BSS system uses flow-
charts to describe sequential computations over
the reals. Similarly, Moore (1996) defines recur-
sive functions over the reals by means of a nota-
tion similar to a programming language.

In principle any sort of analog computation
might involve constants that are arbitrary real
numbers, which therefore might not be express-
ible in finite form (e.g., as a finite string of digits).
Although this is of theoretical interest (see section
“Real-Valued Inputs, Outputs, and Constants”
below), from a practical standpoint, these con-
stants could be set with about at most four digits
of precision (Rogers and Connolly 1960, p. 11).
Indeed, automatic potentiometer-setting devices
were constructed that read a series of decimal
numerals from punched paper tape and used
them to set the potentiometers for the constants
(Truitt and Rogers 1960, pp. 3-58–3-60). Never-
theless, it is worth observing that analog com-
puters do allow continuous inputs that need not
be expressed in digital notation, for example,
when the parameters of a simulation are continu-
ously varied by the operator. In principle, there-
fore, an analog program can incorporate constants
that are represented by a real-valued physical
quantity (e.g., an angle or a distance), which
need not be expressed digitally. Further, as we
have seen (section “Electronic Analog Computa-
tion in the Twentieth Century”), some electronic
analog computers could compute a function by
means of an arbitrarily drawn curve, that is, not
represented by an equation or a finite set of digi-
tized points. Therefore, in the context of analog
computing, it is natural to expand the concept of a
program beyond discrete symbols to include con-
tinuous representations (scalar magnitudes, vec-
tors, curves, shapes, surfaces, etc.).

Analog Computation 15

Typically, such continuous representations
would be used as adjuncts to conventional discrete
representations of the analog computational pro-
cess, such as equations or diagrams. However, in
some cases the most natural static representation
of the process is itself continuous, in which case it
is more like a “guiding image” than a textual
prescription (MacLennan 1995). A simple exam-
ple is a potential surface, which defines a contin-
uum of trajectories from initial states (possible
inputs) to fixed-point attractors (the results of the
computations). Such a “program” may define a
deterministic computation (e.g., if the computa-
tion proceeds by gradient descent), or it may con-
strain a nondeterministic computation (e.g., if the
computation may proceed by any potential-
decreasing trajectory). Thus, analog computation
suggests a broadened notion of programs and
programming.

Characteristics of Analog Computation

Precision
Analog computation is evaluated in terms of both
accuracy and precision, but the two must be dis-
tinguished carefully (Ashley 1963, pp. 25–28;
Weyrick 1969, pp. 12–13; Small 2001,
pp. 257–261). Accuracy refers primarily to the
relationship between a simulation and the primary
system it is simulating or, more generally, to the
relationship between the results of a computation
and the mathematically correct result. Accuracy is
a result of many factors, including the mathemat-
ical model chosen, the way it is set up on a
computer, and the precision of the analog comput-
ing devices. Precision, therefore, is a narrower
notion, which refers to the quality of a represen-
tation or computing device. In analog computing,
precision depends on resolution (fineness of oper-
ation) and stability (absence of drift) and may be
measured as a fraction of the represented value.
Thus, a precision of 0.01% means that the repre-
sentation will stay within 0.01% of the
represented value for a reasonable period of
time. For purposes of comparing analog devices,
the precision is usually expressed as a fraction of

full-scale variation (i.e., the difference between the
maximum and minimum representable values).

It is apparent that the precision of analog com-
puting devices depends on many factors. One is
the choice of physical process and the way it is
utilized in the device. For example, a linear math-
ematical operation can be realized by using a
linear region of a nonlinear physical process, but
the realization will be approximate and have some
inherent imprecision. Also, associated, unavoid-
able physical effects (e.g., loading, and leakage
and other losses) may prevent precise implemen-
tation of an intended mathematical function. Fur-
ther, there are fundamental physical limitations to
resolution (e.g., quantum effects, thermal noise,
diffraction). Noise is inevitable, both intrinsic
(e.g., thermal noise) and extrinsic (e.g., ambient
radiation). Changes in ambient physical condi-
tions, such as temperature, can affect the physical
processes and decrease precision. At slower time
scales, materials and components age and their
physical characteristics change. In addition, there
are always technical and economic limits to the
control of components, materials, and processes
in analog device fabrication.

The precision of analog and digital computing
devices depends on very different factors. The
precision of a (binary) digital device depends on
the number of bits, which influences the amount
of hardware, but not its quality. For example, a
64-bit adder is about twice the size of a 32-bit
adder, but can be made out of the same compo-
nents. At worst, the size of a digital device might
increase with the square of the number of bits of
precision. This is because binary digital devices
only need to represent two states, and therefore,
they can operate in saturation. The fabrication
standards sufficient for the first bit of precision
are also sufficient for the 64th bit. Analog devices,
in contrast, need to be able to represent a contin-
uum of states precisely. Therefore, the fabrication
of high-precision analog devices is much more
expensive than low-precision devices, since the
quality of components, materials, and processes
must be much more carefully controlled. Dou-
bling the precision of an analog device may be
expensive, whereas the cost of each additional bit
of digital precision is incremental; that is, the cost

16 Analog Computation

is proportional to the logarithm of the precision
expressed as a fraction of full range.

The forgoing considerations might seem to be
a convincing argument for the superiority of dig-
ital to analog technology, and indeed, they were
an important factor in the competition between
analog and digital computers in the middle of the
twentieth century (Small 2001, pp. 257–261).
However, as was argued at that time, many com-
puter applications do not require high precision.
Indeed, in many engineering applications, the
input data are known to only a few digits, and
the equations may be approximate or derived from
experiments. In these cases, the very high preci-
sion of digital computation is unnecessary and
may in fact be misleading (e.g., if one displays
all 14 digits of a result that is accurate to only
three). Furthermore, many applications in image
processing and control do not require high preci-
sion. More recently, research in artificial neural
networks (ANNs) has shown that low-precision
analog computation is sufficient for almost all
ANN applications. Indeed, neural information
processing in the brain seems to operate with
very low precision (perhaps less than 10%
McClelland 1986, p. 378), for which it compen-
sates with massive parallelism. For example, by
coarse coding, a population of low-precision
devices can represent information with relatively
high precision (Rumelhart et al. 1986, pp. 91–96;
Sanger 1996).

Scaling
An important aspect of analog computing is scal-
ing, which is used to adjust a problem to an analog
computer. First is time scaling, which adjusts a
problem to the characteristic time scale at which a
computer operates, which is a consequence of its
design and the physical processes by which it is
realized (Peterson 1967, pp. 37–44; Rogers and
Connolly 1960, pp. 262–263; Weyrick 1969,
pp. 241–243). For example, we might want a
simulation to proceed on a very different time
scale from the primary system. Thus, a weather
or economic simulation should proceed faster
than real time in order to get useful predictions.
Conversely, we might want to slow down a simu-
lation of protein folding so that we can observe the

stages in the process. Also, for accurate results, it
is necessary to avoid exceeding the maximum
response rate of the analog devices, which might
dictate a slower simulation speed. On the other
hand, too slow a computation might be inaccurate
as a consequence of instability (e.g., drift and
leakage in the integrators).

Time scaling affects only time-dependent oper-
ations such as integration. For example, suppose t,
time in the primary system or “problem time,” is
related to t, time in the computer, by t = bt.
Therefore, an integration u tð Þ ¼ Ð t

0
v t0ð Þdt0 in

the primary system is replaced by the integration
u tð Þ ¼ b�1

Ð t
0
v t0ð Þdt0 on the computer. Thus,

time scaling may be accomplished simply by
decreasing the input gain to the integrator by a
factor of b.

Fundamental to analog computation is the rep-
resentation of a continuous quantity in the primary
system by a continuous quantity in the computer.
For example, a displacement x in meters might be
represented by a potential V in volts. The two are
related by an amplitude or magnitude scale factor,
V= ax (with unit volts/meter), chosen to meet two
criteria (Ashley 1963; Pour-El 1974; Rogers and
Connolly 1960; Weyrick 1969). On the one hand,
amust be sufficiently small so that the range of the
problem variable is accommodated within the
range of values supported by the computing
device. Exceeding the device’s intended operating
range may lead to inaccurate results (e.g., forcing
a linear device into nonlinear behavior). On the
other hand, the scale factor should not be too
small, or relevant variation in the problem vari-
able will be less than the resolution of the device,
also leading to inaccuracy. (Recall that precision
is specified as a fraction of full-range variation.)

In addition to the explicit variables of the pri-
mary system, there are implicit variables, such as
the time derivatives of the explicit variables, and
scale factors must be chosen for them too. For
example, in addition to displacement x, a problem
might include velocity ẋ and acceleration €x. There-
fore, scale factors a, a0, and a00 must be chosen so
that a x, a0 ẋ, and a00€x have an appropriate range of
variation (neither too large nor too small). Once a
scale factor has been chosen, the primary system

Analog Computation 17

equations are adjusted to obtain the analog com-
puting equations. For example, if we have scaled
u = a x and u ¼ a0 _x, then the integration x tð Þ ¼Ð t
0
_x t0ð Þdt0 would be computed by scaled equation:

u tð Þ ¼ a
a0

ðt
0

u t0ð Þdt0:

This is accomplished by simply setting the
input gain of the integrator to a/a0.

In practice, time scaling and magnitude scaling
are not independent (Rogers and Connolly 1960,
p. 262). For example, if the derivatives of a vari-
able can be large, then the variable can change
rapidly, and so it may be necessary to slow down
the computation to avoid exceeding the high-
frequency response of the computer. Conversely,
small derivatives might require the computation to
be run faster to avoid integrator leakage, drift, and
other sources of imprecision. Appropriate scale
factors are determined by considering both the
physics and the mathematics of the problem
(Peterson 1967, pp. 40–44). That is, first, the
physics of the primary system may limit the
ranges of the variables and their derivatives. Sec-
ond, analysis of the mathematical equations
describing the system can give additional infor-
mation on the ranges of the variables. For exam-
ple, in some cases the natural frequency of a
system can be estimated from the coefficients of
the differential equations; the maximum of the nth
derivative is then estimated as the nth power of
this frequency (Peterson 1967, p. 42; Weyrick
1969, pp. 238–240). In any case, it is not neces-
sary to have accurate values for the ranges; rough
estimates giving orders of magnitude are
adequate.

It is tempting to think of magnitude scaling as a
problem unique to analog computing, but before
the invention of floating-point numbers, it was
also necessary in digital computer programming.
In any case it is an essential aspect of analog
computing, in which physical processes are more
directly used for computation than they are in
digital computing. Although the necessity of scal-
ing has been a source of criticism, advocates for
analog computing have argued that it is a blessing

in disguise, because it leads to improved under-
standing of the primary system, which was often
the goal of the computation in the first place
(Bissell 2004; Small 2001, chapter 8). Practi-
tioners of analog computing are more likely to
have an intuitive understanding of both the pri-
mary system and its mathematical description (see
section “Analog Thinking”).

Analog Computation in Nature

Computational processes – that is to say, informa-
tion processing and control – occur in many living
systems, most obviously in nervous systems, but
also in the self-organized behavior of groups of
organisms. In most cases natural computation is
analog, either because it makes use of continuous
natural processes or because it makes use of dis-
crete but stochastic processes. Several examples
will be considered briefly.

Neural Computation
In the past neurons were thought of binary com-
puting devices, something like digital logic gates.
This was a consequence of the “all or nothing”
response of a neuron, which refers to the fact that
it does or does not generate an action potential
(voltage spike) depending, respectively, on
whether its total input exceeds a threshold or not
(more accurately, it generates an action potential if
the membrane depolarization at the axon hillock
exceeds the threshold and the neuron is not in its
refractory period). Certainly, some neurons (e.g.,
so-called command neurons) do act something
like logic gates. However, most neurons are ana-
lyzed better as analog devices because the rate of
impulse generation represents significant infor-
mation. In particular, an amplitude code, the
membrane potential near the axon hillock (which
is a summation of the electrical influences on the
neuron), is translated into a rate code for more
reliable long-distance transmission along the
axons. Nevertheless, the code is low precision
(about one digit), since information theory
shows that it takes at least N milliseconds (and
probably more like 5 N ms) to discriminate
N values (MacLennan 1991). The rate code is

18 Analog Computation

translated back to an amplitude code by the syn-
apses, since successive impulses release neuro-
transmitter from the axon terminal, which
diffuses across the synaptic cleft to receptors.
Thus, a synapse acts as a leaky integrator to
time-average the impulses.

As previously discussed (section “Continuous
State Space”), many artificial neural net models
have real-valued neural activities, which corre-
spond to rate-encoded axonal signals of biological
neurons. On the other hand, these models typi-
cally treat the input connections as simple real-
valued weights, which ignores the analog signal
processing that takes place in the dendritic trees of
biological neurons. The dendritic trees of many
neurons are complex structures, which often have
tens of thousands of synaptic inputs. The binding
of neurotransmitters to receptors causes minute
voltage fluctuations, which propagate along the
membrane, and ultimately cause voltage fluctua-
tions at the axon hillock, which influence the
impulse rate. Since the dendrites have both resis-
tance and capacitance, to a first approximation, the
signal propagation is described by the “cable equa-
tions,” which describe passive signal propagation
in cables of specified diameter, capacitance, and
resistance (Anderson 1995, chapter 1). Therefore,
to a first approximation, a neuron’s dendritic net
operates as an adaptive linear analog filter with
thousands of inputs, and so it is capable of quite
complex signal processing. More accurately,
however, it must be treated as a nonlinear analog
filter, since voltage-gated ion channels introduce
nonlinear effects. The extent of analog signal pro-
cessing in dendritic trees is still poorly understood.

In most cases, then, neural information pro-
cessing is treated best as low-precision analog
computation. Although individual neurons have
quite broadly tuned responses, accuracy in percep-
tion and sensorimotor control is achieved through
coarse coding, as already discussed (section
“Characteristics of Analog Computation”). Fur-
ther, one widely used neural representation is the
cortical map, in which neurons are systematically
arranged in accord with one or more dimensions of
their stimulus space, so that stimuli are represented
by patterns of activity over the map. (Examples are
tonotopic maps, in which pitch is mapped to

cortical location, and retinotopic maps, in which
cortical location represents retinal location.) Since
neural density in the cortex is at least 125,000
neurons per square millimeter (Collins et al.
2010), even relatively small cortical maps can be
treated as fields and information processing in them
as analog field computation (see▶ “Field Compu-
tation inNatural andArtificial Intelligence”). Over-
all, the brain demonstrates what can be
accomplished bymassively parallel analog compu-
tation, even if the individual devices are compara-
tively slow and of low precision.

Adaptive Self-Organization in Social Insects
Another example of analog computation in nature
is provided by the self-organizing behavior of
social insects, microorganisms, and other
populations (Camazine et al. 2001). Often, such
organisms respond to concentrations, or gradients
in the concentrations, of chemicals produced by
other members of the population. These chemicals
may be deposited and diffuse through the envi-
ronment. In other cases, insects and other organ-
isms communicate by contact, but may maintain
estimates of the relative proportions of different
kinds of contacts. Because the quantities are effec-
tively continuous, all these are examples of analog
control and computation.

Self-organizing populations provide many
informative examples of the use of natural pro-
cesses for analog information processing and con-
trol. For example, diffusion of pheromones is a
common means of self-organization in insect col-
onies, facilitating the creation of paths to
resources, the construction of nests, and many
other functions (Camazine et al. 2001). Real dif-
fusion (as opposed to sequential simulations of it)
executes, in effect, a massively parallel search of
paths from the chemical’s source to its recipients
and allows the identification of near-optimal
paths. Furthermore, if the chemical degrades, as
is generally the case, then the system will be
adaptive, in effect continually searching out the
shortest paths, so long as the source continues to
function (Camazine et al. 2001). Simulated diffu-
sion has been applied to robot path planning
(Khatib 1986; Rimon and Koditschek 1989).

Analog Computation 19

http://link.springer.com/Field Computation in Natural and Artificial Intelligence
http://link.springer.com/Field Computation in Natural and Artificial Intelligence

Genetic Circuits
Another example of natural analog computing is
provided by the genetic regulatory networks that
control the behavior of cells, in multicellular
organisms as well as single-celled ones
(Davidson 2006). These networks are defined by
the mutually interdependent regulatory genes,
promoters, and repressors that control the internal
and external behavior of a cell. The interdepen-
dencies are mediated by proteins, the synthesis of
which is governed by genes, and which in turn
regulate the synthesis of other gene products
(or themselves). Since it is the quantities of these
substances that are relevant, many of the regula-
tory motifs can be described in computational
terms as adders, subtracters, integrators,
etc. Thus, the genetic regulatory network imple-
ments an analog control system for the cell
(Reiner 1968).

It might be argued that the number of intracel-
lular molecules of a particular protein is a
(relatively small) discrete number, and therefore
that it is inaccurate to treat it as a continuous
quantity. However, the molecular processes in
the cell are stochastic, and so the relevant quantity
is the probability that a regulatory protein will
bind to a regulatory site. Further, the processes
take place in continuous real time, and so the rates
are generally the significant quantities. Finally,
although in some cases gene activity is either on
or off (more accurately: very low), in other cases it
varies continuously between these extremes
(Hartl 1994, pp. 388–390). Indeed, electronic ana-
log circuit design is proving to be a valuable
model for synthetic biology circuits at the DNA,
RNA, protein, and small molecule levels (Teo
et al. 2015). Knowledge and tools for the design,
simulation, analysis, and implementation of elec-
tronic analog circuits can be applied in synthetic
biology to the design of molecular circuits that are
efficient and robust in spite of stochastic effects.

Embryological development combines the
analog control of individual cells with the sort of
self-organization of populations seen in social
insects and other colonial organisms. Locomotion
of the cells and the expression of specific genes
are controlled by chemical signals, among other
mechanisms (Davidson 2006; Davies 2005).

Thus, PDEs have proved useful in explaining
some aspects of development; for example,
reaction–diffusion equations have been used to
describe the formation of hair-coat patterns and
related phenomena (Camazine et al. 2001; Maini
and Othmer 2001; Murray 1977; see
▶ “Reaction–Diffusion Computing”). Therefore,
the developmental process is governed by natu-
rally occurring analog computation.

Is Everything a Computer?

It might seem that any continuous physical pro-
cess could be viewed as analog computation,
which would make the term almost meaningless.
As the question has been put, is it meaningful
(or useful) to say that the solar system is comput-
ing Kepler’s laws? In fact, it is possible and worth-
while to make a distinction between computation
and other physical processes that happen to be
described by mathematical laws (MacLennan
1994a, b, 2001, 2004).

If we recall the original meaning of analog
computation (section “Definition of the Subject”),
we see that the computational system is used to
solve some mathematical problem with respect to
a primary system.What makes this possible is that
the computational system and the primary system
have the same, or systematically related, abstract
(mathematical) structures. Thus, the computa-
tional system can inform us about the primary
system, or be used to control it, etc. Although
from a practical standpoint some analogs are bet-
ter than others, in principle any physical system
can be used that obeys the same equations as the
primary system.

Based on these considerations, we may define
computation as a physical process, the purpose of
which is the abstract manipulation of abstract
objects (i.e., information processing); this defini-
tion applies to analog, digital, and hybrid compu-
tation (MacLennan 1994a, b, 2001, 2004).
Therefore, to determine if a natural system is
computational, we need to look to its purpose or
function within the context of the living system of
which it is a part. One test of whether its function
is the abstract manipulation of abstract objects is

20 Analog Computation

http://link.springer.com/Reaction–Diffusion Computing

to ask whether it could still fulfill its function if
realized by different physical processes, a prop-
erty called multiple realizability. (Similarly, in
artificial systems, a simulation of the economy
might be realized equally accurately by a hydrau-
lic analog computer or an electronic analog com-
puter (Bissell 2004)). By this standard, the
majority of the nervous system is purely compu-
tational; in principle it could be replaced by elec-
tronic devices obeying the same differential
equations. In the other cases we have considered
(self-organization of living populations, genetic
circuits) there are instances of both pure compu-
tation and computation mixed with other func-
tions (for example, where the specific substances
used have other – e.g., metabolic – roles in the
living system).

General-Purpose Analog Computation

The Importance of General-Purpose
Computers
Although special-purpose analog and digital com-
puters have been developed, and continue to be
developed, for many purposes, the importance of
general-purpose computers, which can be config-
ured easily for a wide variety of purposes, has
been recognized since at least the nineteenth cen-
tury. Babbage’s plans for a general-purpose digital
computer, his analytical engine (1835), are well
known, but a general-purpose differential ana-
lyzer was advocated by Kelvin (1876). Practical
general-purpose analog and digital computers
were first developed at about the same time:
from the early 1930s through the war years.
General-purpose computers of both kinds permit
the prototyping of special-purpose computers and,
more importantly, permit the flexible reuse of
computer hardware for different or evolving
purposes.

The concept of a general-purpose computer is
useful also for determining the limits of a comput-
ing paradigm. If one can design – theoretically or
practically – a universal computer, that is, a
general-purpose computer capable of simulating
any computer in a relevant class, then anything
uncomputable by the universal computer will also

be uncomputable by any computer in that class.
This is, of course, the approach used to show that
certain functions are uncomputable by any Turing
machine because they are uncomputable by a
universal Turing machine. For the same reason,
the concept of general-purpose analog computers,
and in particular of universal analog computers, is
theoretically important for establishing limits to
analog computation.

General-Purpose Electronic Analog
Computers
Before taking up these theoretical issues, it is
worth recalling that a typical electronic GPAC
would include linear elements, such as adders,
subtracters, constant multipliers, integrators, and
differentiators; nonlinear elements, such as vari-
able multipliers and function generators; and other
computational elements, such as comparators,
noise generators, and delay elements (section
“Electronic Analog Computation in the Twentieth
Century”). These are, of course, in addition to
input/output devices, which would not affect its
computational abilities.

Shannon’s Analysis
Claude Shannon did an important analysis of the
computational capabilities of the differential ana-
lyzer, which applies to many GPACs (Shannon
1941, 1993). He considered an abstract differen-
tial analyzer equipped with an unlimited number
of integrators, adders, constant multipliers, and
function generators (for functions with only a
finite number of finite discontinuities), with at
most one source of drive (which limits possible
interconnections between units). This was based
on prior work that had shown that almost all the
generally used elementary functions could be gen-
erated with addition and integration. We will sum-
marize informally a few of Shannon’s results; for
details, please consult the original paper.

First, Shannon offers proofs that, by setting up
the correct ODEs, a GPAC with the mentioned
facilities can generate a function if and only if it is
not hypertranscendental (Theorem II); thus, the
GPAC can generate any function that is algebraic
transcendental (a very large class) but not, for
example, Euler’s gamma function and Riemann’s

Analog Computation 21

zeta function. He also shows that the GPAC can
generate functions derived from generable func-
tions, such as the integrals, derivatives, inverses,
and compositions of generable functions
(Theorems III, IV). These results can be general-
ized to functions of any number of variables and
to their compositions, partial derivatives, and
inverses with respect to any one variable
(Theorems VI, VII, IX, X).

Next, Shannon shows that a function of any
number of variables that is continuous over a
closed region of space can be approximated arbi-
trarily closely over that region with a finite num-
ber of adders and integrators (Theorems V, VIII).

Shannon then turns from the generation of
functions to the solution of ODEs and shows
that the GPAC can solve any system of ODEs
defined in terms of non-hypertranscendental func-
tions (Theorem XI).

Finally, Shannon addresses a question that
might seem of limited interest, but turns out to
be relevant to the computational power of analog
computers (see section “Analog Computation and
the Turing Limit” below). To understand it, we
must recall that he was investigating the differen-
tial analyzer – a mechanical analog computer –
but similar issues arise in other analog computing
technologies. The question is whether it is possi-
ble to perform an arbitrary constant multiplica-
tion, u = kv, by means of gear ratios. He showed
that if we have just two gear ratios a and b (a,
b 6¼ 0, 1) such that b is not a rational power of a,
then by combinations of these gears, we can
approximate k arbitrarily closely (Theorem XII).
That is, to approximate multiplication by arbitrary
real numbers, it is sufficient to be able to multiply
by a, b, and their inverses, provided a and b are
not related by a rational power.

Shannon mentions an alternative method
of constant multiplication, which uses integration,
ku ¼ Ð u

0
kdu, but this requires setting the integrand

to the constant function k. Therefore, multiplying
by an arbitrary real number requires the ability to
input an arbitrary real as the integrand. The issue
of real-valued inputs and outputs to analog com-
puters is relevant both to their theoretical power
and to practical matters of their application (see

section “Real-Valued Inputs, Outputs, and
Constants”).

Shannon’s proofs, which were incomplete,
were eventually refined by Pour-El (1974) and
finally corrected by Lipshitz and Rubel (1987).
Rubel (1988) proved that Shannon’s GPAC can-
not solve the Dirichlet problem for Laplace’s
equation on the disk; indeed, it is limited to
initial-value problems for algebraic ODEs. Spe-
cifically, the Shannon–Pour-El Thesis is that the
outputs of the GPAC are exactly the solutions of
the algebraic differential equations, that is, equa-
tions of the form

P x, y xð Þ, y0 xð Þ, y00 xð Þ, . . . , y nð Þ xð Þ
h i

¼ 0,

where P is a polynomial that is not identically
vanishing in any of its variables (these are the
differentially algebraic functions) (Rubel 1985).
(For details please consult the cited papers.) The
limitations of Shannon’s GPAC motivated
Rubel’s definition of the extended analog
computer.

Rubel’s Extended Analog Computer
The combination of Rubel’s (1985) conviction
that the brain is an analog computer together
with the limitations of Shannon’s GPAC led him
to propose the extended analog computer (EAC)
(Rubel 1993).

Like Shannon’s GPAC (and the Turing
machine), the EAC is a conceptual computer
intended to facilitate theoretical investigation of
the limits of a class of computers. The EAC
extends the GPAC in a number of respects. For
example, whereas the GPAC solves equations
defined over a single variable (time), the EAC
can generate functions over any finite number of
real variables. Further, whereas the GPAC is
restricted to initial-value problems for ODEs, the
EAC solves both initial- and boundary-value
problems for a variety of PDEs.

The EAC is structured into a series of levels,
each more powerful than the ones below it, from
which it accepts inputs. The inputs to the lowest
level are a finite number of real variables (“set-
tings”). At this level it operates on real

22 Analog Computation

polynomials, from which it is able to generate the
differentially algebraic functions. The computa-
tion on each level is accomplished by conceptual
analog devices, which include constant real-
number generators, adders, multipliers,
differentiators, “substituters” (for function com-
position), devices for analytic continuation, and
inverters, which solve systems of equations
defined over functions generated by the lower
levels. Most characteristic of the EAC is the
“boundary-value-problem box,” which solves
systems of PDEs and ODEs subject to boundary
conditions and other constraints. The PDEs are
defined in terms of functions generated by the
lower levels. Such PDE solvers may seem implau-
sible, and so it is important to recall field-
computing devices for this purpose were
implemented in some practical analog computers
(see section “History”) and more recently in
Mills’ EAC (Mills et al. 2006). As Rubel
observed, PDE solvers could be implemented by
physical processes that obey the same PDEs (heat
equation, wave equation, etc.). (See also section
“Future Directions” below.)

Finally, the EAC is required to be “extremely
well posed,” which means that each level is rela-
tively insensitive to perturbations in its inputs;
thus, “all the outputs depend in a strongly deter-
ministic and stable way on the initial settings of
the machine” (Rubel 1993).

Rubel (1993) proves that the EAC can compute
everything that the GPAC can compute, but also
such functions as the gamma and zeta functions,
and that it can solve the Dirichlet problem for
Laplace’s equation on the disk, all of which are
beyond the GPAC’s capabilities. Further, whereas
the GPAC can compute differentially algebraic
functions of time, the EAC can compute differen-
tially algebraic functions of any finite number of
real variables. In fact, Rubel did not find any real-
analytic (C1) function that is not computable on
the EAC, but he observes that if the EAC can
indeed generate every real-analytic function, it
would be too broad to be useful as a model of
analog computation.

Analog Computation and the Turing
Limit

Introduction
The Church–Turing Thesis asserts that anything
that is effectively computable is computable by a
Turing machine, but Turing machines (and equiv-
alent models, such as the lambda calculus) are
models of discrete computation, and so it is natu-
ral to wonder how analog computing compares in
power, and in particular whether it can compute
beyond the “Turing limit.” Superficial answers are
easy to obtain, but the issue is subtle because it
depends upon choices among definitions, none of
which is obviously correct, because it involves the
foundations of mathematics and its philosophy,
and because it raises epistemological issues
about the role of models in scientific theories.
This is an active research area, but many of the
results are apparently inconsistent due to the dif-
fering assumptions on which they are based.
Therefore, this section will be limited to a mention
of a few of the interesting results, but without
attempting a comprehensive, systematic, or
detailed survey; Siegelmam (1999) can serve as
an introduction to the literature.

A Sampling of Theoretical Results

Continuous-Time Models
Orponen’s (1997) survey of continuous-time
computation theory is a good introduction to the
literature as of that time; here, we give a sample of
these and more recent results.

There are several results showing that – under
various assumptions – analog computers have at
least the power of Turing machines (TMs). For
example, Branicky (1994) showed that a TM
could be simulated by ODEs, but he used non-
differentiable functions; Bournez et al. (2006)
provide an alternative construction using only
analytic functions. They also prove that GPAC
computability coincides with (Turing-)
computable analysis, which is surprising, since
the gamma function is Turing computable but, as
we have seen, the GPAC cannot generate it. The
paradox is resolved by a distinction between

Analog Computation 23

generating a function and computing it, with the
latter, broader notion permitting convergent com-
putation of the function (that is, as t!1). How-
ever, the computational power of general ODEs
has not been determined in general (Siegelmann
1999, p. 149). Pour-El and Richards exhibit a
Turing-computable ODE that does not have a
Turing-computable solution (Pour-El and
Richards 1979, 1982). Stannett (1990) also
defined a continuous-time analog computer that
can solve the halting problem.

Moore (1996) defines a class of continuous-
time recursive functions over the reals, which
includes a zero-finding operator m. Functions can
be classified into a hierarchy depending on the
number of uses of m, with the lowest level
(no ms) corresponding approximately to
Shannon’s GPAC. Higher levels can compute
non-Turing-computable functions, such as the
decision procedure for the halting problem, but
he questions whether this result is relevant in the
physical world, which is constrained by “noise,
quantum effects, finite accuracy, and limited
resources.” Bournez and Cosnard (1996) have
extended these results and shown that many
dynamical systems have super-Turing power.

Omohundro (1984) showed that a system of
ten coupled nonlinear PDEs could simulate an
arbitrary cellular automaton (see ▶ “Mathemati-
cal Basis of Cellular Automata, Introduction to”),
which implies that PDEs have at least Turing
power. Further, Wolpert and MacLennan
(Wolpert 1991; Wolpert and MacLennan 1993)
showed that any TM can be simulated by a field
computer with linear dynamics, but the construc-
tion uses Dirac delta functions. Pour-El and
Richards exhibit a wave equation in three-
dimensional space with Turing-computable initial
conditions, but for which the unique solution is
Turing uncomputable (Pour-EL and Richards
1981, 1982).

Sequential-Time Models
We will mention a few of the results that have
been obtained concerning the power of
sequential-time analog computation.

Although the BSS model has been investigated
extensively, its power has not been completely

determined (Blum et al. 1988, 1998). It is known
to depend on whether just rational numbers or
arbitrary real numbers are allowed in its programs
(Siegelmann 1999, p. 148).

A coupled map lattice (CML) is a cellular
automaton with real-valued states (see ▶ “Mathe-
matical Basis of Cellular Automata, Introduction
to”); it is a sequential-time analog computer,
which can be considered a discrete-space approx-
imation to a simple sequential-time field com-
puter. Orponen and Matamala (1996) showed
that a finite CML can simulate a universal Turing
machine. However, since a CML can simulate a
BSS program or a recurrent neural network (see
section “Recurrent Neural Networks” below), it
actually has super-Turing power (Siegelmann
1999, p. 149).

Recurrent neural networks are some of the
most important examples of sequential analog
computers, and so the following section is
devoted to them.

Recurrent Neural Networks
With the renewed interest in neural networks in
the mid-1980s, many investigators wondered if
recurrent neural nets have super-Turing power.
Garzon and Franklin showed that a sequential-
time net with a countable infinity of neurons
could exceed Turing power (Franklin and Garzon
1990; Garzon and Franklin 1989, 1990). Indeed,
Siegelmann and Sontag (1994) showed that finite
neural nets with real-valued weights have super-
Turing power, but Maass and Sontag (1999)
showed that recurrent nets with Gaussian or sim-
ilar noise had sub-Turing power, illustrating again
the dependence on these results on assumptions
about what is a reasonable mathematical model of
analog computing.

For recent results on recurrent neural networks,
we will restrict our attention of the work of
Siegelmann (1999), who addresses the computa-
tional power of these networks in terms of the
classes of languages they can recognize. Without
loss of generality, the languages are restricted to
sets of binary strings. A string to be tested is fed to
the network one bit at a time, along with an input
that indicates when the end of the input string has
been reached. The network is said to decide

24 Analog Computation

http://link.springer.com/Mathematical Basis of Cellular Automata, Introduction to
http://link.springer.com/Mathematical Basis of Cellular Automata, Introduction to
http://link.springer.com/Mathematical Basis of Cellular Automata, Introduction to
http://link.springer.com/Mathematical Basis of Cellular Automata, Introduction to
http://link.springer.com/Mathematical Basis of Cellular Automata, Introduction to

whether the string is in the language if it correctly
indicates whether it is in the set or not after some
finite number of sequential steps since input
began.

Siegelmann shows that, if exponential time is
allowed for recognition, finite recurrent neural
networks with real-valued weights (and
saturated-linear activation functions) can recog-
nize all languages, and thus, they are more pow-
erful than Turing machines. Similarly, stochastic
networks with rational weights also have super-
Turing power, although less power than the deter-
ministic nets with real weights. (Specifically, they
compute P/POLYand BPP/log*, respectively; see
Siegelmann (1999, chapters 4 and 9) for details.)
She further argues that these neural networks
serve as a “standard model” of (sequential) analog
computation (comparable to Turing machines in
Church–Turing computation) and therefore that
the limits and capabilities of these nets apply to
sequential analog computation generally.

Siegelmann (1999, p. 156) observes that the
super-Turing power of recurrent neural networks
is a consequence of their use of irrational real-
valued weights. In effect, a real number can con-
tain an infinite number of bits of information. This
raises the question of how the irrational weights of
a network can ever be set, since it is not possible to
control a physical quantity with infinite precision.
However, although irrational weights may not be
able to be set from outside the network, they can
be computed within the network by learning algo-
rithms, which are analog computations. Thus,
Siegelmann suggests, the fundamental distinction
may be between static computational models,
such as the Turing machine and its equivalents,
and dynamically evolving computational models,
which can tune continuously variable parameters
and thereby achieve super-Turing power.

Dissipative Models
Beyond the issue of the power of analog comput-
ing relative to the Turing limit, there are also
questions of its relative efficiency. For example,
could analog computing solve NP-hard problems
in polynomial or even linear time? In traditional
computational complexity theory, efficiency
issues are addressed in terms of the asymptotic

number of computation steps to compute a func-
tion as the size of the function’s input increases.
One way to address corresponding issues in an
analog context is by treating an analog computa-
tion as a dissipative system, which in this context
means a system that decreases some quantity
(analogous to energy) so that the system state
converges to a point attractor. From this perspec-
tive, the initial state of the system incorporates the
input to the computation, and the attractor repre-
sents its output. Therefore, Sieglemann, Fishman,
and Ben-Hur have developed a complexity theory
for dissipative systems, in both sequential and
continuous time, which addresses the rate of con-
vergence in terms of the underlying rates of the
system (Ben-Hur et al. 2002; Siegelmann et al.
1999). The relation between dissipative complex-
ity classes (e.g., Pd, NPd) and corresponding clas-
sical complexity classes (P, NP) remains unclear
(Siegelmann 1999, p. 151).

Real-Valued Inputs, Outputs, and
Constants

A common argument, with relevance to the theo-
retical power of analog computation, is that an
input to an analog computer must be determined
by setting a dial to a number or by typing a
number into digital-to-analog conversion device,
and therefore that the input will be a rational
number. The same argument applies to any inter-
nal constants in the analog computation. Simi-
larly, it is argued, any output from an analog
computer must be measured, and the accuracy of
measurement is limited, so that the result will be a
rational number. Therefore, it is claimed that
real numbers are irrelevant to analog comput-
ing, since any practical analog computer
computes a function from the rationals to the
rationals and can therefore be simulated by a
Turing machine. (See related arguments by
Martin Davis 2004, 2006).

There are a number of interrelated issues here,
which may be considered briefly. First, the argu-
ment is couched in terms of the input or output of
digital representations, and the numbers so
represented are necessarily rational (more

Analog Computation 25

generally, computable). This seems natural
enough when we think of an analog computer as
a calculating device, and in fact many historical
analog computers were used in this way and had
digital inputs and outputs (since this is our most
reliable way of recording and reproducing
quantities).

However, in many analog control systems, the
inputs and outputs are continuous physical quan-
tities that vary continuously in time (also a con-
tinuous physical quantity); that is, according to
current physical theory, these quantities are real
numbers, which vary according to differential
equations. It is worth recalling that physical quan-
tities are neither rational nor irrational; they can be
so classified only in comparison with each other or
with respect to a unit, that is, only if they are
measured and digitally represented. Furthermore,
physical quantities are neither computable nor
uncomputable (in a Church–Turing sense); these
terms apply only to discrete representations of
these quantities (i.e., to numerals or other digital
representations).

Therefore, in accord with ordinary mathemati-
cal descriptions of physical processes, analog
computations can be treated as having arbitrary
real numbers (in some range) as inputs, outputs, or
internal states; like other continuous processes,
continuous-time analog computations pass
through all the reals in some range, including
non-Turing-computable reals. Paradoxically,
however, these same physical processes can be
simulated on digital computers.

The Issue of Simulation by Turing
Machines and Digital Computers

Theoretical results about the computational
power, relative to Turing machines, of neural net-
works and other analog models of computation
raise difficult issues, some of which are epistemo-
logical rather than strictly technical. On the one
hand, we have a series of theoretical results prov-
ing the super-Turing power of analog computation
models of various kinds. On the other hand, we
have the obvious fact that neural nets are routinely
simulated on ordinary digital computers, which

have at most the power of Turing machines. Fur-
thermore, it is reasonable to suppose that any
physical process that might be used to realize
analog computation – and certainly the known
processes – could be simulated on a digital com-
puter, as is done routinely in computational sci-
ence. This would seem to be incontrovertible
proof that analog computation is no more power-
ful than Turing machines. The crux of the paradox
lies, of course, in the non-Turing-computable
reals. These numbers are a familiar, accepted, and
necessary part of standard mathematics, in which
physical theory is formulated, but from the stand-
point of Church–Turing (CT) computation, they do
not exist. This suggests that the paradox is not a
contradiction but reflects a divergence between the
goals and assumptions of the two models of
computation.

The Problem of Models of Computation

These issues may be put in context by recalling
that the Church–Turing (CT) model of computa-
tion is in fact a model, and therefore that it has the
limitations of all models. A model is a cognitive
tool that improves our ability to understand some
class of phenomena by preserving relevant char-
acteristics of the phenomena while altering other,
irrelevant (or less relevant) characteristics. For
example, a scale model alters the size (taken to be
irrelevant) while preserving shape and other char-
acteristics. Often, a model achieves its purposes by
making simplifying or idealizing assumptions,
which facilitate analysis or simulation of the sys-
tem. For example, we may use a linear mathemat-
ical model of a physical process that is only
approximately linear. For a model to be effective,
it must preserve characteristics and make simplify-
ing assumptions that are appropriate to the domain
of questions it is intended to answer, its frame of
relevance (MacLennan 2004). If a model is applied
to problems outside of its frame of relevance, then
it may give answers that are misleading or incor-
rect, because they depend more on the simplifying
assumptions than on the phenomena being
modeled. Therefore, we must be especially cau-
tious applying a model outside of its frame of

26 Analog Computation

relevance, or even at the limits of its frame, where
the simplifying assumptions become progressively
less appropriate. The problem is aggravated by the
fact that often the frame of relevance is not explic-
itly defined but resides in a tacit background of
practices and skills within some discipline.

Therefore, to determine the applicability of the
CT model of computation to analog computing,
we must consider the frame of relevance of the CT
model. This is easiest if we recall the domain of
issues and questions it was originally developed to
address: issues of effective calculability and
derivability in formalized mathematics. This
frame of relevance determines many of the
assumptions of the CT model, for example, that
information is represented by finite discrete struc-
tures of symbols from a finite alphabet, that infor-
mation processing proceeds by the application of
definite formal rules at discrete instants of time,
and that a computational or derivational process
must be completed in a finite number of these
steps. (See MacLennan 2003, 2004 for a more
detailed discussion of the frame of relevance of
the CT model.) Many of these assumptions are
incompatible with analog computing and with the
frames of relevance of many models of analog
computation.

Relevant Issues for Analog Computation

Analog computation is often used for control.
Historically, analog computers were used in con-
trol systems and to simulate control systems, but
contemporary analog VLSI is also frequently
applied in control. Natural analog computation
also frequently serves a control function, for
example, sensorimotor control by the nervous
system, genetic regulation in cells, and self-
organized cooperation in insect colonies. There-
fore, control systems provide one frame of rele-
vance for models of analog computation.

In this frame of relevance, real-time response is
a critical issue, which models of analog computa-
tion, therefore, ought to be able to address. Thus,
it is necessary to be able to relate the speed and
frequency response of analog computation to the
rates of the physical processes by which the

computation is realized. Traditional methods of
algorithm analysis, which are based on sequential
time and asymptotic behavior, are inadequate in
this frame of relevance. On the one hand, the
constants (time scale factors), which reflect the
underlying rate of computation, are absolutely
critical (but ignored in asymptotic analysis); on
the other hand, in control applications the asymp-
totic behavior of algorithm is generally irrelevant,
since the inputs are typically fixed in size or of a
limited range of sizes.

The CT model of computation is oriented
around the idea that the purpose of a computation
is to evaluate a mathematical function. Therefore,
the basic criterion of adequacy for a computation
is correctness, that is, that given a precise repre-
sentation of an input to the function, it will pro-
duce (after finitely many steps) a precise
representation of the corresponding output of the
function. In the context of natural computation
and control, however, other criteria may be
equally or even more relevant. For example,
robustness is important: how well does the system
respond in the presence of noise, uncertainty,
imprecision, and error, which are unavoidable in
real natural and artificial control systems, and how
well does it respond to defects and damage, which
arise in many natural and artificial contexts. Since
the real world is unpredictable, flexibility is also
important: how well does an artificial system
respond to inputs for which it was not designed,
and how well does a natural system behave in
situations outside the range of those to which it
is evolutionarily adapted. Therefore, adaptability
(through learning and other means) is another
important issue in this frame of relevance. (See
MacLennan (2003, 2004) for a more detailed dis-
cussion of the frames of relevance of natural com-
putation and control.)

Transcending Turing Computability

Thus, we see that many applications of analog
computation raise different questions from those
addressed by the CT model of computation; the
most useful models of analog computing will have
a different frame of relevance. In order to address

Analog Computation 27

traditional questions such as whether analog com-
puters can compute “beyond the Turing limit” or
whether they can solve NP-hard problems in poly-
nomial time, it is necessary to construct models of
analog computation within the CT frame of rele-
vance. Unfortunately, constructing such models
requires making commitments about many issues
(such as the representation of reals and the
discretization of time) that may affect the answers
to these questions but are fundamentally
unimportant in the frame of relevance of the
most useful applications of the concept of analog
computation. Therefore, being overly focused on
traditional problems in the theory of computation
(which was formulated for a different frame of
relevance) may distract us from formulating
models of analog computation that can address
important issues in its own frame of relevance.

Analog Thinking

It will be worthwhile to say a few words about the
cognitive implications of analog computing,
which are a largely forgotten aspect of analog
versus digital debates of the late twentieth century.
For example, it was argued that analog computing
provides a deeper intuitive understanding of a
system than the alternatives do (Bissell 2004;
Small 2001, chapter 8). On the one hand, analog
computers afforded a means of understanding
analytically intractable systems by means of
“dynamic models.” By setting up an analog sim-
ulation, it was possible to vary the parameters and
explore interactively the behavior of a dynamical
system that could not be analyzed mathematically.
Digital simulations, in contrast, were orders of
magnitude slower and did not permit this kind of
interactive investigation. (Performance has
improved sufficiently in contemporary digital
computers so that in many cases, digital simula-
tions can be used as dynamic models, sometimes
with an interface that mimics an analog computer;
see Bissell 2004.)

Analog computing is also relevant to the cog-
nitive distinction between knowing how
(procedural knowledge) and knowing that
(declarative knowledge) (Small 2001, chapter 8).

The latter (“know-that”) is more characteristic of
scientific culture, which strives for generality and
exactness, often by designing experiments that
allow phenomena to be studied in isolation,
whereas the former (“know-how”) is more char-
acteristic of engineering culture; at least it was so
through the first half of the twentieth century,
before the development of “engineering science”
and the widespread use of analytic techniques in
engineering education and practice. Engineers
were faced with analytically intractable systems,
with inexact measurements, and with empirical
relationships (characteristic curves, etc.), all of
which made analog computers attractive for solv-
ing engineering problems. Furthermore, because
analog computing made use of physical phenom-
ena that were mathematically analogous to those
in the primary system, the engineer’s intuition and
understanding of one system could be transferred
to the other. Some commentators have mourned
the loss of hands-on intuitive understanding atten-
dant on the increasingly scientific orientation of
engineering education and the disappearance of
analog computers (Bissell 2004; Lang 2000;
Owens 1986; Puchta 1996).

I will mention one last cognitive issue relevant
to the differences between analog and digital com-
puting. As already discussed (section “Character-
istics of Analog Computation”), it is generally
agreed that it is less expensive to achieve high
precision with digital technology than with analog
technology. Of course, high precision may not be
important, for example, when the available data
are inexact or in natural computation. Further,
some advocates of analog computing argue that
high-precision digital results are often misleading
(Small 2001). Precision does not imply accuracy,
and the fact that an answer is displayed with ten
digits does not guarantee that it is accurate to ten
digits; in particular, engineering data may be
known to only a few significant figures, and the
accuracy of digital calculation may be limited by
numerical problems. Therefore, on the one hand,
users of digital computers might fall into the trap
of trusting their apparently exact results, but users
of modest-precision analog computers were more
inclined to healthy skepticism about their compu-
tations. Or so it was claimed.

28 Analog Computation

Future Directions

Certainly, there are many purposes that are best
served by digital technology; indeed, there is a
tendency nowadays to think that everything is
done better digitally. Therefore, it will be worth-
while to consider whether analog computation
should have a role in future computing technolo-
gies. I will argue that the approaching end of
Moore’s Law (1965), which has predicted expo-
nential growth in digital logic densities, will
encourage the development of new analog com-
puting technologies.

Two avenues present themselves as ways
toward greater computing power: faster individual
computing elements and greater densities of com-
puting elements. Greater density increases com-
puting power by facilitating parallel computing,
and by enabling greater computing power to be
put into smaller packages. Other things being
equal, the fewer the layers of implementation
between the computational operations and the
physical processes that realize them, that is to
say, the more directly the physical processes
implement the computations, the more quickly
they will be able to proceed. Since most physical
processes are continuous (defined by differential
equations), analog computation is generally faster
than digital. For example, we may compare ana-
log addition, implemented directly by the additive
combination of physical quantities, with the
sequential logic of digital addition. Similarly,
other things being equal, the fewer physical
devices required to implement a computational
element, the greater will be the density of these
elements. Therefore, in general, the closer the
computational process is to the physical processes
that realize it, the fewer devices will be required,
and so the continuity of physical law suggests that
analog computation has the potential for greater
density than digital. For example, four transistors
can realize analog addition, whereas many more
are required for digital addition. Both consider-
ations argue for an increasing role of analog com-
putation in post-Moore’s Law computing.

From this broad perspective, there are many
physical phenomena that are potentially usable for
future analog computing technologies. We seek

phenomena that can be described by well-known
and useful mathematical functions (e.g., addition,
multiplication, exponential, logarithm, convolu-
tion). These descriptions do not need to be exact
for the phenomena to be useful in many applica-
tions, for which limited range and precision are
adequate. Furthermore, in some applications,
speed is not an important criterion; for example,
in some control applications, small size, low
power, robustness, etc., may be more important
than speed, so long as the computer responds
quickly enough to accomplish the control task.
Of course there are many other considerations in
determining whether given physical phenomena
can be used for practical analog computation in a
given application (MacLennan 2009). These
include stability, controllability, manufacturabil-
ity, and the ease of interfacing with input and
output transducers and other devices. Neverthe-
less, in the post-Moore’s Law world, we will have
to be willing to consider all physical phenomena
as potential computing technologies, and in many
cases, we will find that analog computing is the
most effective way to utilize them.

Natural computation provides many examples
of effective analog computation realized by rela-
tively slow, low-precision operations, often
through massive parallelism. Therefore, post-
Moore’s Law computing has much to learn from
the natural world.

Bibliography

Primary Literature
Anderson JA (1995) An introduction to neural networks.

MIT Press, Cambridge
Ashley JR (1963) Introduction to analog computing.

Wiley, New York
Aspray W (1993) Edwin L. Harder and the Anacom: ana-

log computing at Westinghouse. IEEE Ann Hist
Comput 15(2):35–52

Basford DA, Smith JM, Connor RJ, MacLennan BJ,
Holleman J (2016) The impact of analog computational
error on an analog Boolean satisfiability solver. IEEE
international symposium on circuits & systems 2016,
Montreal

Basu A, Brink S, Schlottmann C, Ramakrishnan S, Petre C,
Koziol S, Baskaya F, Twigg CM, Hasler P (2010)
A floating-gate-based field-programmable analog
array. IEEE J Solid State Circuits 45:1781–1794

Analog Computation 29

Ben-Hur A, Siegelmann HT, Fishman S (2002) A theory of
complexity for continuous time systems. J Complex
18:51–86

Bissell CC (2004) A great disappearing act: the electronic
analogue computer. In: IEEE conference on the history
of electronics, Bletchley, June 2004. pp 28–30

Blum L, Shub M, Smale S (1988) On a theory of compu-
tation and complexity over the real numbers: NP com-
pleteness, recursive functions and universal machines.
Bull Am Math Soc 21:1–46

Blum L, Cucker F, Shub M, Smale S (1998) Complexity
and real computation. Springer, Berlin

Bournez O, Cosnard M (1996) On the computational
power of dynamical systems and hybrid systems.
Theor Comput Sci 168(2):417–459

Bournez O, Campagnolo ML, Graça DS, Hainry E (2006)
The general purpose analog computer and computable
analysis are two equivalent paradigms of analog com-
putation. In: Theory and applications of models of
computation (TAMC 2006). Lectures notes in com-
puter science, vol 3959. Springer, Berlin, pp 631–643

Bowles MD (1996) US technological enthusiasm and Brit-
ish technological skepticism in the age of the analog
brain. Ann Hist Comput 18(4):5–15

Branicky MS (1994) Analog computation with continuous
ODEs. In: Proceedings IEEE workshop on physics and
computation, Dallas, pp 265–274

Brockett RW (1988) Dynamical systems that sort lists,
diagonalize matrices and solve linear programming
problems. In: Proceedings 27th IEEE conference deci-
sion and control, Austin, Dec 1988, pp 799–803

Camazine S, Deneubourg J-L, Franks NR, Sneyd G,
Theraulaz J, Bonabeau E (2001) Self-organization in
biological systems. Princeton University Press,
New York

Clymer AB (1993) The mechanical analog computers of
Hannibal Ford and William Newell. IEEE Ann Hist
Comput 15(2):19–34

Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH
(2010) Neuron densities vary across and within cortical
areas in primates. Proc Natl Acad Sci
107(36):15927–15932

Davidson EH (2006) The regulatory genome: gene regula-
tory networks in development and evolution. Aca-
demic, Amsterdam

Davies JA (2005) Mechanisms of morphogenesis.
Elsevier, Amsterdam

Davis M (2004) The myth of hypercomputation. In:
Teuscher C (ed) Alan turing: life and legacy of a great
thinker. Springer, Berlin, pp 195–212

Davis M (2006) Why there is no such discipline as hyper-
computation. Appl Math Comput 178:4–7

Ercsey-Ravasz M, Toroczkai Z (2011) Optimization hard-
ness as transient chaos in an analog approach to con-
straint satisfaction. Nat Phys 7(12):966–970

Fakhraie SM, Smith KC (1997) VLSI-compatible imple-
mentation for artificial neural networks. Kluwer,
Boston

Franklin S, Garzon M (1990) Neural computability. In:
Omidvar OM (ed) Progress in neural networks,
vol 1. Ablex, Norwood, pp 127–145

Freeth T, Bitsakis Y,Moussas X, Seiradakis JH, Tselikas A,
Mangou H, Zafeiropoulou M, Hadland R, Bate D,
Ramsey A, Allen M, Crawley A, Hockley P,
Malzbender T, Gelb D, Ambrisco W, Edmunds MG
(2006) Decoding the ancient Greek astronomical cal-
culator known as the Antikythera mechanism. Nature
444:587–591

Garzon M, Franklin S (1989) Neural computability II
(extended abstract). In: Proceedings, IJCNN interna-
tional joint conference on neural networks,
vol 1. Institute of Electrical and Electronic Engineers,
New York, pp 631–637

Garzon M, Franklin S (1990) Computation on graphs. In:
Omidvar OM (ed) Progress in neural networks,
vol 2. Ablex, Norwood

van Gelder T (1997) Dynamics and cognition. In:
Haugeland J (ed) Mind design II: philosophy, psychol-
ogy and artificial intelligence. MIT Press, Cambridge,
MA, pp 421–450. Revised & enlarged edition, Chap 16

Goldstine HH (1972) The computer from Pascal to von
Neumann. Princeton University Press, Princeton

Grossberg S (1967) Nonlinear difference-differential equa-
tions in prediction and learning theory. Proc Natl Acad
Sci U S A 58(4):1329–1334

Grossberg S (1973) Contour enhancement, short term
memory, and constancies in reverberating neural net-
works. Stud Appl Math LII:213–257

Grossberg S (1976) Adaptive pattern classification and
universal recoding: I. Parallel development and coding
of neural feature detectors. Biol Cybern 23:121–134

Hartl DL (1994) Genetics, 3rd edn. Jones & Bartlett,
Boston

Hopfield JJ (1984) Neurons with graded response have
collective computational properties like those of two-
state neurons. Proc Natl Acad Sci U S A 81:3088–3092

Howe RM (1961) Design fundamentals of analog com-
puter components. Van Nostrand, Princeton

Khatib O (1986) Real-time obstacle avoidance for manip-
ulators and mobile robots. Int J Robot Res 5:90–99

Kirchhoff G (1845) Ueber den Durchgang eines
elektrischen Stromes durch eine Ebene, insbesondere
durch eine kreisförmige. Ann Phys Chem
140(4):497–514

Lang GF (2000) Analog was not a computer trademark!
Why would anyone write about analog computers in
year 2000? Sound Vib 34(8):16–24

Lipshitz L, Rubel LA (1987) A differentially algebraic
replacement theorem. Proc Am Math Soc
99(2):367–372

Maass W, Sontag ED (1999) Analog neural nets with
Gaussian or other common noise distributions cannot
recognize arbitrary regular languages. Neural Comput
11(3):771–782

MacLennan BJ (1987) Technology-independent design of
neurocomputers: the universal field computer. In:
Caudill M, Butler C (eds) Proceedings of the IEEE

30 Analog Computation

first international conference on neural networks,
vol 3. IEEE Press, New York. pp 39–49

MacLennan BJ (1990) Field computation: a theoretical
framework for massively parallel analog computation,
parts I–IV. Technical report UT-CS-90-100, Depart-
ment of Computer Science, University of Tennessee,
Knoxville. Available from http://web.eecs.utk.edu/�
mclennan. Accessed 20 May 2008

MacLennan BJ (1991) Gabor representations of spatiotem-
poral visual images. Technical report UT-CS-91-144,
Department of Computer Science, University of Ten-
nessee, Knoxville. Available from http://web.eecs.utk.
edu/�mclennan. Accessed 20 May 2008

MacLennan BJ (1994b) Continuous computation and the
emergence of the discrete. In: PribramKH (ed) Origins:
brain & self-organization. Lawrence Erlbaum,
Hillsdale, pp 121–151

MacLennan BJ (1994a) Words lie in our way. Minds Mach
4(4):421–437

MacLennan BJ (1995) Continuous formal systems: a uni-
fying model in language and cognition. In: Proceedings
of the IEEE workshop on architectures for semiotic
modeling and situation analysis in large complex sys-
tems, Monterey, Aug 1995. IEEE Press, New York.
pp 161–172. Also available from http://web.eecs.utk.
edu/�mclennan. Accessed 20 May 2008

MacLennan BJ (1999) Field computation in natural and
artificial intelligence. Inf Sci 119:73–89

MacLennan BJ (2001) Can differential equations com-
pute? Technical report UT-CS-01–459, Department of
Computer Science, University of Tennessee, Knox-
ville. Available from http://web.eecs.utk.edu/�
mclennan. Accessed 20 May 2008

MacLennan BJ (2003) Transcending Turing computability.
Minds Mach 13:3–22

MacLennan BJ (2004) Natural computation and non-
Turing models of computation. Theor Comput Sci
317:115–145

MacLennan BJ (2009) Super-Turing or non-Turing?
Extending the concept of computation. Int J Unconv
Comput 5:369–387

Maini PK, Othmer HG (eds) (2001) Mathematical models
for biological pattern formation. Springer, New York

Maziarz EA, Greenwood T (1968) Greek mathematical
philosophy. Frederick Ungar, New York

McClelland JL, Rumelhart DE, the PDP Research Group
(1986) Parallel distributed processing: explorations in
the microstructure of cognition, vol 2, Psychological
and biological models. MIT Press, Cambridge

Mead C (1987) Silicon models of neural computation. In:
Caudill M, Butler C (eds) Proceedings, IEEE first inter-
national conference on neural networks, vol I. IEEE
Press, Piscataway, pp 91–106

Mead C (1989) Analog VLSI and neural systems.
Addison-Wesley, Reading

Mills JW (1996) The continuous retina: image processing
with a single-sensor artificial neural field network. In:
Proceedings IEEE conference on neural networks.
IEEE Press, Piscataway

Mills JW, Himebaugh B, Kopecky B, Parker M, Shue C,
Weilemann C (2006) “Empty space” computes: the
evolution of an unconventional supercomputer. In: Pro-
ceedings of the 3rd conference on computing frontiers,
New York, May 2006. ACM Press, pp 115–126

Molnár B, Ercsey-Ravasz M (2013) Asymmetric
continuous-time neural networks without local traps
for solving constraint satisfaction problems. PLoS
One 8(9):e73400

Moore GE (1965) Cramming more components onto inte-
grated circuits. Electronics 38(8):114–117

Moore C (1996) Recursion theory on the reals and
continuous-time computation. Theor Comput Sci
162:23–44

Murray JD (1977) Lectures on nonlinear differential-
equation models in biology. Clarendon Press, Oxford

Omohundro S (1984) Modeling cellular automata with
partial differential equations. Physica D 10:128–134

Orponen P (1997) A survey of continuous-time computa-
tion theory. In: Advances in algorithms, languages, and
complexity. Kluwer, Dordrecht, pp 209–224

Orponen P, Matamala M (1996) Universal computation by
finite two-dimensional coupled map lattices. In: Pro-
ceedings, physics and computation 1996. New England
Complex Systems Institute, Cambridge, pp 243–7

Owens L (1986) Vannevar Bush and the differential ana-
lyzer: the text and context of an early computer.
Technol Cult 27(1):63–95

Peterson GR (1967) Basic analog computation. Macmil-
lan, New York

Pour-El MB (1974) Abstract computability and its relation
to the general purpose analog computer (some connec-
tions between logic, differential equations and analog
computers). Trans Am Math Soc 199:1–29

Pour-El MB, Richards I (1979) A computable ordinary
differential equation which possesses no computable
solution. Ann Math Log 17:61–90

Pour-EL MB, Richards I (1981) The wave equation with
computable initial data such that its unique solution is
not computable. Adv Math 39:215–239

Pour-El MB, Richards I (1982) Noncomputability in
models of physical phenomena. Int J Theor Phys
21:553–555

Puchta S (1996) On the role of mathematics and mathe-
matical knowledge in the invention of Vannevar Bush’s
early analog computers. IEEE Ann Hist Comput
18(4):49–59

Reiner JM (1968) The organism as an adaptive control
system. Prentice-Hall, Englewood Cliffs

Rimon E, Koditschek DE (1989) The construction of ana-
lytic diffeomorphisms for exact robot navigation on
star worlds. In: Proceedings of the 1989 I.-
E. international conference on robotics and automation,
Scottsdale. IEEE Press, New York, pp 21–26

Rogers AE, Connolly TW (1960) Analog computation in
engineering design. McGraw-Hill, New York

Rubel LA (1985) The brain as an analog computer. J Theor
Neurobiol 4:73–81

Analog Computation 31

http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan
http://web.eecs.utk.edu/%E2%88%BCmclennan

Rubel LA (1988) Some mathematical limitations of the
general-purpose analog computer. Adv Appl Math
9:22–34

Rubel LA (1993) The extended analog computer. Adv
Appl Math 14:39–50

Rumelhart DE, McClelland JL, The PDP Research Group
(1986) Parallel distributed processing: explorations in
the microstructure of cognition, Foundations,
vol 1. MIT Press, Cambridge

Sanger TD (1996) Probability density estimation for the
interpretation of neural population codes.
J Neurophysiol 76:2790–2793

Shannon CE (1941)Mathematical theory of the differential
analyzer. J Math Phys Mass Inst Technol 20:337–354

Shannon CE (1993)Mathematical theory of the differential
analyzer. In: Sloane NJA, Wyner AD (eds) Claude
Elwood Shannon: collected papers. IEEE Press,
New York, pp 496–513

Siegelmann HT (1999) Neural networks and analog com-
putation: beyond the Turing limit. Birkhäuser, Boston

Siegelmann HT, Sontag ED (1994) Analog computation
via neural networks. Theor Comput Sci 131:331–360

Siegelmann HT, Ben-Hur A, Fishman S (1999) Computa-
tional complexity for continuous time dynamics. Phys
Rev Lett 83(7):1463–1466

Small JS (1993) General-purpose electronic analog com-
puting. IEEE Ann Hist Comput 15(2):8–18

Small JS (2001) The analogue alternative: the electronic
analogue computer in Britain and the USA,
1930–1975. Routledge, London/New York

Stannett M (1990) X-machines and the halting problem:
building a super-Turing machine. Form Asp Comput
2:331–341

Teo JJY, Woo SS, Sarpeshkar R (2015) Synthetic biology:
a unifying view and review using analog circuits. IEEE
Trans Biomed Circ Syst 9(4):453–474

Thomson W (Lord Kelvin) (1876) Mechanical integration
of the general linear differential equation of any order
with variable coefficients. Proc R Soc 24:271–275

Thomson W (Lord Kelvin) (1878) Harmonic analyzer.
Proc R Soc 27:371–373

Thomson W (Lord Kelvin) (1938) The tides. In: The Har-
vard classics, vol 30, Scientific papers. Collier,
New York, pp 274–307

Truitt TD, Rogers AE (1960) Basics of analog computers.
John F Rider, New York

Weyrick RC (1969) Fundamentals of analog computers.
Prentice-Hall, Englewood Cliffs

Wolpert DH (1991) A computationally universal field com-
puter which is purely linear. Technical report LA-UR-
91-2937. Los Alamos National Laboratory, Loa
Alamos

Wolpert DH, MacLennan BJ (1993) A computationally
universal field computer that is purely linear. Technical
report UT-CS-93-206. Department of Computer Sci-
ence, University of Tennessee, Knoxville

Yin X, Sedighi B, Varga M, Ercsey-Ravasz M,
Toroczkai Z, Hu XS (2016) Efficient analog circuits
for Boolean satisfiability. arXiv:1606.07467

Books and Reviews
Bissell CC (2004) A great disappearing act: the electronic

analogue computer. In: IEEE conference on the history
of electronics, Bletchley, June 2004

Fifer S (1961) Analog computation: theory, techniques and
applications, vol 4. McGraw-Hill, New York

Lipka J (1918) Graphical and mechanical computation.
Wiley, New York

Mead C (1989) Analog VLSI and neural systems.
Addison-Wesley, Reading

Siegelmann HT (1999b) Neural networks and analog com-
putation: beyond the Turing limit. Birkhäuser, Boston

Small JS (1993) General-purpose electronic analog com-
puting: 1945–1965. IEEE Ann Hist Comput
15(2):8–18

Small JS (2001) The analogue alternative: the electronic
analogue computer in Britain and the USA,
1930–1975. Routledge, London/New York

32 Analog Computation

	19-6:
	Analog Computation
	Glossary
	Introduction
	Definition of the Subject

	History
	Preelectronic Analog Computation
	Electronic Analog Computation in the Twentieth Century
	The Eclipse of Analog Computing
	Analog VLSI
	Field Programmable Analog Arrays
	Nonelectronic Analog Computation

	Article Road Map
	Fundamentals of Analog Computing
	Continuous State Space

	Computational Process
	Continuous Time
	Sequential Time
	Discrete Time

	Analog Computer Programs
	Characteristics of Analog Computation
	Precision
	Scaling

	Analog Computation in Nature
	Neural Computation
	Adaptive Self-Organization in Social Insects
	Genetic Circuits

	Is Everything a Computer?
	General-Purpose Analog Computation
	The Importance of General-Purpose Computers
	General-Purpose Electronic Analog Computers
	Shannon´s Analysis
	Rubel´s Extended Analog Computer

	Analog Computation and the Turing Limit
	Introduction

	A Sampling of Theoretical Results
	Continuous-Time Models
	Sequential-Time Models
	Recurrent Neural Networks

	Dissipative Models

	Real-Valued Inputs, Outputs, and Constants
	The Issue of Simulation by Turing Machines and Digital Computers
	The Problem of Models of Computation
	Relevant Issues for Analog Computation
	Transcending Turing Computability
	Analog Thinking
	Future Directions
	Bibliography
	Primary Literature
	Books and Reviews

