
UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

1

http://dx.doi.org/10.1037/0000011-028
APA Handbook of Comparative Psychology: Vol. 1. Basic Concepts, Methods, Neural Substrate, and Behavior, J. Call (Editor-in-Chief)
Copyright © 2017 by the American Psychological Association. All rights reserved.

Crows’ intelligence is astonishing. They solve
problems, intelligently cache food, make and use
tools, possess episodic-like memory, predict the
behavior of individual conspecifics, and learn to
recognize individual humans (Emery & Clayton,
2004). More generally, an animal’s nervous system
serves functions essential for its survival and repro-
duction, including communication of information
throughout its body, control of behavior (voluntary
and involuntary), perception and cognition, and
learning and memory. This raises many questions.
How are complex motor programs sequenced and
controlled? How are skills learned and refined?
How are episodic memories formed and retrieved?
How is general information learned? How are
mental categories formed? How does reinforce-
ment learning occur? How are associations formed
and retrieved? How do sensory systems function?
Neural network models are important tools for
understanding these and other neurophysiological
processes.

Neural network models attempt to capture essen-
tial characteristics of neural information processing
and control in models that balance simplicity and
accuracy. On one hand, they can be used to under-
stand and analyze processes in nervous systems
and to suggest neuroscientific hypotheses. On the
other hand, neural network models can be applied
in artificial intelligence (AI), machine learning, and
robotics to serve functions similar to biological neu-
ral networks. I can review only a few of the simplest
neural network models in this chapter. A compre-
hensive introduction from a computational

perspective can be found in Haykin (2008), and
biologically realistic models are applied to cogni-
tive science in O’Reilly, Munakata, Frank, and
Hazy (2014).

HISTORY

In this section, I present a brief history of artificial
neural networks. Many of the historically impor-
tant articles can be found in Anderson and Rosen-
feld (1988). The earliest artificial neural net model
was described by Warren McCulloch and Walter
Pitts in 1943. They used simple binary-valued
model neurons that were capable of computing log-
ical functions and therefore capable of implement-
ing digital computation. Their use of binary-valued
neurons was inspired by the “all-or-nothing” gen-
eration of the action potential (neural impulse).

In 1948, Alan Turing also published an artificial
neural net model (Copeland & Proudfoot, 1996). In
his B-type networks, model neurons were connected
in arbitrary networks, with modifiable connections,
which were set by means of control fibers. He dis-
cussed the possibility of an external teacher training
a network by means of the control fibers.

The modern development of neural networks
began with the invention of the perceptron by
Frank Rosenblatt in 1957. In this model, artificial
neurons are connected in feed-forward networks,
that is, in layers, in which all the neurons in one
layer are connected, via modifiable weights, to all
the neurons in the next. Rosenblatt also developed
a learning algorithm that allowed a single-layer

C h a p t e r 2 8

Neural Networks, learNiNg,
aNd iNtelligeNce

Bruce J. MacLennan

BK-APA-HCM_V1-160213-Chp28.indd 1 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

2

perceptron to adapt to solve any problem of which
it was capable. The problem was that single-layer
perceptrons are relatively limited, specifically to
linearly separable categories. Multilayer perceptrons
are much more powerful, but the development of
a multilayer perceptron learning algorithm had to
wait until the invention of the back-propagation
algorithm by Paul Werbos in 1974 (which was not
well-known before the mid-1980s). Other early
work in neural networks includes Bernard Widrow
and Ted Hoff’s development of the Adaptive Linear
Neuron (ADALINE) in 1960 and Many ADALINE
(MADALINE) in 1962.

Research in artificial neural networks declined
through the 1970s and early 1980s. One reason was
the publication in 1969 of Perceptrons by Marvin
Minsky and Seymour Papert, which demonstrated
the limitations of the single-layer perceptron and
implied that multilayer perceptrons would be
similarly limited. Most AI research was devoted to
symbolic AI, which focused on language-like rep-
resentations of knowledge and models of cognition
based on logical inference. There was little interest
in relating these models of intelligence to the brain,
because the brain was supposed to be equivalent,
at a deep level, to a universal Turing machine and
therefore to a digital computer.

Symbolic AI often adhered to a distinction
between what in linguistics is termed competence
and performance (Chomsky, 1965). Competence
refers to an agent’s abstract, idealized understand-
ing of, for example, grammar, whereas performance
refers to its ability to use that understanding in
actual speech acts. Thus, a language’s abstract
grammar might permit unlimited nesting, but a
human’s ability to process nested structures might
be strictly limited (e.g., by working memory capac-
ity). Chomsky (1965) argued that the proper
subject matter of linguistics was competence, not
performance, and therefore that linguistics per se
did not need to concern itself with the brain sys-
tems serving language.

The theory of universal computation pioneered
by Turing was similarly focused on competence
(the ability to compute a mathematical function)
rather than performance (the real time and memory
resources required to compute it). This justified

ignoring the neural substrate of intelligence because,
from a perspective of competence, all universal com-
puting machines are equivalent.

The reawakening of interest in neural network
models resulted in part from recognition of the
central importance of performance issues in under-
standing intelligent behavior. This is illustrated by
the “100-step rule”: dividing a typical behavioral
response time (less than 1 second) by a typical neu-
ron response time (10 milliseconds) implies that
there can be at most about 100 sequential processing
steps from sensory input to motor output (Feld-
man & Ballard, 1982). At the very least, this observa-
tion implies that brains process information in a very
different way from conventional computers: wide and
shallow versus narrow and deep. Clearly, intelligence
includes the ability to respond in a timely fashion,
and so a theory of intelligence needs to be able to
account for real-time response by nervous systems.

As progress in symbolic AI stalled around
1980 and as the performance challenges became
apparent, cognitive scientists and AI research-
ers returned to the brain for insights. The new
approach is commonly called connectionism
(because knowledge resides primarily in the con-
nections between neurons) and (artificial) neural
networks; other terms, such as neurocomput-
ing and neuromorphic computing, are also used,
with slightly different semantic fields. These
approaches, which are applied both to modeling
biological neural systems and in AI, seek underly-
ing mathematical principles of information pro-
cessing and control that can be applied in both
domains. They have also led to new approaches
to traditional philosophical problems, especially
in epistemology (e.g., the theory of universals).
Many of the seminal articles have been collected
in two volumes, Rumelhart and McClelland
(1986) and McClelland and Rumelhart (1986).

Improvements in supercomputing technology
have made feasible the simulation of neural net-
works with neuron numbers approaching the size
of mammalian brains. The most popular models for
these simulations have been spiking neuron models.
Combined with increasing knowledge of neural con-
nectivity, these advances will facilitate the simula-
tion of realistic brain systems.

BK-APA-HCM_V1-160213-Chp28.indd 2 18/08/16 7:20 PM

bmaclenn
Highlight

bmaclenn
Sticky Note
rom font?

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

3

NEURON MODELS

Neural networks can be modeled on different
levels depending on the intended application of
the model and the issues it is intended to address.
Principal among these are extended neuron mod-
els, spiking neuron models, and rate-based neu-
ron models.

Extended Neuron Models
Extended neuron models are the most detailed
models because they address the detailed morphol-
ogy of the neuron and its effects on information
processing. For example, they take account of the
varying diameter and branching structure of den-
dritic processes, the distribution of ion channels,
and the dynamics of ion flows and electrical poten-
tials. These models are commonly compartmental,
which means that the neuron is divided into small
compartments of simple shape in which the relevant
properties are approximately constant. For example,
a dendrite can be treated as a number of cylinders
of various lengths and diameters, which simpli-
fies simulating dynamical processes within each
compartment and combining them to simulate the
entire neuron. These models can be computationally
demanding.

Extended neuron models are able to address
issues such as the filtering of inputs by a neuron’s
dendritic net and the detailed dynamics of the
action potential (neural impulse). For example,
dendrites have both electrical resistance and capaci-
tance, which depends on their diameter and other
physical parameters. This causes dendrites to act
as low-pass filters, which smooth and extend the
neural impulses received by the dendrites, which
in turn affects the way these signals combine in the
neuron soma (cell body) to generate action poten-
tials (Branco, 2011). These models can address
the effect on neuron response of the location and
timing of neural inputs and the ability of dendritic
nets to adapt to match particular input signals
(MacLennan, 1994).

Spiking Neuron Models
Spiking neuron models seek a higher level of
abstraction than extended models by ignoring the
detailed spatial structure of the neuron and the

detailed temporal structure of the action potential
while retaining the temporal relation between action
potentials. These models often incorporate a leaky
integrate-and-fire neuron model, which means that
arriving impulses each increment somatic mem-
brane potential, which decays in time. If enough
impulses arrive in a short enough time to drive the
membrane potential over a firing threshold, then the
neuron generates an impulse and resets its mem-
brane potential to its resting level.

One advantage of spiking neuron models is that
discrete event simulation methods can be used with
them. Rather than simulating the network at every
time step, these methods update the simulation state
only when certain discrete events happen, process-
ing these events successively in time. Therefore,
the generation of an impulse is treated as a discrete
event that occurs at a specific time and triggers later
events at specific times, such as the arrival of the
impulse at the soma. This later event triggers the
computation of the membrane potential at that time,
incorporating the arriving impulse, its compari-
son with the threshold, and possible generation of
another impulse. This compromise between biologi-
cal accuracy and computational efficiency has per-
mitted some large-scale brain simulations.

Spiking neuron models permit addressing
phase relations among action potentials, which
may be important in primary visual cortex (Mon-
temurro, Rasch, Murayama, Logothetis, & Panzeri,
2008) and coordinating neural communication
(Fries, 2005).

Rate-Based Neuron Models
The remainder of this chapter focuses on rate-based
models, which abstract away from the detailed tim-
ing of the neural impulses in favor of the instanta-
neous impulse rate, which seems to bear most of the
information in many neural systems. One argument
in favor of these models is that there are many sto-
chastic factors in the generation of an action poten-
tial and in its transmission across a synapse and that
these factors blur or obliterate any information that
could be conveyed by temporal relations among
impulses. Others have argued that the most appro-
priate unit for analyzing neural information repre-
sentation and processing is the cortical minicolumn,

BK-APA-HCM_V1-160213-Chp28.indd 3 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

4

which consists of about 100 neurons (in humans).
From this perspective, we should be looking at the
inputs and outputs of minicolumns rather than
individual neurons. Therefore, in discussing rate-
based models, I refer to neural units and leave it
open whether these are individual neurons or small
assemblies, such as minicolumns, of interconnected
neurons with similar inputs and outputs.

 Because the fi ring rate of a biological neuron can
vary continuously within limits, it is common in
rate-based models to treat the activity of a unit as
a bounded real number. The specifi c bounds used
can vary depending on the neural network model,
the neural systems being modeled, or simply math-
ematical or computational convenience. For exam-
ple, activities can be constrained to real numbers
between 0 and 1, with 0 representing the minimum
rate and 1 the maximum rate. Or they can be con-
strained to real numbers between −1 and 1, with 0
representing the resting impulse rate. In some cases,
we are concerned with only two levels of activity,
low and high, which can be represented as binary
activities, 0 and 1. Sometimes it is mathematically
more convenient to represent low and high activity
with bipolar values: −1 and +1.

 The activity of a unit can be analyzed into two
components, its net input and its activation func-
tion. The net input of a unit is the total stimulation
it is receiving at a time, and it is analogous to the
somatic membrane potential of a neuron. Excitation
is modeled by positive numbers and inhibition by
negative numbers. The activation function translates
the net input into the output activity range of the
neuron; this mapping is monotonic, that is, higher
net inputs lead to higher activities and vice versa. If
the unit is binary or bipolar, then the activation is
a threshold or step function: For inputs above the
threshold, it produces 1; for those below the thresh-
old, it produces 0 (binary) or −1 (bipolar). For real-
valued units, the activation function is a continuous
“squashing function” that squeezes the output
values into the required range ([0, 1] or [−1, +1]).
Sometimes the activation function is omitted (i.e., it
is an identity function), in which case the output of
the neuron is its net input.

 Biological neurons are connected by synapses,
which modulate the infl uence of one neuron on

another. They are excitatory if they tend to move the
membrane potential closer to its fi ring threshold,
and inhibitory if they have the opposite tendency. In
rate-based models, we have the analogous concept
of the connection weight from one unit to another.
It can be interpreted as the average infl uence (excit-
atory or inhibitory) of the synapses connecting
neurons corresponding to the fi rst unit to those cor-
responding to the second. Therefore, weights are
represented by real numbers, which may be positive
(relatively more excitatory) or negative (relatively
more inhibitory).

 Suppose that x 1 , x 2 , . . ., x n are the activities of
n units providing inputs to some unit of inter-
est. Suppose also that w 1 , w 2 , . . ., w n are the
corresponding connection weights from those
units (see Figure 28.1). Then the simplest model
of the net input y is the weighted sum of these
activities:

∑= + + + =
=

y w x w x w x w x .n n j jj

n

1 1 2 2 1

If f is the activation function, then f (y) would be the
activity of the unit.

 Neurons differ in the amount of excitation they
require to raise their fi ring rates and in the amount
of inhibition to decrease it. This can be modeled

 FIGURE 28.1. Typical artifi cial neural unit. The x j
are the activities of other neural units providing input
to the large unit, and the w j are the connection weights
into this neuron. The weighted sum y is passed option-
ally through a nonlinear activation function f to yield
the activity f(y) of the neural unit. The x 0 input is a
constant 1, which applies a bias b to the sum, which is
equivalent to a threshold θ.

BK-APA-HCM_V1-160213-Chp28.indd 4 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

5

with neural units that have the same activation
function but different thresholds. By subtracting
the threshold θ from the net input, − θf y(), the
unit’s response is made relative to the threshold.
Sometimes we talk in terms of a bias b added to the
net input rather than a threshold subtracted, for
example, +f y b(); it is just a difference in sign. For
mathematical convenience, we frequently treat the
bias as a “0th weight” that is wired to a unit provid-
ing a constant 1 input; that is, set =x 10 , = −θw0

,
and let

∑=
=

y w x .j jj

n

0

It might seem counterintuitive at first, but it is
convenient to treat the activities of groups of units
and their weights as vectors in n-dimensional space.
This permits geometrical visualizations that can
illuminate neural information representation and
processing. It is customary to use n-dimensional
column vectors (×n 1 matrices). Therefore, the
connection weights to a unit can be treated as its
weight vector w = (w1, w2, . . ., wn)T and its inputs
as an input activity vector x = (x1, x2, . . ., xn)T. Then
the net input can be written as an inner product
between the (transposed) weight vector and the
input vector,

∑= =
=

y w xw x .j jj

nT

0

(This is also known as a scalar product or dot product
and written ⋅w x . Note that the product of a × n1

matrix wT and a ×n 1 matrix x is a ×1 1 matrix, or

scalar.)
If we think of these vectors as arrows pointing

into n-dimensional space, then their length (or

Euclidean norm) is given by =x x xT , which is
just the square root of the sum of the squares of
the components of x. If we think of the weight and
input vectors as arrows pointing into n-dimensional
space, then we can express the inner product
(and hence the net input) in terms of the angle ϕ
between the vectors: = = ⋅ ⋅ ϕy w x w x cosT .

Because the cosine takes on its maximum value
when ϕ = 0, this formula tells us that (other things
being equal), the unit’s net input will be maximized

when the weight and input vectors are aligned. It
also tells us that the net input will be negative to
the extent that the weight and input vectors point
in opposite directions (90 180< ϕ ≤). If they are
orthogonal (at right angles), then when the cosine
is 0, the net input is 0; the significance of this fact is
addressed later. This geometric interpretation shows
us that the weight vector is a sort of pattern and that
the net input is greater to the extent that the input
matches this pattern. Thus, these units (artificial
neurons) act as simple pattern detectors.

Typically, we are interested in neural networks
in which groups of units provide inputs to other
groups of units. Therefore, let x = (x1, x2, . . ., xn)T
be the activities of the sending units and y = (y1,
y2, . . ., ym)T be the net inputs of the receiving units.
Moreover, let wij be the weight of the connection to
unit i from unit j. We have seen that the net inputs
are expressed

∑=
=

y W x ,i ijj

n

j1

which can be expressed compactly as the product
of a weight matrix ()= WW ij

 and the input vec-
tor x, that is, =y Wx . Expressing neural networks
in terms of vectors and matrices allows us to apply
many powerful mathematical tools, to use comput-
ers optimized for these operations, and to under-
stand neural information processing in geometric
terms.

ADAPTATION AND LEARNING

Neuroplasticity is a fundamental characteristic of
nervous systems that allows animals to change their
behavior as a result of experience. This section
explains several basic neural network adaptation
and learning mechanisms that illuminate both ani-
mal and machine learning.

Learning Paradigms
There are three primary means by which artificial
neural nets adapt to perform some function,
all inspired by neurological models: supervised
(or error-driven) learning, reinforcement learning,
and unsupervised (or self-organized) learning.

BK-APA-HCM_V1-160213-Chp28.indd 5 18/08/16 7:20 PM

bmaclenn
Cross-Out

bmaclenn
Inserted Text
and

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

6

In supervised or error-driven learning, a
neural network is trained to perform some func-
tion by presenting it with a sequence of desired
input–output pairs. The network compares its
actual behavior for a given input with the desired
(or target) behavior for that input and then uses the
difference between the two (the error) to guide the
modification of its weights to decrease the error.
This process can be compared with learning a
motor skill, in which perceived errors in execution
guide adaptation to decrease the error. Normally,
in error-driven or supervised learning, the network
is expected to be able to generalize in a useful way
to novel inputs.

In reinforcement learning, a neural network is
trained to perform some function by presenting
it with a series of inputs, to which it responds. In
each case, it is told whether the response was cor-
rect or not, but if it responded incorrectly, it is not
told the correct response. Therefore, there is no
explicit error signal to guide learning. This is analo-
gous to reinforcement learning in animals, in which
responses elicit a punishing or a rewarding stimulus
(or, rather, an unexpected negative or positive stim-
ulus). Again, the network is expected to generalize
reasonably to novel inputs.

In unsupervised or self-organized learning, a
neural network adapts its behavior without any
explicit reinforcement or target information. There-
fore, it is responding to the statistics of its input, for
example by clustering inputs into salient groups.
Such networks can model the self-organization
of low-level feature detectors in primary sensory
cortices, but also higher level representations of
statistical structure (see the “Deep Belief Networks”
section later in this chapter). I consider several
examples of each learning paradigm.

Hebbian Learning
The most basic rule of neural network learning was
proposed by Donald O. Hebb:

When an axon of cell A is near enough to
excite a cell B and repeatedly or persis-
tently takes part in firing it, some growth
process or metabolic change takes place

in one or both cells such that A’s effi-
ciency, as one of the cells firing B, is
increased. (Hebb, 1949/2002, p. 62)

We now know that the process is more complicated
than this, but Hebb’s rule remains fundamental to
neural network learning. One of the important dis-
coveries was spike-timing-dependent plasticity, by
which a synapse strengthens if the receiving neu-
ron fires soon after the sending neuron (long-term
potentiation) but weakens if it fires shortly before
the sender (long-term depression; Bi & Poo, 1998).
The effect is to strengthen synapses that are likely to
have a causal role in firing the receiving neuron
(see Chapter 25, this volume).

In the context of rate-based models, the weight
connecting two neural units increases if their
short-term joint activity is above a threshold and
weakens it if it below the threshold. The threshold
adapts over a longer period to balance the activity
and inactivity of the receiver. Learning rules of this
kind include the Bienenstock, Cooper, and Munro
(1982) model and the eXtended Contrastive Attrac-
tor Learning model (O’Reilly, Munakata, et al.,
2014), both of which are consistent with more
detailed models (Urakubo, Honda, Froemke, &
Kuroda, 2008).

A simple mathematical model of (supervised)
Hebbian learning adjusts an interconnection
weight based on the joint activity of the units it
connects. This is expressed ∆ = ηw yx , where x
is the activity of the sending unit, y is the activity
of the receiving unit, and η is the learning rate.
Therefore, the weight will increase if the neurons
are simultaneously active (>x y, 0) or simulta-
neously inactive (<x y, 0). Conversely, it will
decrease if their activities are inversely related
(i.e., one more active and the other less active).
Intuitively, over time, the weight will adapt to
reflect the correlation (positive, negative, or zero)
between the sending and receiving units.

We can extend the foregoing observations to the
connections from a group of sending units with
activities x1, . . ., xn to a group of receiving units with
activities y1, . . ., ym (see Figure 28.2). The change in
the weight Wij to unit i from unit j is W y xij i j∆ = .

BK-APA-HCM_V1-160213-Chp28.indd 6 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

7

Therefore, the change in the weight matrix ()= WW ij

is given by the outer product ∆ = ηW yxT . (Note that

the product of an ×m 1 matrix y by a × n1 matrix

 xT is an ×m n matrix.) Therefore, the elements of W

come to refl ect the correlation of activity between
corresponding sending and receiving units.

 Suppose that a sequence of P pairs of input–output
patterns (x 1, y 1), (x 2, y 2), . . ., (x P , y P) are successively
imprinted on a weight matrix that is initially 0. Then
we have the outer product rule for computing a
weight matrix,

∑= η
=

W y x .p pp

P T

1

Clearly, Wij will be proportional to the average
value, over all the patterns, of the joint receiving and
sending activities, ∝W y xij i j

 , where the brackets
denote the average.

 If the mean activities of the units are 0 (i.e.,
= =x y 0i j

), then the weight matrix will approxi-
mate the covariance matrix of the activities of the
receiving and sending units, → =W yx y xcov(,)T .
Neural thresholds adapt to balance their average level
of activity (O’Reilly, Munakata, et al., 2014), so it is rea-
sonable to assume that their mean activity is zero.

 The outer product rule implements a simple
form of associative memory, known as a linear
associator (see Figure 28.2). (If thresholds or biases
are included in the weight matrix, then it is more
correct to call it an affi ne associator.) To see this,

suppose that xk is one of the imprinted input pat-
terns. If the activity of the sending units is xk ,
then we can compute the activity of the receiving
units by matrix multiplication (setting η =1 for
convenience):

∑ ∑ ()=

=

= =

Wx y x x y x x .k p p
p

P

k p p k
p

P
T

1

T

1

 That is, the resulting activity will be superposition
of the imprinted output patterns y p , each weighted
by the inner product of the corresponding imprinted
input pattern xp with the actual input pattern xk

 .
That is, the strength of y p in the result will be propor-
tional to the similarity of xp and xk . For convenience,
suppose that the pattern vectors are normalized,

= =x x x1 p p p

2
T . Then we can separate the effect on

the receiving units due to xk from that due to the other
imprinted patterns:

∑ ()= +
≠

Wx y y x x .k k p p k
p k

T

 This shows us that, under the conditions speci-
fi ed, the linear associator will retrieve the pattern yk

associated with the input xk , possibly contaminated
with crosstalk from the other patterns, which is rep-
resented by the summation. Retrieval will be perfect
if =x x 0p k

T for ≠p k , that is, if the patterns are
orthogonal. This condition may be easy to achieve
in the high-dimensional spaces characteristic of
biological neural networks (see the “Blessing of
Dimensionality” section later in this chapter).

 If the linear associator is presented with a
pattern that has not been imprinted, then it will
respond weakly, a result of the average cross-
talk between the input and the imprinted pat-
terns. Therefore, the linear associator can report
whether a pattern is stored in the memory by
responding strongly or whether it is novel by
responding weakly. Because it keeps memory
traces distinct, it is sometimes said to have separa-
tor dynamics, such as is characteristic of the den-
tate gyrus of the hippocampus (O’Reilly,
Bhattacharyya, Howard, & Ketz, 2014 ; see also
Chapter 25, this volume).

 FIGURE 28.2. Linear associator. The input layer is
fully connected to the output layer, which means that
each input unit is connected to every output unit, but
generally by different weights. W ij is the weight to output
unit i from input unit j . The activities y i of the output
units are weighted sums of the input unit activities x j . In
vector terms, y = Wx.

BK-APA-HCM_V1-160213-Chp28.indd 7 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

8

Sometimes separator dynamics is not what is
required; rather, we want the linear associator to
approximate some general input–output relation-
ship represented by a set of training pairs (x1,
t1), (x2, t2), . . ., (xP, tP). For example, an animal
might be learning some specific sensory–motor
correspondence. In this case, the performance of
the linear associator can be improved by an error-
driven learning algorithm called the delta rule. The
idea is to adjust the weights in such as way as to
minimize the sum of the differences between the
target patterns and the corresponding retrieved
patterns,

∑ −
=

t y ,p pp

P

1

where =y Wxp p . It is most convenient to think of

the sum-of-squares error as a function of the weights,

∑() = −
=

E W t y .p pp

P

1

2

Then the weights can be changed in the direction of
steepest descent of the error function, which is given
by the negative gradient of the error with respect to
the weights: ∆ = −η∇W E W() . When the math-
ematics is worked out, the learning algorithm takes
a very simple form: ∆ = η −W t y x()ij pi pi pj , or in
matrix terms, ∆ = η −W t y x()p p p

T . This rule adjusts
the weights to make the actual outputs y p closer to
the corresponding targets tp and leads to the best
least-squares linear approximations Wxp to the tp
(i.e., linear regression). Adaptive processes such as
the delta rule may implement error-driven learning
in the cerebellum.

Back-Propagation Learning
The linear associator is limited in its computational
abilities (linear approximations or linearly separable
classes). Therefore, algorithms have been developed
for supervised training of more complex, multilayer
neural networks, in which each layer provides input
to the next and neural units have nonlinear activa-
tion functions. The first, and still very popular, algo-
rithm is called back-propagation or the generalized
delta rule; it is, in effect, the multilayer perceptron

learning algorithm. This algorithm operates by
propagating error estimates backward from the
output layer, where the errors are measured, into
earlier layers so that their weights can be adjusted.
As with the delta rule, back-propagation is an
example of a gradient (or steepest) descent learn-
ing algorithm. This means that partial derivatives
of the error with respect to each of the individual
weights are estimated, and these derivatives are used
to adjust the weights in the direction of steepest
descent. Backward propagation is required because
the derivatives of later layers are needed to compute
the derivatives of earlier layers. Although there is no
evidence for back-propagation in biological neural
networks, bidirectional connectivity between neural
areas results in formally related learning processes
(O’Reilly, Munakata, et al., 2014).

Competitive Learning
Competitive networks can implement self-orga-
nized adaptation. A typical competitive network
has two layers: a first layer of feature detectors and
second layer of mutually competitive units, cor-
responding, perhaps, to mutually inhibitory mini-
columns within a single cortical macrocolumn
(see Figure 28.3). Let

∑()=y f W xi ij jj

be the activity of a unit in the first layer, which
reflects how well the input matches the pattern
encoded in its weights. The first-layer units pro-
vide excitatory inputs to corresponding units in the
second layer, which are self-exciting and mutually
inhibitory. Therefore, whichever second-layer unit
is most strongly activated will suppress the others
and win the competition.

Adaptation occurs when the winning first-layer
unit k adjusts its weights to more closely match the
input that caused it to win the competition:
∆ = η −W x W()kj j kj . (In biological neurons, adapta-

tion could be triggered by backward propagation of
the action potential into the dendritic tree.) Over
time, units will divide the inputs into related clus-
ters, with each competitive unit capturing one

BK-APA-HCM_V1-160213-Chp28.indd 8 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

9

cluster and the unit’s weights moving to the center
of that cluster. Therefore, competitive adaptation is
a kind of unsupervised clustering algorithm. It allo-
cates neural units to represent its input space in a
way that respects its statistics; in effect, the units
compete to represent the input domain. This is one
mechanism by which low-level feature detectors,
such as orientation columns in primary visual cor-
tex, can self-organize.

 I have described a winner-takes-all form of
competition. By adjusting the parameters, a spe-
cifi c number of winners to each competition can
be arranged (“ K winners take all”), which is useful
for self-organized sparse representations of input
and is more biologically realistic (see the “Sparse
Distributed Representation” section later in this
chapter).

 Radial Basis Function Networks
 Radial basis function networks have consider-
able biological relevance (Broomhead & Lowe,
1988). They are two-layer networks with a layer
of feature detectors followed by a layer that com-
putes a linear combination of their outputs. Each
neural unit in the fi rst layer computes a radial

basis function of the inputs, that is, a function that
responds maximally to a particular input pattern,
and responds progressively less for inputs increas-
ingly distant from this pattern. The usual artifi cial
neuron model =y f w x()T has this behavior and
leads to a cosine-shaped tuning curve or receptive
fi eld, such as observed in many sensory and motor
systems (e.g., Georgopoulos, Kalaska, Caminiti, &
Massey, 1982 ; Salinas & Abbott, 1994). That

 FIGURE 28.3. Competitive neural network. A competitive
neural network classifi es an input into one of several cat-
egories (four in this example). The fi rst layer of connection
weights W implements feature detectors corresponding to
the categories. The activities y j represent how well the input
x matches each category. These units excite corresponding
units z i in the competitive layer, which are self-exciting and
mutually inhibitory. As a result, one unit wins the competi-
tion, going to its maximum activity, and the other units are
completely inactive. Through proper choice of parameters, it
is possible to have K winners among the competitive units,
rather than just one.

 FIGURE 28.4. Example of cosine tuning curve. The
horizontal axis represents the difference between the
neuron’s actual input and its preferred input. The
neuron exhibits maximal activity for its preferred
input, and its activity falls off approximately as
the cosine of the difference between its actual and
preferred input.

BK-APA-HCM_V1-160213-Chp28.indd 9 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

10

is, if a neuron has a preferred input to which it
responds, then its response to other inputs tends
to fall off with the cosine of its difference from
the preferred input (see Figure 28.4). To perform
adequately, the receptive fi elds of all the radial
basis function units need to cover the input space
adequately, which can be accomplished by com-
petitive learning and similar self-organized adap-
tive processes.

 The second layer of the radial basis function
net is a linear associator applied to the fi rst
layer. The delta rule can be used for supervised
training of the network to produce desired out-
puts. In effect, the fi rst layer rerepresents the
input in another space in which the desired
behavior has a good linear approximation. This
is a rapid, Hebbian process, which is capable of
approximating any input–output relationship
(Haykin, 2008).

 Attractor Networks
 Attractor networks model processes that complete
patterns and satisfy constraints; the simplest
such network is the bipolar Hopfi eld network
(Hopfi eld, 1982). It consists of n neural units,
each of which is bidirectionally connected to
all the others (see Figure 28.5). That is, the
connection weight from unit i to unit j is equal
to that from j to i ; that is, the weight matrix is
symmetric (=W Wij ji). However, there is no
“self action,” that is, units do not provide inputs

to themselves (=W 0ii). The states of units are
bipolar (∈ − +x { 1, 1}i). The units change state one
at a time (typically in random order), and the new
state ′xi of a unit is determined by applying a step
function to its net input:

′ =
+ >
− <

x

y

y

1 if 0

1 if 0
,i

i

i

where =y Wx . If the net input is zero, it is conven-
tional to leave the state unchanged, ′ =x xi i , but it can
also be treated like a positive or negative input, with-
out important differences.

 The Hopfi eld network can be understood as
a soft constraint satisfaction system. To see this,
suppose that the units represent n interdependent
yes–no (+1/−1) decisions and that the weights
represent soft constraints between the decisions.
That is, if a weight is positive, then it constrains
the units it connects to make the same decision (to
agree); if negative, to disagree. The magnitude of
the weight represents the strength of the constraint,
that is, the importance of satisfying it. Many cogni-
tive tasks can be understood as soft-constraint sat-
isfaction problems, including the inference of depth
from binocular images, perceptual interpretation
tasks, and memory retrieval.

 The dynamics of the network causes a unit to
change its state, if necessary, to satisfy the soft
constraints, in effect decreasing the “tension” or
“frustration” experienced by the unit. This idea can
be made more precise. For a unit in state xi experi-
encing net input yi , we can quantify its tension by
−x y / 2i i . (The one-half factor is for mathematical
convenience and simply changes the units of ten-
sion.) This quantity will be positive (high tension)
if the unit and its input have opposite signs (are in
disagreement), and it will be negative (low tension)
if they have the same sign (are in agreement). Then
the total tension or energy in the network is

∑= − = − = −E x y x y x Wx.i ii

1

2

1

2
T 1

2
T

Sometimes it is simpler to think in terms of the
coherence or harmony of the network, which is sim-
ply the negative of its energy, H =−E .

 FIGURE 28.5. Hopfi eld network. In this (unrealisti-
cally simple) example, the network has fi ve neural
units, which are bidirectionally connected (W ij = W ji)
with no self action (W ii = 0).

BK-APA-HCM_V1-160213-Chp28.indd 10 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

11

It is easy to show that the energy of a network
cannot increase (∆ ≤E 0) and, in fact, that it will

decrease with each state change. That is, each state
change improves coherence by better satisfying all
the constraints. In other words, the individual units
are making microdecisions that increase the overall
coherence of the network state (a macrodecision).
Because energy cannot decrease forever, the network
state must eventually stabilize in a local energy min-
imum (state of maximum local coherence). How-
ever, this need not be a global minimum energy
state (absolute maximum coherence). These stable
patterns of activity are called attractors, and there-
fore each attractor is surrounded by a basin of
attraction, that is, a set of similar patterns that will
settle into that attractor.

The Hopfield network can function as an associa-
tive memory. A pattern x can be imprinted on the
memory by Hebbian learning, ∆ = ηW xxT . A series
of patterns can be imprinted sequentially, or as a
batch, using the sum-of-outer-products rule,

∑=
=

W x xp pp

P T

1
. The weights Wij encode the corre-

lated activity of the units i and j over all the imprinted
patterns. If the number of imprints <<P n / 20 , then
the imprinted patterns will be global energy minima
and therefore attractors with relatively large basins of
attraction (Amit, 1989).

If an imprinted Hopfield network is initialized
to a pattern of activity, then its activity will evolve
to the attractor in whose basin it was initialized.
Therefore, the imprinted pattern acts as a proto-
type that represents all the patterns in its basin,
with each basin corresponding to a distinct cat-
egory. As a consequence, a Hopfield network can
be used for pattern restoration; that is, if initialized
to a degraded version of an imprinted pattern, it
will evolve to the undegraded original. Missing
or incorrect parts of the pattern are reconstructed
from their correlations with other parts as reflected
in the weights. More generally, the Hopfield mem-
ory can be used for pattern completion, the resto-
ration of a whole pattern from some of its parts.
Therefore, it can also be used for pattern associa-
tion by imprinting it with composite patterns,
because if it is initialized to a part of a composite
pattern, it will evolve to the complete pattern.

Attractor dynamics of this sort may be
operating in area CA3 of the hippocampus, allow-
ing a cue to settle into a complete episodic memory
trace (see Chapter 25, this volume and Volume 2,
Chapter 11, this handbook), which is then passed
to CA1 (Knierim & Zhang, 2012; O’Reilly, Bhat-
tacharyya, et al., 2014). Attractor networks have
also been applied to modeling grid, place, and
head-direction cells in the rat spatial navigation
limbic system (Knierim & Zhang, 2012).

Imprinting patterns on a Hopfield network
generates undesirable spurious attractors, which
are linear combinations of the imprinted patterns.
They can interfere with its operation because they
have their own basins of attraction, which steal
from the intended basins and therefore decrease
the network’s ability to complete or associate
patterns. If the load factor, α = P n/ , on the

memory is kept sufficiently low (α << 0.05), then

the spurious attractors will have shallower basins
(higher energy) than the imprinted patterns and be
less likely to interfere.

Operation of the Hopfield network can be
improved by introducing a certain amount of
indeterminacy into its operation: the stochastic
Hopfield network. Instead of a unit’s input abso-
lutely determining its future state, it determines
it probabilistically. That is, more strongly positive
net inputs will make it more likely to go into the
+1 state and more strongly negative inputs will
make the −1 state more likely. This can be accom-
plished by “squashing” the net input y into the
range [0, 1] so that it can be used as a probability,
σ y T(2 /), where σ = + −u u() 1 /[1 exp()] is the
logistic sigmoid function. This function has the
value ½ at y = 0, approaches 1 as y becomes more
positive, and approaches 0 as y becomes more neg-
ative. Thus, it can be used as the probability for a
unit changing to the +1 state. The T parameter,
which is called pseudo-temperature or computa-
tional temperature, controls the degree of random
behavior. At T = 0, the behavior is completely
deterministic, as before. At high T values, behavior
is almost completely random, that is, activity has a
50–50 chance of being +1 or −1, regardless of the
unit’s input.

BK-APA-HCM_V1-160213-Chp28.indd 11 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

12

 Intuitively, a higher pseudotemperature makes it
more likely that a unit will make the “wrong” micro-
decision (go against its net input) and thus climb a
little up the energy surface. This gives the network
some possibility of climbing out of the basins of spu-
rious attractors and fi nding its way into the larger,
deeper basin of an imprinted pattern. The optimi-
zation process called simulated annealing starts at
a high computational temperature, thus sampling
the solution space in a relatively unbiased manner,
and then gradually decreases the temperature, freez-
ing the state into a global minimum with very high
probability (Kirkpatrick, Gelatt, &
Vecchi, 1983). A similar, gradual decrease of
pseudo-temperature improves Hopfi eld memory
retrieval. Stochastic behavior of this kind is to be
expected in biological neural networks.

 Deep Belief Networks
 The Restricted Boltzmann Machine (RBM) is a
neural network for the unsupervised discovery of
an internal representation or model of some input
domain (Hinton, 2010). A useful representation
captures salient aspects of the statistics of the
represented patterns. Therefore, one way to test
and improve a representation is to see how well it
does at reproducing the input statistics from the
representation. An RBM has two groups of neu-
ral units, m for the internal representation (often
called the hidden units) and n for the input to be
represented (often called the visible units ; see Fig-
ure 28.6). Each unit in one group is bidirectionally
connected to every unit in the other group. That
is, Wij represents the connection weight to hid-
den unit i from input unit j and also the weight to

input unit j from hidden unit i . (There are no con-
nections among the input units or among the hid-
den units.) In addition, each unit has a bias, which
is treated as a 0th weight connected to a constant
1 unit. The weights are initialized to small random
values.

 In the following, we use x j for the activity of an
input unit and yi for the activity of a hidden unit.
In the simplest RBM, the neurons are binary valued
(∈x y, {0,1}j i), representing low or high levels of
activity. The units are stochastic, as in the stochastic
Hopfi eld network.

 Self-organization proceeds as follows. As patterns
of activity develop over the input units, they stimu-
late the hidden units, with a hidden unit’s net input
being given by

∑()= σp W x ,i ij jj

where σ is the logistic sigmoid function,
σ = + −u u() 1 /[1 exp()] . The hidden unit will
become active (=y 1i) with probability pi and will
be inactive otherwise. Therefore, the input pattern
probabilistically generates a pattern of activity yi
over the hidden units, which is a potential represen-
tation of the input. The activity of the hidden units
then generates a reciprocal pattern of activity ′x j on
the input units, which we can think of as an imag-
ined input reconstructed from the internal represen-
tation. The probability that ′ =x 1j is given by

∑()= σq W y .j ij ii

The reconstructed input then generates another
internal representation in which ′ =y 1i with

probability

 ∑()′ = σ ′p W x .i ij jj

 The goal of the adaptive process is for the
model statistics to agree with the input statistics,
in particular for the model-driven correlations
 ′ ′y xi j to agree with the input-driven correlations
 y xi j

 . This is accomplished by updating the
weights to bring the model closer to the correct
statistics:

 FIGURE 28.6. Restricted Boltzmann machine. The vis-
ible units x j are bidirectionally connected (W ij = W ji) to
the hidden units y j , with no connections among the visible
units or among the hidden units.

BK-APA-HCM_V1-160213-Chp28.indd 12 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

13

()∆ = η − ′ ′W y x y xij i j i j . Generally, several
cycles of input-driven and model-driven compari-
sons contribute to the averages (i.e., the weights
adapt slowly). Self-organization stabilizes when the
model-driven statistics agree with the input-driven
statistics. A process such as this may be occurring in
the bidirectional connections between the entorhi-
nal cortex and CA1 in the hippocampus, since CA1
is developing a distinct memory trace by which it
can reproduce a pattern of activity in entorhinal cor-
tex. Theta waves may clock the alternation between
input- and model-driven phases (O’Reilly,
Bhattacharyya, et al., 2014).

 Deep belief networks, which are inspired by the
hierarchies of representations in mammalian sensory
systems, have been successful in many application
areas (Hinton, Osindero, & Teh, 2006). These are
networks with multiple hidden layers between the
input and output layers, which represent the input
at successively more abstract, but task-relevant, lev-
els (see Figure 28.7). RBM training is used at each
level to develop the representations. For example,
suppose a network has an input layer I , hidden
layers H1 , . . ., H N , and output layer O . Inputs are
applied to I, and RBM training is applied to I and H1

to generate a model in their interconnecting weights
and a higher order representation in H1 . Next, inputs
are applied and passed through to H1 and then to H2 .
RBM training is applied, treating H1 as the input layer
and H2 as the hidden layer, to generate a higher order
representation in H2 . This process is continued until
all the hidden layers are trained. Supervised train-
ing can be used to adjust the weights from the last
hidden layer to the output layer to accomplish the
network’s purpose.

 Deep belief network training can be used in con-
junction with other deep (i.e., multilayer) networks.
For example, back-propagation training of a deep
network can be slow if all the weights are initial-
ized randomly. The error has to propagate backward
through many layers, its weights might have far
to go in “weight space,” and there are often many
equally good sets of weights in different directions,
so the network might have trouble committing to
one direction in the early stages of training. For this
reason, it can be advantageous to use deep belief
network training to initialize the weights, which are
then fi ne-tuned by back-propagation.

 Learning Generals and Particulars
 Two broad, complementary categories of adaptation
are distinguished on the basis of their functions
and dynamical properties (O’Reilly, Bhattacharyya,
et al., 2014).

 The fi rst adaptive mechanism learns generalities
and provides the basis for semantic memory. This
is an integrative process of gradually learning sta-
tistical regularities in experience. Some of the pro-
cesses are self-organized, such as the development
of visual feature detectors in early vision areas.
Neurons competitively organize to detect salient
low-level statistical regularities in the environment.
Higher order neurons adapt to regularities in the
activities of lower level ones, leading to representa-
tions at successively higher levels of abstraction.
These are slow, gradual processes to acquire sta-
tistically representative samples. These adaptive
processes are modeled by neural networks such
as competitive networks and reduced Boltzmann
machines (see the “Competitive Learning” and

 FIGURE 28.7. Deep belief network. A deep belief network is
a cascade of restricted Boltzmann machines, which are trained
in succession from the input layer I to the output layer O.

BK-APA-HCM_V1-160213-Chp28.indd 13 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

14

“Deep Belief Networks” sections earlier in this
chapter).

Continuing experience, including positive and
negative reinforcement, modifies the patterns of
interconnection developed through self-organiza-
tion. Sometimes more specific information than
reinforcement is available for error correction,
which allows directed adaptation by error-driven
processes analogous (though not identical) to back-
propagation (O’Reilly, Munakata, et al., 2014).
These are the adaptive processes that allow us to
refine perceptual and motor skills over time. Self-
organized and error-driven learning of generalities
seems to be the principal adaptive mechanism of
the neocortex.

The second adaptive mechanism is memory for
particulars, including episodic (or episodic-like)
memory (memory of individual events), and mem-
ory for individual objects and places (see Volume 2,
Chapters 11 and 21, this handbook). The principal
characteristic of these separator memories is that
individual memory traces are distinct and nonin-
terfering; they are well separated in the space of
possible traces. An additional characteristic is that
these traces are imprinted quickly, often after only
a single exposure, in contrast to semantic memory,
which adapts gradually. We have seen that approxi-
mately orthogonal vectors have the characteristic
of being distinct and noninterfering and that they
can be imprinted quickly by Hebbian mechanisms.
Moreover, because particulars differ from each other
in many specifics, their representations are quite
random and therefore approximately orthogonal
(see the “Blessing of Dimensionality” section later in
this chapter). Memory for particulars seems to be a
principal function of the hippocampus (see
Chapter 25, this volume and Volume 2, Chapter 21,
this handbook).

Because of their distance, memory traces in a
separator memory can have large basins of attrac-
tion, which means these memories can accomplish
pattern completion. This is important for episodic
memory, for example, because it means that a cue
that activates part of a trace will allow the memory
state to converge to the complete trace (i.e., allow
the memory to be recalled).

A memory for particular items is capable of
encoding quite arbitrary sequences of discrete states.
Suppose that e1, e2, . . ., eN is a sequence of (approxi-
mately orthogonal) neural state vectors represent-
ing distinct items (e.g., events, locations, or specific
motor actions). Then the sequence can be encoded
by associating each vector with its successor by
Hebbian learning, for example,

∑ +=

−
e e .k kk

N

1
T

1

1

If the items repeat in the sequence, then they can
be encoded in pairs or larger subsequences. That is,
the encoded pair −e e(,)k k1 associates with the pair

+e e(,)k k 1 , and so forth (Kanerva, 2009). The cere-

bellum may use a mechanism such as this to gener-
ate complex motor sequences. Error-driven
learning can refine the timing and component
actions of such sequences.

REPRESENTATION

A central issue in computing is how information is
represented in memory. Similarly, the representa-
tion of information in nervous systems is critical
to their ability to respond effectively in real time.
Therefore, artificial neural network models are
both inspired by neural representations in brains
and in turn provide models for suggesting and test-
ing hypotheses about natural neural information
processing.

Coarse Coding
Neurons in the brain are generally quite broadly
tuned; that is, although they respond maximally to
certain input patterns, their response falls off gradu-
ally as the input diverges from this optimal input.
Cosine-shaped tuning curves are often observed,
which is to be expected if neuron assemblies are
computing an inner product between their synaptic
weight vectors and their inputs (see the “Rate-Based
Neuron Models” section earlier in this chapter).
As a consequence, a specific stimulus value is repre-
sented by activity in a large number of neural units,
which individually do not determine the value

BK-APA-HCM_V1-160213-Chp28.indd 14 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

15

precisely, but collectively do. This is called
coarse coding.

Sparse Distributed Representation
Moreover, mammalian brains seem to make
extensive use of sparse distributed representa-
tions. They are distributed in that a stimulus may
lead to widely scattered activity in a cortical area;
information is not in general represented by the
activity of one or a few neurons. However, high
levels of inhibitory competition lead to repre-
sentations that are sparse in that a stimulus acti-
vates a relatively small percentage of the neurons
(15%–25%: O’Reilly, Munakata, et al., 2014).
Because the number of neurons is large, there
tends to be little overlap in activity for unrelated
patterns; this is especially the case if individual
neurons are computing essentially random con-
junctions between the neurons providing their
inputs. Random vectors in these high-dimensional
spaces are approximately orthogonal (see the
“Blessing of Dimensionality” section later in this
chapter).

Although single-cell neural recordings can
exhibit high specificity, such as responding to a
specific person (e.g., Quiroga, Reddy, Kreiman,
Koch, & Fried, 2005), this does not necessarily
imply that such specific stimuli are represented by
single neurons (so-called “grandmother cells”).
On one hand, many other neurons are activated
besides those being recorded. On the other hand,
such recordings demonstrate specificity only among
the stimuli presented, which for complex stimuli
(such as people’s faces) can represent only a small
sample of possible stimuli.

Cortical Maps
Topographic maps are frequently used to represent
information in brains. In these maps, dimensions
of a sensory input space or a motor output space
are systematically mapped to neural locations, so
that nearby neurons represent nearby points in
these spaces. For example, in retinotopic maps
nearby neurons respond to nearby locations on the
retina. In tonotopic maps, nearby auditory neu-
rons respond to similar pitches, and neurons in

somatotopic maps are organized according to bodily
location. Topographic organization seems to be one
of the principal means of information representation
in nervous systems.

In contrast, in the neural networks discussed
earlier in this chapter, the neural units have no sig-
nificant spatial relations. In some networks, such as
Hopfield networks, every unit is connected to every
other unit (although the strength of connections
varies and can in fact be 0, which is equivalent to no
connection). In others, such as back-propagation
and other deep networks, each unit in one layer is
connected to every unit in the next layer. In general,
there is no defined spatial relation among the neu-
rons in any one layer.

There are, however, some neural networks that
make use of the spatial organization of the units. By
analogy with retinotopic maps in the brain, these net-
works are often applied to image processing, because
it is usually significant if units are responding to
nearby regions in an image. For example, a convo-
lutional network applies the same transformation at
every point in a two-dimensional image and produces
a two-dimensional map of the results. Thus, by anal-
ogy with the retina, a convolutional network might
apply an edge-detecting kernel at each point of an
image to produce an image with enhanced edges. In
contrast, a Gaussian kernel would blur the image.
Convolutional neural networks are a way of extract-
ing features from every location of an image while
retaining their spatial relationships. Let the matrix
K represent the kernel, where Kd e, is the weight
applied at a displacement (d,e) from the central point
where the kernel is applied. Then a convolutional
neural network applied to an image I computes an
image J by

∑= + +J K I .x y d e x d y ed e, , ,,

Convolutional networks and other topographi-
cally organized neural networks can be hard wired,
but they can also self-organize by mechanisms
analogous to developmental processes in the brain.
For example, a self-organized feature map can be
implemented by combining a competitive mecha-
nism with spatially localized learning (Kohonen,

BK-APA-HCM_V1-160213-Chp28.indd 15 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

16

1982). When a unit wins the competition and its
weights adapt, spatially nearby units will also adapt,
but to a lesser degree. The result will be that the
competitive units self-organize into a map in which
nearby units respond to nearby points in the input
space (as determined by the distance measure). The
weights can be further tuned by supervised learning,
if necessary.

Nonlinear Computation in
Topographic Maps
Topographic maps permit the computation of arbi-
trary transformations, subject to the resolution of
the map (i.e., the number of neurons in it). To illus-
trate the process, begin with an unrealistically sim-
ple example. Suppose that a neural network needs to
compute a function =v F u()k k for a finite number
of possible inputs u1, . . ., uN. If a single neuron in
the input area responds to each possible input, then
that neuron can project to a single neuron in the
output area representing the corresponding output.
Mathematically, let uk be a vector of neural activi-
ties in which only the neuron representing uk is
active and likewise let vk be a vector in which only
the neuron representing vk is active. Then the con-
nection weights implementing F are computed by
the sum of outer products

∑=
=

W v u ,j jj

N T

1

and we have =v Wuk k ; this works because the
vectors uk are orthogonal.

More realistically, as in a radial basis function
network, neurons are broadly tuned, and therefore
a neuron will respond to a range of inputs, some
more strongly, some less. As a consequence, a par-
ticular input will be represented by a population
code, with individual neurons responding in accor-
dance with how closely they are tuned to the input.
Therefore, a particular input u will generate a pat-
tern of activity x in which each xk represents how

strongly unit k responds to u, and x will be a
weighted linear combination of the unit vectors:

∑=
=
xx u .k kk

N

1

These weights will be passed through the linear
associator and will weight the corresponding
output values:

x xWx v u u v .j j
j

N

k k
k

N

j j
j

N
T

1 1 1
∑ ∑ ∑=

=
= = =

More generally, because the transformation is
represented by the pattern of input–output connec-
tions, the activity of the neurons can represent
pragmatic factors, such as the importance, urgency,
or reliability of the input information, which is
then transferred to the output representation
(MacLennan, 1999).

BLESSING OF DIMENSIONALITY

Richard Bellman (1961) coined term the “curse of
dimensionality” to refer to the computational prob-
lems arising from the exponential increase in the
volume of space as the dimension of data increases.
In the context of neural networks, more neural
units mean more weights to be adjusted, and there-
fore slower learning. However, there is a comple-
mentary “blessing of dimensionality” (Donoho,
2000) in that certain things become easier in the
very-high-dimensional spaces typical of biological
nervous systems, which have been called hyperdi-
mensional spaces (Kanerva, 2009). Hyperdimen-
sional spaces have some unintuitive properties, to
which I turn.

An unusual and paradoxical property of high-
dimensional spaces is that as the dimension
increases, an increasingly large fraction of the
volume of an object is concentrated near its sur-
face. Consider the example of an n-dimensional
cube of width d; its volume is dn . Next consider a

shell of thickness ε/2 within this cube; the volume
of the cube within the shell is d()n− ε . The frac-

tion of the cube’s volume that is inside the shell
itself is then

d d

d
d

()
1 (1 /) ,

n n

n
n− − ε = − − ε

which approaches 1 as n increases; that is, the vol-
ume is concentrated in the shell, namely, within å/2

BK-APA-HCM_V1-160213-Chp28.indd 16 18/08/16 7:20 PM

bmaclenn
Highlight

bmaclenn
Sticky Note
italic

bmaclenn
Highlight

bmaclenn
Sticky Note
Greek lowercase epsilon

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

17

of the surface. Therefore, if we pick a random point
uniformly within the volume, it is very likely to be
near to the surface, and that probability increases with
dimension. This property is not peculiar to n-dimen-
sional cubes but also applies to n-dimensional
spheres and other shapes.

The significance of the foregoing observations
for neural computation is that if a vector is drawn
randomly from a bounded, high-dimensional vol-
ume, then it is very likely to be near the surface
of that volume. For example, if weight vectors are
bounded in magnitude (e.g., w 1≤), which is a
reasonable assumption, then for large n, randomly
chosen weight vectors will be approximately nor-
malized (e.g., w 1≈). Many neural network algo-
rithms work better with approximately normalized
vectors, which is therefore a reasonable assump-
tion when the number of neurons is large and the
vectors are random. This is one of the blessings of
dimensionality.

We have seen that memory traces are less likely
to interfere with each other if they are nearly
orthogonal, that is, their inner products are small.
However, with increasing dimension randomly
chosen vectors are increasingly likely to be nearly
orthogonal. I illustrate this in the case of bipolar
vectors, but it is true more generally. Let u and v be
two n-dimensional random bipolar vectors. Then
their inner product

u vu v i ii

nT

1∑=
=

is a sum of n random 1s± . This is like tossing a fair

coin n times; the result is a binomial distribution
with 0 mean and variance n2σ = . For large n, this

is closely approximated by a Gaussian distribution
with the same mean and variance. Because, for
example, with 99.99% probability, the inner product
will be within 4σ of the mean, with this probability

we have < nu v 4T , that is, ϕ < nu v cos 4 .
Because for bipolar vectors = = nu v , we con-
clude that with 99.99% probability the cosine of the
angle between the vectors ϕ is less than n4/ ,
which decreases with increasing n. For example,
with =n 10,000 (a small number of neurons in bio-
logical terms), the cosine will be less than 0.04 with

99.99% probability. In general terms, the probability
that the cosine is less than ε is given by

(){ }ϕ < ε = ε

≈ −ε + − ε

n

n n

Pr cos erfc 2

exp(/2) exp(2 /3)1
6

2 1
2

2

(using the approximation to erfc from Chiani,
Dardari, & Simon, 2003). Therefore, the probability
of the vectors deviating from orthogonality by more
than ε decreases exponentially with n, or, equiva-

lently, the probability of any required degree of
approximate orthogonality increases exponentially
with dimension.

The import of the foregoing is that neural sys-
tems whose function requires keeping memory
traces distinct and noninterfering (such as episodic
memory) can do this by, in effect, assigning random
codes in a hyperdimensional space. Random codes
can result from neural representations composed of
many random conjunctions of features. Such traces
can be imprinted quickly by Hebbian learning and
have large basins of attraction. Therefore, presenta-
tion of a partial trace can cue retrieval of the entire
trace by pattern completion.

CONCLUSIONS

Biological neural networks can be modeled in vari-
ous ways depending on the sorts of questions the
models are intended to answer. In particular, rate-
based neuron models can illuminate processes,
including pattern recognition and categorization,
pattern completion and association, and soft con-
straint satisfaction. Neural network models are also
capable of various kinds of adaptation, including
unsupervised learning, reinforcement learning, and
error-driven learning. These models, which have
varying degrees of fidelity to established neuro-
physiological processes, can facilitate understanding
perception, learning, and motor control in nervous
systems. They also illuminate principles of neural
information representation and processing, includ-
ing coarse coding, sparse distributed representation,
topographic cortical maps, generalizing versus sepa-
rating memories, and the blessing of dimensionality.
Artificial neural network models also can be applied

BK-APA-HCM_V1-160213-Chp28.indd 17 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

18

to practical machine learning and to psychological
data processing (e.g., clustering, pattern classifica-
tion, regression).

References
Amit, D. J. (1989). Modeling brain function: The world of

attractor neural networks. http://dx.doi.org/10.1017/
CBO9780511623257

Anderson, J. A., & Rosenfeld, E. (1988). Neurocomputing:
Foundations of research. Cambridge, MA: MIT Press.

Bellman, R. (1961). Adaptive control processes: A guided
tour. http://dx.doi.org/10.1515/9781400874668

Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications
in cultured hippocampal neurons: Dependence on
spike timing, synaptic strength, and postsynaptic cell
type. Journal of Neuroscience, 18, 10464–10472.

Bienenstock, E. L., Cooper, L. N., & Munro, P. W. (1982).
Theory for the development of neuron selectivity:
Orientation specificity and binocular interaction in
visual cortex. Journal of Neuroscience, 2, 32–48.

Branco, T. (2011). The language of dendrites.
Science, 334, 615–616. http://dx.doi.org/10.1126/
science.1215079

Broomhead, D. S., & Lowe, D. (1988). Multivariable
functional interpolation and adaptive networks.
Complex Systems, 2, 321–355.

Chiani, M., Dardari, D., & Simon, M. K. (2003).
New exponential bounds and approximations for the
computation of error probability in fading channels.
IEEE Transactions on Wireless Communications,
4, 840–845. http://dx.doi.org/10.1109/
TWC.2003.814350

Chomsky, N. (1965). Aspects of the theory of syntax.
Cambridge, MA: MIT Press.

Copeland, J., & Proudfoot, D. (1996). On Alan Turing’s
anticipation of connectionism. Synthese, 108,
361–377. http://dx.doi.org/10.1007/BF00413694

Donoho, D. L. (2000). Aide-Memoire. High-
dimensional data analysis: The curses and blessings
of dimensionality. Palo Alto, CA: Department of
Statistics, Stanford University. Retrieved from
http://statweb.stanford.edu/∼donoho/Lectures/
AMS2000/Curses.pdf

Emery, N. J., & Clayton, N. S. (2004). The mentality
of crows: Convergent evolution of intelligence in
corvids and apes. Science, 306, 1903–1907.
http://dx.doi.org/10.1126/science.1098410

Feldman, J. A., & Ballard, D. H. (1982). Connectionist
models and their properties. Cognitive Science,
6, 205–254. http://dx.doi.org/10.1207/
s15516709cog0603_1

Fries, P. (2005). A mechanism for cognitive dynamics:
Neuronal communication through neuronal

coherence. Trends in Cognitive Sciences, 9, 474–480.
http://dx.doi.org/10.1016/j.tics.2005.08.011

Georgopoulos, A. P., Kalaska, J. F., Caminiti, R., &
Massey, J. T. (1982). On the relations between the
direction of two-dimensional arm movements and
cell discharge in primate motor cortex. Journal of
Neuroscience, 2, 1527–1537.

Haykin, S. O. (2008). Neural networks and learning machines
(3rd ed.). Upper Saddle River, NJ: Prentice-Hall.

Hebb, D. O. (2002). Organization of behavior. Mahwah,
NJ: Erlbaum. (Original work published 1949)

Hinton, G. (2010). A practical guide to training restricted
Boltzmann machines, version 1 (UTML TR 2010-003).
Toronto, Ontario, Canada: Department of Computer
Science, University of Toronto.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
fast learning algorithm for deep belief nets. Neural
Computation, 18, 1527–1554. http://dx.doi.org/
10.1162/neco.2006.18.7.1527

Hopfield, J. J. (1982). Neural networks and physical
systems with emergent collective computational
abilities. Proceedings of the National Academy
of Sciences, USA, 79, 2554–2558. http://dx.doi.
org/10.1073/pnas.79.8.2554

Kanerva, P. (2009). Hyperdimensional computing:
An introduction to computing in distributed
representation with high-dimensional random
vectors. Cognitive Computation, 1, 139–159.
http://dx.doi.org/10.1007/s12559-009-9009-8

Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P.
(1983). Optimization by simulated annealing.
Science, 220, 671–680. http://dx.doi.org/10.1126/
science.220.4598.671

Knierim, J. J., & Zhang, K. (2012). Attractor dynamics
of spatially correlated neural activity in the
limbic system. Annual Review of Neuroscience,
35, 267–285. http://dx.doi.org/10.1146/annurev-
neuro-062111-150351

Kohonen, T. (1982). Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43, 59–69.
http://dx.doi.org/10.1007/BF00337288

MacLennan, B. J. (1994). Continuous computation and
the emergence of the discrete. In K. H. Pribram
(Ed.), Origins: Brain and self-organization
(pp. 121–151). Hillsdale, NJ: Erlbaum.

MacLennan, B. J. (1999). Field computation in natural
and artificial intelligence. Information Sciences,
119, 73–89. http://dx.doi.org/10.1016/S0020-
0255(99)00053-5

McClelland, J. L., & Rumelhart, D. E.; PDP Research
Group. (1986). Parallel distributed processing:
Explorations in the microstructure of cognition:
Vol. 2. Psychological and biological models.
Cambridge, MA: MIT Press.

BK-APA-HCM_V1-160213-Chp28.indd 18 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Neural Networks, Learning, and Intelligence

19

Minsky, M., & Papert, S. (1969). Perceptrons: An
introduction to computational geometry. Cambridge,
MA: MIT Press.

Montemurro, M. A., Rasch, M. J., Murayama, Y.,
Logothetis, N. K., & Panzeri, S. (2008). Phase-of-
firing coding of natural visual stimuli in primary
visual cortex. Current Biology, 18, 375–380. http://
dx.doi.org/10.1016/j.cub.2008.02.023

O’Reilly, R. C., Bhattacharyya, R., Howard, M. D., &
Ketz, N. (2014). Complementary learning systems.
Cognitive Science, 38, 1229–1248. http://dx.doi.org/
10.1111/j.1551-6709.2011.01214.x

O’Reilly, R. C., Munakata, Y., Frank, M. J., & Hazy, T. E.
(Eds.). (2014). Computational cognitive neuroscience
(2nd ed.). Retrieved from http://ccnbook.colorado.edu

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., &
Fried, I. (2005). Invariant visual representation

by single neurons in the human brain. Nature,
435, 1102–1107. http://dx.doi.org/10.1038/
nature03687

Rumelhart, D. E., & McClelland, J. L.; PDP Research
Group. (1986). Parallel distributed processing:
Explorations in the microstructure of cognition: Vol. 1.
Foundations. Cambridge, MA: MIT Press.

Salinas, E., & Abbott, L. F. (1994). Vector reconstruction
from firing rates. Journal of Computational
Neuroscience, 1, 89–107. http://dx.doi.org/10.1007/
BF00962720

Urakubo, H., Honda, M., Froemke, R. C., &
Kuroda, S. (2008). Requirement of an allosteric
kinetics of NMDA receptors for spike timing-
dependent plasticity. Journal of Neuroscience,
28, 3310–3323. http://dx.doi.org/10.1523/
JNEUROSCI.0303-08.2008

BK-APA-HCM_V1-160213-Chp28.indd 19 18/08/16 7:20 PM

UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

BK-APA-HCM_V1-160213-Chp28.indd 20 18/08/16 7:20 PM

