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Crows’ intelligence is astonishing. They solve 
problems, intelligently cache food, make and use 
tools, possess episodic-like memory, predict the 
behavior of individual conspecifics, and learn to 
recognize individual humans (Emery & Clayton, 
2004). More generally, an animal’s nervous system 
serves functions essential for its survival and repro-
duction, including communication of information 
throughout its body, control of behavior (voluntary 
and involuntary), perception and cognition, and 
learning and memory. This raises many questions. 
How are complex motor programs sequenced and 
controlled? How are skills learned and refined? 
How are episodic memories formed and retrieved? 
How is general information learned? How are 
mental categories formed? How does reinforce-
ment learning occur? How are associations formed 
and retrieved? How do sensory systems function? 
Neural network models are important tools for 
understanding these and other neurophysiological 
processes.

Neural network models attempt to capture essen-
tial characteristics of neural information processing 
and control in models that balance simplicity and 
accuracy. On one hand, they can be used to under-
stand and analyze processes in nervous systems 
and to suggest neuroscientific hypotheses. On the 
other hand, neural network models can be applied 
in artificial intelligence (AI), machine learning, and 
robotics to serve functions similar to biological neu-
ral networks. I can review only a few of the simplest 
neural network models in this chapter. A compre-
hensive introduction from a computational  

perspective can be found in Haykin (2008), and 
biologically realistic models are applied to cogni-
tive science in O’Reilly, Munakata, Frank, and 
Hazy (2014).

HISTORY

In this section, I present a brief history of artificial 
neural networks. Many of the historically impor-
tant articles can be found in Anderson and Rosen-
feld (1988). The earliest artificial neural net model 
was described by Warren McCulloch and Walter 
Pitts in 1943. They used simple binary-valued 
model neurons that were capable of computing log-
ical functions and therefore capable of implement-
ing digital computation. Their use of binary-valued 
neurons was inspired by the “all-or-nothing” gen-
eration of the action potential (neural impulse).

In 1948, Alan Turing also published an artificial 
neural net model (Copeland & Proudfoot, 1996). In 
his B-type networks, model neurons were connected 
in arbitrary networks, with modifiable connections, 
which were set by means of control fibers. He dis-
cussed the possibility of an external teacher training 
a network by means of the control fibers.

The modern development of neural networks 
began with the invention of the perceptron by 
Frank Rosenblatt in 1957. In this model, artificial 
neurons are connected in feed-forward networks, 
that is, in layers, in which all the neurons in one 
layer are connected, via modifiable weights, to all 
the neurons in the next. Rosenblatt also developed 
a learning algorithm that allowed a single-layer 
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perceptron to adapt to solve any problem of which 
it was capable. The problem was that single-layer 
perceptrons are relatively limited, specifically to 
linearly separable categories. Multilayer perceptrons 
are much more powerful, but the development of 
a multilayer perceptron learning algorithm had to 
wait until the invention of the back-propagation 
algorithm by Paul Werbos in 1974 (which was not 
well-known before the mid-1980s). Other early 
work in neural networks includes Bernard Widrow 
and Ted Hoff’s development of the Adaptive Linear 
Neuron (ADALINE) in 1960 and Many ADALINE 
(MADALINE) in 1962.

Research in artificial neural networks declined 
through the 1970s and early 1980s. One reason was 
the publication in 1969 of Perceptrons by Marvin 
Minsky and Seymour Papert, which demonstrated 
the limitations of the single-layer perceptron and 
implied that multilayer perceptrons would be 
similarly limited. Most AI research was devoted to 
symbolic AI, which focused on language-like rep-
resentations of knowledge and models of cognition 
based on logical inference. There was little interest 
in relating these models of intelligence to the brain, 
because the brain was supposed to be equivalent, 
at a deep level, to a universal Turing machine and 
therefore to a digital computer.

Symbolic AI often adhered to a distinction 
between what in linguistics is termed competence 
and performance (Chomsky, 1965). Competence 
refers to an agent’s abstract, idealized understand-
ing of, for example, grammar, whereas performance 
refers to its ability to use that understanding in 
actual speech acts. Thus, a language’s abstract 
grammar might permit unlimited nesting, but a 
human’s ability to process nested structures might 
be strictly limited (e.g., by working memory capac-
ity). Chomsky (1965) argued that the proper 
subject matter of linguistics was competence, not 
performance, and therefore that linguistics per se 
did not need to concern itself with the brain sys-
tems serving language.

The theory of universal computation pioneered 
by Turing was similarly focused on competence 
(the ability to compute a mathematical function) 
rather than performance (the real time and memory 
resources required to compute it). This justified 

ignoring the neural substrate of intelligence because, 
from a perspective of competence, all universal com-
puting machines are equivalent.

The reawakening of interest in neural network 
models resulted in part from recognition of the 
central importance of performance issues in under-
standing intelligent behavior. This is illustrated by 
the “100-step rule”: dividing a typical behavioral 
response time (less than 1 second) by a typical neu-
ron response time (10 milliseconds) implies that 
there can be at most about 100 sequential processing 
steps from sensory input to motor output (Feld-
man & Ballard, 1982). At the very least, this observa-
tion implies that brains process information in a very 
different way from conventional computers: wide and 
shallow versus narrow and deep. Clearly, intelligence 
includes the ability to respond in a timely fashion, 
and so a theory of intelligence needs to be able to 
account for real-time response by nervous systems.

As progress in symbolic AI stalled around 
1980 and as the performance challenges became 
apparent, cognitive scientists and AI research-
ers returned to the brain for insights. The new 
approach is commonly called connectionism 
(because knowledge resides primarily in the con-
nections between neurons) and (artificial) neural 
networks; other terms, such as neurocomput-
ing and neuromorphic computing, are also used, 
with slightly different semantic fields. These 
approaches, which are applied both to modeling 
biological neural systems and in AI, seek underly-
ing mathematical principles of information pro-
cessing and control that can be applied in both 
domains. They have also led to new approaches 
to traditional philosophical problems, especially 
in epistemology (e.g., the theory of universals). 
Many of the seminal articles have been collected 
in two volumes, Rumelhart and McClelland 
(1986) and McClelland and Rumelhart (1986).

Improvements in supercomputing technology 
have made feasible the simulation of neural net-
works with neuron numbers approaching the size 
of mammalian brains. The most popular models for 
these simulations have been spiking neuron models. 
Combined with increasing knowledge of neural con-
nectivity, these advances will facilitate the simula-
tion of realistic brain systems.
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NEURON MODELS

Neural networks can be modeled on different 
levels depending on the intended application of 
the model and the issues it is intended to address. 
Principal among these are extended neuron mod-
els, spiking neuron models, and rate-based neu-
ron models.

Extended Neuron Models
Extended neuron models are the most detailed 
models because they address the detailed morphol-
ogy of the neuron and its effects on information 
processing. For example, they take account of the 
varying diameter and branching structure of den-
dritic processes, the distribution of ion channels, 
and the dynamics of ion flows and electrical poten-
tials. These models are commonly compartmental, 
which means that the neuron is divided into small 
compartments of simple shape in which the relevant 
properties are approximately constant. For example, 
a dendrite can be treated as a number of cylinders 
of various lengths and diameters, which simpli-
fies simulating dynamical processes within each 
compartment and combining them to simulate the 
entire neuron. These models can be computationally 
demanding.

Extended neuron models are able to address 
issues such as the filtering of inputs by a neuron’s 
dendritic net and the detailed dynamics of the 
action potential (neural impulse). For example, 
dendrites have both electrical resistance and capaci-
tance, which depends on their diameter and other 
physical parameters. This causes dendrites to act 
as low-pass filters, which smooth and extend the 
neural impulses received by the dendrites, which 
in turn affects the way these signals combine in the 
neuron soma (cell body) to generate action poten-
tials (Branco, 2011). These models can address 
the effect on neuron response of the location and 
timing of neural inputs and the ability of dendritic 
nets to adapt to match particular input signals 
( MacLennan, 1994).

Spiking Neuron Models
Spiking neuron models seek a higher level of 
abstraction than extended models by ignoring the 
detailed spatial structure of the neuron and the 

detailed temporal structure of the action potential 
while retaining the temporal relation between action 
potentials. These models often incorporate a leaky 
integrate-and-fire neuron model, which means that 
arriving impulses each increment somatic mem-
brane potential, which decays in time. If enough 
impulses arrive in a short enough time to drive the 
membrane potential over a firing threshold, then the 
neuron generates an impulse and resets its mem-
brane potential to its resting level.

One advantage of spiking neuron models is that 
discrete event simulation methods can be used with 
them. Rather than simulating the network at every 
time step, these methods update the simulation state 
only when certain discrete events happen, process-
ing these events successively in time. Therefore, 
the generation of an impulse is treated as a discrete 
event that occurs at a specific time and triggers later 
events at specific times, such as the arrival of the 
impulse at the soma. This later event triggers the 
computation of the membrane potential at that time, 
incorporating the arriving impulse, its compari-
son with the threshold, and possible generation of 
another impulse. This compromise between biologi-
cal accuracy and computational efficiency has per-
mitted some large-scale brain simulations.

Spiking neuron models permit addressing 
phase relations among action potentials, which 
may be important in primary visual cortex (Mon-
temurro, Rasch, Murayama, Logothetis, & Panzeri, 
2008) and coordinating neural communication 
(Fries, 2005).

Rate-Based Neuron Models
The remainder of this chapter focuses on rate-based 
models, which abstract away from the detailed tim-
ing of the neural impulses in favor of the instanta-
neous impulse rate, which seems to bear most of the 
information in many neural systems. One argument 
in favor of these models is that there are many sto-
chastic factors in the generation of an action poten-
tial and in its transmission across a synapse and that 
these factors blur or obliterate any information that 
could be conveyed by temporal relations among 
impulses. Others have argued that the most appro-
priate unit for analyzing neural information repre-
sentation and processing is the cortical minicolumn, 
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which consists of about 100 neurons (in humans). 
From this perspective, we should be looking at the 
inputs and outputs of minicolumns rather than 
individual neurons. Therefore, in discussing rate-
based models, I refer to neural units and leave it 
open whether these are individual neurons or small 
assemblies, such as minicolumns, of interconnected 
neurons with similar inputs and outputs. 

 Because the fi ring rate of a biological neuron can 
vary continuously within limits, it is common in 
rate-based models to treat the activity of a unit as 
a bounded real number. The specifi c bounds used 
can vary depending on the neural network model, 
the neural systems being modeled, or simply math-
ematical or computational convenience. For exam-
ple, activities can be constrained to real numbers 
between 0 and 1, with 0 representing the minimum 
rate and 1 the maximum rate. Or they can be con-
strained to real numbers between −1 and 1, with 0 
representing the resting impulse rate. In some cases, 
we are concerned with only two levels of activity, 
low and high, which can be represented as binary 
activities, 0 and 1. Sometimes it is mathematically 
more convenient to represent low and high activity 
with bipolar values: −1 and +1. 

 The activity of a unit can be analyzed into two 
components, its net input and its activation func-
tion. The net input of a unit is the total stimulation 
it is receiving at a time, and it is analogous to the 
somatic membrane potential of a neuron. Excitation 
is modeled by positive numbers and inhibition by 
negative numbers. The activation function translates 
the net input into the output activity range of the 
neuron; this mapping is monotonic, that is, higher 
net inputs lead to higher activities and vice versa. If 
the unit is binary or bipolar, then the activation is 
a threshold or step function: For inputs above the 
threshold, it produces 1; for those below the thresh-
old, it produces 0 (binary) or −1 (bipolar). For real-
valued units, the activation function is a continuous 
“squashing function” that squeezes the output 
values into the required range ([0, 1] or [−1, +1]). 
Sometimes the activation function is omitted (i.e., it 
is an identity function), in which case the output of 
the neuron is its net input. 

 Biological neurons are connected by synapses, 
which modulate the infl uence of one neuron on 

another. They are excitatory if they tend to move the 
membrane potential closer to its fi ring threshold, 
and inhibitory if they have the opposite tendency. In 
rate-based models, we have the analogous concept 
of the connection weight from one unit to another. 
It can be interpreted as the average infl uence (excit-
atory or inhibitory) of the synapses connecting 
neurons corresponding to the fi rst unit to those cor-
responding to the second. Therefore, weights are 
represented by real numbers, which may be positive 
(relatively more excitatory) or negative (relatively 
more inhibitory). 

 Suppose that  x 1 , x  2 , . . .,  x n   are the activities of 
n  units providing inputs to some unit of inter-
est. Suppose also that  w 1 , w  2 , . . .,  w n   are the 
corresponding connection weights from those 
units (see  Figure 28.1 ). Then the simplest model 
of the net input  y  is the weighted sum of these 
activities:

∑= + + + =
=

y w x w x w x w x .n n j jj

n

1 1 2 2 1


If  f  is the activation function, then  f ( y ) would be the 
activity of the unit.    

 Neurons differ in the amount of excitation they 
require to raise their fi ring rates and in the amount 
of inhibition to decrease it. This can be modeled 

 FIGURE 28.1.     Typical artifi cial neural unit. The  x j   
are the activities of other neural units providing input 
to the large unit, and the  w j   are the connection weights 
into this neuron. The weighted sum  y  is passed option-
ally through a nonlinear activation function  f  to yield 
the activity  f(y)  of the neural unit. The  x  0  input is a 
constant 1, which applies a bias  b  to the sum, which is 
equivalent to a threshold θ.   
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with neural units that have the same activation 
function but different thresholds. By subtracting 
the threshold θ  from the net input, − θf y( ), the 
unit’s response is made relative to the threshold. 
Sometimes we talk in terms of a bias b added to the 
net input rather than a threshold subtracted, for 
example, +f y b( ); it is just a difference in sign. For 
mathematical convenience, we frequently treat the 
bias as a “0th weight” that is wired to a unit provid-
ing a constant 1 input; that is, set =x 10 , = −θw0

,  
and let

∑=
=

y w x .j jj

n

0

It might seem counterintuitive at first, but it is 
convenient to treat the activities of groups of units 
and their weights as vectors in n-dimensional space. 
This permits geometrical visualizations that can 
illuminate neural information representation and 
processing. It is customary to use n-dimensional 
column vectors ( ×n 1  matrices). Therefore, the 
connection weights to a unit can be treated as its 
weight vector w = (w1, w2, . . ., wn)T and its inputs 
as an input activity vector x = (x1, x2, . . ., xn)T. Then 
the net input can be written as an inner product 
between the (transposed) weight vector and the 
input vector,

∑= =
=

y w xw x .j jj

nT

0

(This is also known as a scalar product or dot product 
and written ⋅w x . Note that the product of a × n1  

matrix wT  and a ×n 1  matrix x is a ×1 1  matrix, or 

scalar.)
If we think of these vectors as arrows pointing 

into n-dimensional space, then their length (or 

Euclidean norm) is given by =x x xT , which is 
just the square root of the sum of the squares of 
the components of x. If we think of the weight and 
input vectors as arrows pointing into n-dimensional 
space, then we can express the inner product 
(and hence the net input) in terms of the angle ϕ  
between the vectors: = = ⋅ ⋅ ϕy w x w x cosT .

Because the cosine takes on its maximum value 
when ϕ = 0, this formula tells us that (other things 
being equal), the unit’s net input will be maximized 

when the weight and input vectors are aligned. It 
also tells us that the net input will be negative to 
the extent that the weight and input vectors point 
in opposite directions (90 180< ϕ ≤ ). If they are 
orthogonal (at right angles), then when the cosine 
is 0, the net input is 0; the significance of this fact is 
addressed later. This geometric interpretation shows 
us that the weight vector is a sort of pattern and that 
the net input is greater to the extent that the input 
matches this pattern. Thus, these units (artificial 
neurons) act as simple pattern detectors.

Typically, we are interested in neural networks 
in which groups of units provide inputs to other 
groups of units. Therefore, let x = (x1, x2, . . ., xn)T 
be the activities of the sending units and y = (y1, 
y2, . . ., ym)T be the net inputs of the receiving units. 
Moreover, let wij  be the weight of the connection to 
unit i from unit j. We have seen that the net inputs 
are expressed

∑=
=

y W x ,i ijj

n

j1

which can be expressed compactly as the product 
of a weight matrix ( )= WW ij

 and the input vec-
tor x, that is, =y Wx . Expressing neural networks 
in terms of vectors and matrices allows us to apply 
many powerful mathematical tools, to use comput-
ers optimized for these operations, and to under-
stand neural information processing in geometric 
terms.

ADAPTATION AND LEARNING

Neuroplasticity is a fundamental characteristic of 
nervous systems that allows animals to change their 
behavior as a result of experience. This section 
explains several basic neural network adaptation 
and learning mechanisms that illuminate both ani-
mal and machine learning.

Learning Paradigms
There are three primary means by which artificial 
neural nets adapt to perform some function,  
all inspired by neurological models: supervised  
(or error-driven) learning, reinforcement learning, 
and unsupervised (or self-organized) learning.
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In supervised or error-driven learning, a 
neural network is trained to perform some func-
tion by presenting it with a sequence of desired 
input–output pairs. The network compares its 
actual behavior for a given input with the desired 
(or target) behavior for that input and then uses the 
difference between the two (the error) to guide the 
modification of its weights to decrease the error. 
This process can be compared with learning a 
motor skill, in which perceived errors in execution 
guide adaptation to decrease the error. Normally, 
in error-driven or supervised learning, the network 
is expected to be able to generalize in a useful way 
to novel inputs.

In reinforcement learning, a neural network is 
trained to perform some function by presenting 
it with a series of inputs, to which it responds. In 
each case, it is told whether the response was cor-
rect or not, but if it responded incorrectly, it is not 
told the correct response. Therefore, there is no 
explicit error signal to guide learning. This is analo-
gous to reinforcement learning in animals, in which 
responses elicit a punishing or a rewarding stimulus 
(or, rather, an unexpected negative or positive stim-
ulus). Again, the network is expected to generalize 
reasonably to novel inputs.

In unsupervised or self-organized learning, a 
neural network adapts its behavior without any 
explicit reinforcement or target information. There-
fore, it is responding to the statistics of its input, for 
example by clustering inputs into salient groups. 
Such networks can model the self-organization 
of low-level feature detectors in primary sensory 
cortices, but also higher level representations of 
statistical structure (see the “Deep Belief Networks” 
section later in this chapter). I consider several 
examples of each learning paradigm.

Hebbian Learning
The most basic rule of neural network learning was 
proposed by Donald O. Hebb:

When an axon of cell A is near enough to 
excite a cell B and repeatedly or persis-
tently takes part in firing it, some growth 
process or metabolic change takes place 

in one or both cells such that A’s effi-
ciency, as one of the cells firing B, is 
increased. (Hebb, 1949/2002, p. 62)

We now know that the process is more complicated 
than this, but Hebb’s rule remains fundamental to 
neural network learning. One of the important dis-
coveries was spike-timing-dependent plasticity, by 
which a synapse strengthens if the receiving neu-
ron fires soon after the sending neuron (long-term 
potentiation) but weakens if it fires shortly before 
the sender (long-term depression; Bi & Poo, 1998). 
The effect is to strengthen synapses that are likely to 
have a causal role in firing the receiving neuron  
(see Chapter 25, this volume).

In the context of rate-based models, the weight 
connecting two neural units increases if their 
short-term joint activity is above a threshold and 
weakens it if it below the threshold. The threshold 
adapts over a longer period to balance the activity 
and inactivity of the receiver. Learning rules of this 
kind include the Bienenstock, Cooper, and Munro 
(1982) model and the eXtended Contrastive Attrac-
tor Learning model (O’Reilly, Munakata, et al., 
2014), both of which are consistent with more 
detailed models (Urakubo, Honda, Froemke, & 
Kuroda, 2008).

A simple mathematical model of (supervised) 
Hebbian learning adjusts an interconnection 
weight based on the joint activity of the units it 
connects. This is expressed ∆ = ηw yx , where x 
is the activity of the sending unit, y is the activity 
of the receiving unit, and η is the learning rate. 
Therefore, the weight will increase if the neurons 
are simultaneously active ( >x y, 0 ) or simulta-
neously inactive ( <x y, 0 ). Conversely, it will 
decrease if their activities are inversely related 
(i.e., one more active and the other less active). 
Intuitively, over time, the weight will adapt to 
reflect the correlation (positive, negative, or zero) 
between the sending and receiving units.

We can extend the foregoing observations to the 
connections from a group of sending units with 
activities x1, . . ., xn to a group of receiving units with 
activities y1, . . ., ym (see Figure 28.2). The change in 
the weight Wij  to unit i from unit j is W y xij i j∆ = . 
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Therefore, the change in the weight matrix  ( )= WW ij
  

is given by the outer product  ∆ = ηW yxT . (Note that 

the product of an  ×m 1   matrix y by a  × n1   matrix 

 xT   is an  ×m n   matrix.) Therefore, the elements of W 

come to refl ect the correlation of activity between 
corresponding sending and receiving units.    

 Suppose that a sequence of  P  pairs of input–output 
patterns ( x  1,   y  1 ), ( x  2,   y  2 ), . . ., ( x P   ,   y P  ) are successively 
imprinted on a weight matrix that is initially 0. Then 
we have the outer product rule for computing a 
weight matrix,

∑= η
=

W y x .p pp

P T

1

Clearly,  Wij   will be proportional to the average 
value, over all the patterns, of the joint receiving and 
sending activities,  ∝W y xij i j

 , where the brackets 
denote the average. 

 If the mean activities of the units are 0 (i.e., 
= =x y 0i j

 ), then the weight matrix will approxi-
mate the covariance matrix of the activities of the 
receiving and sending units,  → =W yx y xcov( , )T  . 
Neural thresholds adapt to balance their average level 
of activity ( O’Reilly, Munakata, et al., 2014 ), so it is rea-
sonable to assume that their mean activity is zero. 

 The outer product rule implements a simple 
form of associative memory, known as a linear 
associator (see  Figure 28.2 ). (If thresholds or biases 
are included in the weight matrix, then it is more 
correct to call it an affi ne associator.) To see this, 

suppose that  xk   is one of the imprinted input pat-
terns. If the activity of the sending units is  xk  , 
then we can compute the activity of the receiving 
units by matrix multiplication (setting  η =1   for 
convenience):

∑ ∑ ( )=






=

= =

Wx y x x y x x .k p p
p

P

k p p k
p

P
T

1

T

1

  That is, the resulting activity will be superposition 
of the imprinted output patterns  y p  , each weighted 
by the inner product of the corresponding imprinted 
input pattern  xp   with the actual input pattern  xk

 . 
That is, the strength of  y p   in the result will be propor-
tional to the similarity of  xp   and  xk  . For convenience, 
suppose that the pattern vectors are normalized, 

= =x x x1 p p p

2
T  . Then we can separate the effect on 

the receiving units due to  xk   from that due to the other 
imprinted patterns:

∑ ( )= +
≠

Wx y y x x .k k p p k
p k

T

 This shows us that, under the conditions speci-
fi ed, the linear associator will retrieve the pattern  yk

associated with the input  xk  , possibly contaminated 
with crosstalk from the other patterns, which is rep-
resented by the summation. Retrieval will be perfect 
if  =x x 0p k

T   for  ≠p k  , that is, if the patterns are 
orthogonal. This condition may be easy to achieve 
in the high-dimensional spaces characteristic of 
biological neural networks (see the “Blessing of 
Dimensionality” section later in this chapter). 

 If the linear associator is presented with a 
pattern that has not been imprinted, then it will 
respond weakly, a result of the average cross-
talk between the input and the imprinted pat-
terns. Therefore, the linear associator can report 
whether a pattern is stored in the memory by 
responding strongly or whether it is novel by 
responding weakly. Because it keeps memory 
traces distinct, it is sometimes said to have separa-
tor dynamics, such as is characteristic of the den-
tate gyrus of the hippocampus ( O’Reilly, 
Bhattacharyya, Howard, & Ketz, 2014 ; see also 
Chapter 25, this volume). 

 FIGURE 28.2.     Linear associator. The input layer is 
fully connected to the output layer, which means that 
each input unit is connected to every output unit, but 
generally by different weights.  W ij   is the weight to output 
unit  i  from input unit  j . The activities  y i   of the output 
units are weighted sums of the input unit activities  x j  . In 
vector terms, y = Wx.   
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Sometimes separator dynamics is not what is 
required; rather, we want the linear associator to 
approximate some general input–output relation-
ship represented by a set of training pairs (x1, 
t1), (x2, t2), . . ., (xP, tP). For example, an animal 
might be learning some specific sensory–motor 
correspondence. In this case, the performance of 
the linear associator can be improved by an error-
driven learning algorithm called the delta rule. The 
idea is to adjust the weights in such as way as to 
minimize the sum of the differences between the 
target patterns and the corresponding retrieved 
patterns,

∑ −
=

t y ,p pp

P

1

where =y Wxp p . It is most convenient to think of 

the sum-of-squares error as a function of the weights,

∑( ) = −
=

E W t y .p pp

P

1

2

Then the weights can be changed in the direction of 
steepest descent of the error function, which is given 
by the negative gradient of the error with respect to 
the weights: ∆ = −η∇W E W( ) . When the math-
ematics is worked out, the learning algorithm takes 
a very simple form: ∆ = η −W t y x( )ij pi pi pj , or in 
matrix terms, ∆ = η −W t y x( )p p p

T . This rule adjusts 
the weights to make the actual outputs y p  closer to 
the corresponding targets tp  and leads to the best 
least-squares linear approximations Wxp  to the tp  
(i.e., linear regression). Adaptive processes such as 
the delta rule may implement error-driven learning 
in the cerebellum.

Back-Propagation Learning
The linear associator is limited in its computational 
abilities (linear approximations or linearly separable 
classes). Therefore, algorithms have been developed 
for supervised training of more complex, multilayer 
neural networks, in which each layer provides input 
to the next and neural units have nonlinear activa-
tion functions. The first, and still very popular, algo-
rithm is called back-propagation or the generalized 
delta rule; it is, in effect, the multilayer perceptron 

learning algorithm. This algorithm operates by 
propagating error estimates backward from the 
output layer, where the errors are measured, into 
earlier layers so that their weights can be adjusted. 
As with the delta rule, back-propagation is an 
example of a gradient (or steepest) descent learn-
ing algorithm. This means that partial derivatives 
of the error with respect to each of the individual 
weights are estimated, and these derivatives are used 
to adjust the weights in the direction of steepest 
descent. Backward propagation is required because 
the derivatives of later layers are needed to compute 
the derivatives of earlier layers. Although there is no 
evidence for back-propagation in biological neural 
networks, bidirectional connectivity between neural 
areas results in formally related learning processes 
(O’Reilly, Munakata, et al., 2014).

Competitive Learning
Competitive networks can implement self-orga-
nized adaptation. A typical competitive network 
has two layers: a first layer of feature detectors and 
second layer of mutually competitive units, cor-
responding, perhaps, to mutually inhibitory mini-
columns within a single cortical macrocolumn 
(see Figure 28.3). Let

∑( )=y f W xi ij jj

be the activity of a unit in the first layer, which 
reflects how well the input matches the pattern 
encoded in its weights. The first-layer units pro-
vide excitatory inputs to corresponding units in the 
second layer, which are self-exciting and mutually 
inhibitory. Therefore, whichever second-layer unit 
is most strongly activated will suppress the others 
and win the competition.

Adaptation occurs when the winning first-layer 
unit k adjusts its weights to more closely match the 
input that caused it to win the competition: 
∆ = η −W x W( )kj j kj . (In biological neurons, adapta-

tion could be triggered by backward propagation of 
the action potential into the dendritic tree.) Over 
time, units will divide the inputs into related clus-
ters, with each competitive unit capturing one 
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cluster and the unit’s weights moving to the center 
of that cluster. Therefore, competitive adaptation is 
a kind of unsupervised clustering algorithm. It allo-
cates neural units to represent its input space in a 
way that respects its statistics; in effect, the units 
compete to represent the input domain. This is one 
mechanism by which low-level feature detectors, 
such as orientation columns in primary visual cor-
tex, can self-organize. 

 I have described a winner-takes-all form of 
competition. By adjusting the parameters, a spe-
cifi c number of winners to each competition can 
be arranged (“ K  winners take all”), which is useful 
for self-organized sparse representations of input 
and is more biologically realistic (see the “Sparse 
Distributed Representation” section later in this 
chapter).   

 Radial Basis Function Networks 
 Radial basis function networks have consider-
able biological relevance ( Broomhead & Lowe, 
1988 ). They are two-layer networks with a layer 
of feature detectors followed by a layer that com-
putes a linear combination of their outputs. Each 
neural unit in the fi rst layer computes a radial 

basis function of the inputs, that is, a function that 
responds maximally to a particular input pattern, 
and responds progressively less for inputs increas-
ingly distant from this pattern. The usual artifi cial 
neuron model  =y f w x( )T   has this behavior and 
leads to a cosine-shaped tuning curve or receptive 
fi eld, such as observed in many sensory and motor 
systems (e.g.,  Georgopoulos, Kalaska, Caminiti, & 
Massey, 1982 ;  Salinas & Abbott, 1994 ). That 

 FIGURE 28.3.     Competitive neural network. A competitive 
neural network classifi es an input into one of several cat-
egories (four in this example). The fi rst layer of connection 
weights W implements feature detectors corresponding to 
the categories. The activities  y j   represent how well the input 
x matches each category. These units excite corresponding 
units  z i   in the competitive layer, which are self-exciting and 
mutually inhibitory. As a result, one unit wins the competi-
tion, going to its maximum activity, and the other units are 
completely inactive. Through proper choice of parameters, it 
is possible to have  K  winners among the competitive units, 
rather than just one.   

 FIGURE 28.4.     Example of cosine tuning curve. The 
horizontal axis represents the difference between the 
neuron’s actual input and its preferred input. The 
neuron exhibits maximal activity for its preferred 
input, and its activity falls off approximately as 
the cosine of the difference between its actual and 
preferred input.   
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is, if a neuron has a preferred input to which it 
responds, then its response to other inputs tends 
to fall off with the cosine of its difference from 
the preferred input (see  Figure 28.4 ). To perform 
adequately, the receptive fi elds of all the radial 
basis function units need to cover the input space 
adequately, which can be accomplished by com-
petitive learning and similar self-organized adap-
tive processes.    

 The second layer of the radial basis function 
net is a linear associator applied to the fi rst 
layer. The delta rule can be used for supervised 
training of the network to produce desired out-
puts. In effect, the fi rst layer rerepresents the 
input in another space in which the desired 
behavior has a good linear approximation. This 
is a rapid, Hebbian process, which is capable of 
approximating any input–output relationship 
( Haykin, 2008 ).   

 Attractor Networks 
 Attractor networks model processes that complete 
patterns and satisfy constraints; the simplest 
such network is the bipolar Hopfi eld network 
( Hopfi eld, 1982 ). It consists of  n  neural units, 
each of which is bidirectionally connected to 
all the others (see  Figure 28.5 ). That is, the 
connection weight from unit  i  to unit  j  is equal 
to that from  j  to  i ; that is, the weight matrix is 
symmetric ( =W Wij ji  ). However, there is no 
“self action,” that is, units do not provide inputs 

to themselves ( =W 0ii  ). The states of units are 
bipolar ( ∈ − +x { 1, 1}i  ). The units change state one 
at a time (typically in random order), and the new 
state  ′xi   of a unit is determined by applying a step 
function to its net input:

′ =
+ >
− <






x

y

y

1 if 0

1 if 0
,i

i

i

where  =y Wx  . If the net input is zero, it is conven-
tional to leave the state unchanged,  ′ =x xi i  , but it can 
also be treated like a positive or negative input, with-
out important differences. 

 The Hopfi eld network can be understood as 
a soft constraint satisfaction system. To see this, 
suppose that the units represent  n  interdependent 
yes–no (+1/−1) decisions and that the weights 
represent soft constraints between the decisions. 
That is, if a weight is positive, then it constrains 
the units it connects to make the same decision (to 
agree); if negative, to disagree. The magnitude of 
the weight represents the strength of the constraint, 
that is, the importance of satisfying it. Many cogni-
tive tasks can be understood as soft-constraint sat-
isfaction problems, including the inference of depth 
from binocular images, perceptual interpretation 
tasks, and memory retrieval. 

 The dynamics of the network causes a unit to 
change its state, if necessary, to satisfy the soft 
constraints, in effect decreasing the “tension” or 
“frustration” experienced by the unit. This idea can 
be made more precise. For a unit in state  xi   experi-
encing net input  yi  , we can quantify its tension by 
−x y / 2i i  . (The one-half factor is for mathematical 
convenience and simply changes the units of ten-
sion.) This quantity will be positive (high tension) 
if the unit and its input have opposite signs (are in 
disagreement), and it will be negative (low tension) 
if they have the same sign (are in agreement). Then 
the total tension or  energy  in the network is

∑= − = − = −E x y x y x Wx.i ii

1

2

1

2
T 1

2
T

Sometimes it is simpler to think in terms of the 
coherence or harmony of the network, which is sim-
ply the negative of its energy,  H =−E . 

 FIGURE 28.5.     Hopfi eld network. In this (unrealisti-
cally simple) example, the network has fi ve neural 
units, which are bidirectionally connected ( W ij  = W ji  ) 
with no self action ( W ii  = 0 ).   
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It is easy to show that the energy of a network 
cannot increase ( ∆ ≤E 0 ) and, in fact, that it will 

decrease with each state change. That is, each state 
change improves coherence by better satisfying all 
the constraints. In other words, the individual units 
are making microdecisions that increase the overall 
coherence of the network state (a macrodecision). 
Because energy cannot decrease forever, the network 
state must eventually stabilize in a local energy min-
imum (state of maximum local coherence). How-
ever, this need not be a global minimum energy 
state (absolute maximum coherence). These stable 
patterns of activity are called attractors, and there-
fore each attractor is surrounded by a basin of 
attraction, that is, a set of similar patterns that will 
settle into that attractor.

The Hopfield network can function as an associa-
tive memory. A pattern x can be imprinted on the 
memory by Hebbian learning, ∆ = ηW xxT . A series 
of patterns can be imprinted sequentially, or as a 
batch, using the sum-of-outer-products rule, 

∑=
=

W x xp pp

P T

1
. The weights Wij  encode the corre-

lated activity of the units i and j over all the imprinted 
patterns. If the number of imprints <<P n / 20 , then 
the imprinted patterns will be global energy minima 
and therefore attractors with relatively large basins of 
attraction (Amit, 1989).

If an imprinted Hopfield network is initialized 
to a pattern of activity, then its activity will evolve 
to the attractor in whose basin it was initialized. 
Therefore, the imprinted pattern acts as a proto-
type that represents all the patterns in its basin, 
with each basin corresponding to a distinct cat-
egory. As a consequence, a Hopfield network can 
be used for pattern restoration; that is, if initialized 
to a degraded version of an imprinted pattern, it 
will evolve to the undegraded original. Missing 
or incorrect parts of the pattern are reconstructed 
from their correlations with other parts as reflected 
in the weights. More generally, the Hopfield mem-
ory can be used for pattern completion, the resto-
ration of a whole pattern from some of its parts. 
Therefore, it can also be used for pattern associa-
tion by imprinting it with composite patterns, 
because if it is initialized to a part of a composite 
pattern, it will evolve to the complete pattern. 

Attractor dynamics of this sort may be  
operating in area CA3 of the hippocampus, allow-
ing a cue to settle into a complete episodic memory 
trace (see Chapter 25, this volume and Volume 2, 
Chapter 11, this handbook), which is then passed  
to CA1 (Knierim & Zhang, 2012; O’Reilly, Bhat-
tacharyya, et al., 2014). Attractor networks have 
also been applied to modeling grid, place, and 
head-direction cells in the rat spatial navigation 
limbic system (Knierim & Zhang, 2012).

Imprinting patterns on a Hopfield network 
generates undesirable spurious attractors, which 
are linear combinations of the imprinted patterns. 
They can interfere with its operation because they 
have their own basins of attraction, which steal 
from the intended basins and therefore decrease 
the network’s ability to complete or associate 
patterns. If the load factor, α = P n/ , on the 

memory is kept sufficiently low ( α << 0.05 ), then 

the spurious attractors will have shallower basins 
(higher energy) than the imprinted patterns and be 
less likely to interfere.

Operation of the Hopfield network can be 
improved by introducing a certain amount of 
indeterminacy into its operation: the stochastic 
Hopfield network. Instead of a unit’s input abso-
lutely determining its future state, it determines 
it probabilistically. That is, more strongly positive 
net inputs will make it more likely to go into the 
+1 state and more strongly negative inputs will 
make the −1 state more likely. This can be accom-
plished by “squashing” the net input y into the 
range [0, 1] so that it can be used as a probability, 
σ y T(2 / ), where σ = + −u u( ) 1 /[1 exp( )]  is the 
logistic sigmoid function. This function has the 
value ½ at y = 0, approaches 1 as y becomes more 
positive, and approaches 0 as y becomes more neg-
ative. Thus, it can be used as the probability for a 
unit changing to the +1 state. The T parameter, 
which is called pseudo-temperature or computa-
tional temperature, controls the degree of random 
behavior. At T = 0, the behavior is completely 
deterministic, as before. At high T values, behavior 
is almost completely random, that is, activity has a 
50–50 chance of being +1 or −1, regardless of the 
unit’s input.
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 Intuitively, a higher pseudotemperature makes it 
more likely that a unit will make the “wrong” micro-
decision (go against its net input) and thus climb a 
little up the energy surface. This gives the network 
some possibility of climbing out of the basins of spu-
rious attractors and fi nding its way into the larger, 
deeper basin of an imprinted pattern. The optimi-
zation process called  simulated annealing  starts at 
a high computational temperature, thus sampling 
the solution space in a relatively unbiased manner, 
and then gradually decreases the temperature, freez-
ing the state into a global minimum with very high 
probability ( Kirkpatrick, Gelatt, & 
Vecchi, 1983 ). A similar, gradual decrease of 
pseudo-temperature improves Hopfi eld memory 
retrieval. Stochastic behavior of this kind is to be 
expected in biological neural networks.   

 Deep Belief Networks 
 The Restricted Boltzmann Machine (RBM) is a 
neural network for the unsupervised discovery of 
an internal representation or model of some input 
domain ( Hinton, 2010 ). A useful representation 
captures salient aspects of the statistics of the 
represented patterns. Therefore, one way to test 
and improve a representation is to see how well it 
does at reproducing the input statistics from the 
representation. An RBM has two groups of neu-
ral units,  m  for the internal representation (often 
called the  hidden units ) and  n  for the input to be 
represented (often called the  visible units ; see  Fig-
ure 28.6 ). Each unit in one group is bidirectionally 
connected to every unit in the other group. That 
is,  Wij   represents the connection weight to hid-
den unit  i  from input unit  j  and also the weight to 

input unit  j  from hidden unit  i . (There are no con-
nections among the input units or among the hid-
den units.) In addition, each unit has a bias, which 
is treated as a 0th weight connected to a constant 
1 unit. The weights are initialized to small random 
values.    

 In the following, we use  x j   for the activity of an 
input unit and  yi   for the activity of a hidden unit. 
In the simplest RBM, the neurons are binary valued 
( ∈x y, {0,1}j i  ), representing low or high levels of 
activity. The units are stochastic, as in the stochastic 
Hopfi eld network. 

 Self-organization proceeds as follows. As patterns 
of activity develop over the input units, they stimu-
late the hidden units, with a hidden unit’s net input 
being given by

∑( )= σp W x ,i ij jj

where σ is the logistic sigmoid function, 
σ = + −u u( ) 1 /[1 exp( )]  . The hidden unit will 
become active ( =y 1i  ) with probability  pi   and will 
be inactive otherwise. Therefore, the input pattern 
probabilistically generates a pattern of activity  yi   
over the hidden units, which is a potential represen-
tation of the input. The activity of the hidden units 
then generates a reciprocal pattern of activity  ′x j   on 
the input units, which we can think of as an imag-
ined input reconstructed from the internal represen-
tation. The probability that  ′ =x 1j   is given by

∑( )= σq W y .j ij ii

The reconstructed input then generates another 
internal representation in which  ′ =y 1i   with 

probability

 ∑( )′ = σ ′p W x .i ij jj
  

 The goal of the adaptive process is for the 
model statistics to agree with the input statistics, 
in particular for the model-driven correlations 
 ′ ′y xi j   to agree with the input-driven correlations 
 y xi j

 . This is accomplished by updating the 
weights to bring the model closer to the correct 
statistics: 

 FIGURE 28.6.     Restricted Boltzmann machine. The vis-
ible units  x j   are bidirectionally connected ( W ij  = W ji  ) to 
the hidden units  y j  , with no connections among the visible 
units or among the hidden units.   
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( )∆ = η − ′ ′W y x y xij i j i j  . Generally, several 
cycles of input-driven and model-driven compari-
sons contribute to the averages (i.e., the weights 
adapt slowly). Self-organization stabilizes when the 
model-driven statistics agree with the input-driven 
statistics. A process such as this may be occurring in 
the bidirectional connections between the entorhi-
nal cortex and CA1 in the hippocampus, since CA1 
is developing a distinct memory trace by which it 
can reproduce a pattern of activity in entorhinal cor-
tex. Theta waves may clock the alternation between 
input- and model-driven phases ( O’Reilly, 
Bhattacharyya, et al., 2014 ). 

 Deep belief networks, which are inspired by the 
hierarchies of representations in mammalian sensory 
systems, have been successful in many application 
areas ( Hinton, Osindero, & Teh, 2006 ). These are 
networks with multiple hidden layers between the 
input and output layers, which represent the input 
at successively more abstract, but task-relevant, lev-
els (see  Figure 28.7 ). RBM training is used at each 
level to develop the representations. For example, 
suppose a network has an input layer  I , hidden 
layers  H1 , . . .,  H N , and output layer  O . Inputs are 
applied to  I,  and RBM training is applied to  I  and  H1

to generate a model in their interconnecting weights 
and a higher order representation in  H1  . Next, inputs 
are applied and passed through to  H1   and then to  H2  . 
RBM training is applied, treating  H1   as the input layer 
and  H2   as the hidden layer, to generate a higher order 
representation in  H2  . This process is continued until 
all the hidden layers are trained. Supervised train-
ing can be used to adjust the weights from the last 
hidden layer to the output layer to accomplish the 
network’s purpose. 

 Deep belief network training can be used in con-
junction with other deep (i.e., multilayer) networks. 
For example, back-propagation training of a deep 
network can be slow if all the weights are initial-
ized randomly. The error has to propagate backward 
through many layers, its weights might have far 
to go in “weight space,” and there are often many 
equally good sets of weights in different directions, 
so the network might have trouble committing to 
one direction in the early stages of training. For this 
reason, it can be advantageous to use deep belief 
network training to initialize the weights, which are 
then fi ne-tuned by back-propagation.   

 Learning Generals and Particulars 
 Two broad, complementary categories of adaptation 
are distinguished on the basis of their functions 
and dynamical properties ( O’Reilly, Bhattacharyya, 
et al., 2014 ). 

 The fi rst adaptive mechanism learns generalities 
and provides the basis for semantic memory. This 
is an integrative process of gradually learning sta-
tistical regularities in experience. Some of the pro-
cesses are self-organized, such as the development 
of visual feature detectors in early vision areas. 
Neurons competitively organize to detect salient 
low-level statistical regularities in the environment. 
Higher order neurons adapt to regularities in the 
activities of lower level ones, leading to representa-
tions at successively higher levels of abstraction. 
These are slow, gradual processes to acquire sta-
tistically representative samples. These adaptive 
processes are modeled by neural networks such 
as competitive networks and reduced Boltzmann 
machines (see the “Competitive Learning” and 

 FIGURE 28.7.     Deep belief network. A deep belief network is 
a cascade of restricted Boltzmann machines, which are trained 
in succession from the input layer I to the output layer O.   
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“Deep Belief Networks” sections earlier in this 
chapter).

Continuing experience, including positive and 
negative reinforcement, modifies the patterns of 
interconnection developed through self-organiza-
tion. Sometimes more specific information than 
reinforcement is available for error correction, 
which allows directed adaptation by error-driven 
processes analogous (though not identical) to back-
propagation (O’Reilly, Munakata, et al., 2014). 
These are the adaptive processes that allow us to 
refine perceptual and motor skills over time. Self-
organized and error-driven learning of generalities 
seems to be the principal adaptive mechanism of 
the neocortex.

The second adaptive mechanism is memory for 
particulars, including episodic (or episodic-like) 
memory (memory of individual events), and mem-
ory for individual objects and places (see Volume 2, 
Chapters 11 and 21, this handbook). The principal 
characteristic of these separator memories is that 
individual memory traces are distinct and nonin-
terfering; they are well separated in the space of 
possible traces. An additional characteristic is that 
these traces are imprinted quickly, often after only 
a single exposure, in contrast to semantic memory, 
which adapts gradually. We have seen that approxi-
mately orthogonal vectors have the characteristic 
of being distinct and noninterfering and that they 
can be imprinted quickly by Hebbian mechanisms. 
Moreover, because particulars differ from each other 
in many specifics, their representations are quite 
random and therefore approximately orthogonal 
(see the “Blessing of Dimensionality” section later in 
this chapter). Memory for particulars seems to be a 
principal function of the hippocampus (see  
Chapter 25, this volume and Volume 2, Chapter 21, 
this handbook).

Because of their distance, memory traces in a 
separator memory can have large basins of attrac-
tion, which means these memories can accomplish 
pattern completion. This is important for episodic 
memory, for example, because it means that a cue 
that activates part of a trace will allow the memory 
state to converge to the complete trace (i.e., allow 
the memory to be recalled).

A memory for particular items is capable of 
encoding quite arbitrary sequences of discrete states. 
Suppose that e1, e2, . . ., eN is a sequence of (approxi-
mately orthogonal) neural state vectors represent-
ing distinct items (e.g., events, locations, or specific 
motor actions). Then the sequence can be encoded 
by associating each vector with its successor by  
Hebbian learning, for example,

∑ +=

−
e e .k kk

N

1
T

1

1

If the items repeat in the sequence, then they can 
be encoded in pairs or larger subsequences. That is, 
the encoded pair −e e( , )k k1  associates with the pair 

+e e( , )k k 1 , and so forth (Kanerva, 2009). The cere-

bellum may use a mechanism such as this to gener-
ate complex motor sequences. Error-driven 
learning can refine the timing and component 
actions of such sequences.

REPRESENTATION

A central issue in computing is how information is 
represented in memory. Similarly, the representa-
tion of information in nervous systems is critical 
to their ability to respond effectively in real time. 
Therefore, artificial neural network models are 
both inspired by neural representations in brains 
and in turn provide models for suggesting and test-
ing hypotheses about natural neural information 
processing.

Coarse Coding
Neurons in the brain are generally quite broadly 
tuned; that is, although they respond maximally to 
certain input patterns, their response falls off gradu-
ally as the input diverges from this optimal input. 
Cosine-shaped tuning curves are often observed, 
which is to be expected if neuron assemblies are 
computing an inner product between their synaptic 
weight vectors and their inputs (see the “Rate-Based 
Neuron Models” section earlier in this chapter).  
As a consequence, a specific stimulus value is repre-
sented by activity in a large number of neural units, 
which individually do not determine the value  
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precisely, but collectively do. This is called  
coarse coding.

Sparse Distributed Representation
Moreover, mammalian brains seem to make 
extensive use of sparse distributed representa-
tions. They are distributed in that a stimulus may 
lead to widely scattered activity in a cortical area; 
information is not in general represented by the 
activity of one or a few neurons. However, high 
levels of inhibitory competition lead to repre-
sentations that are sparse in that a stimulus acti-
vates a relatively small percentage of the neurons 
(15%–25%: O’Reilly, Munakata, et al., 2014). 
Because the number of neurons is large, there 
tends to be little overlap in activity for unrelated 
patterns; this is especially the case if individual 
neurons are computing essentially random con-
junctions between the neurons providing their 
inputs. Random vectors in these high-dimensional 
spaces are approximately orthogonal (see the 
“Blessing of Dimensionality” section later in this 
chapter).

Although single-cell neural recordings can 
exhibit high specificity, such as responding to a 
specific person (e.g., Quiroga, Reddy, Kreiman, 
Koch, & Fried, 2005), this does not necessarily 
imply that such specific stimuli are represented by 
single neurons (so-called “grandmother cells”).  
On one hand, many other neurons are activated 
besides those being recorded. On the other hand, 
such recordings demonstrate specificity only among 
the stimuli presented, which for complex stimuli 
(such as people’s faces) can represent only a small 
sample of possible stimuli.

Cortical Maps
Topographic maps are frequently used to represent 
information in brains. In these maps, dimensions 
of a sensory input space or a motor output space 
are systematically mapped to neural locations, so 
that nearby neurons represent nearby points in 
these spaces. For example, in retinotopic maps 
nearby neurons respond to nearby locations on the 
retina. In tonotopic maps, nearby auditory neu-
rons respond to similar pitches, and neurons in 

somatotopic maps are organized according to bodily 
location. Topographic organization seems to be one 
of the principal means of information representation 
in nervous systems.

In contrast, in the neural networks discussed 
earlier in this chapter, the neural units have no sig-
nificant spatial relations. In some networks, such as 
Hopfield networks, every unit is connected to every 
other unit (although the strength of connections 
varies and can in fact be 0, which is equivalent to no 
connection). In others, such as back-propagation 
and other deep networks, each unit in one layer is 
connected to every unit in the next layer. In general, 
there is no defined spatial relation among the neu-
rons in any one layer.

There are, however, some neural networks that 
make use of the spatial organization of the units. By 
analogy with retinotopic maps in the brain, these net-
works are often applied to image processing, because 
it is usually significant if units are responding to 
nearby regions in an image. For example, a convo-
lutional network applies the same transformation at 
every point in a two-dimensional image and produces 
a two-dimensional map of the results. Thus, by anal-
ogy with the retina, a convolutional network might 
apply an edge-detecting kernel at each point of an 
image to produce an image with enhanced edges. In 
contrast, a Gaussian kernel would blur the image. 
Convolutional neural networks are a way of extract-
ing features from every location of an image while 
retaining their spatial relationships. Let the matrix 
K represent the kernel, where Kd e,  is the weight 
applied at a displacement (d,e) from the central point 
where the kernel is applied. Then a convolutional 
neural network applied to an image I computes an 
image J by

∑= + +J K I .x y d e x d y ed e, , ,,

Convolutional networks and other topographi-
cally organized neural networks can be hard wired, 
but they can also self-organize by mechanisms 
analogous to developmental processes in the brain. 
For example, a self-organized feature map can be 
implemented by combining a competitive mecha-
nism with spatially localized learning (Kohonen, 

BK-APA-HCM_V1-160213-Chp28.indd   15 18/08/16   7:20 PM



UNCORRECTED PROOFS ©
 A

MERIC
AN PSYCHOLOGIC

AL A
SSOCIA

TIO
N

Bruce J. MacLennan

16

1982). When a unit wins the competition and its 
weights adapt, spatially nearby units will also adapt, 
but to a lesser degree. The result will be that the 
competitive units self-organize into a map in which 
nearby units respond to nearby points in the input 
space (as determined by the distance measure). The 
weights can be further tuned by supervised learning, 
if necessary.

Nonlinear Computation in  
Topographic Maps
Topographic maps permit the computation of arbi-
trary transformations, subject to the resolution of 
the map (i.e., the number of neurons in it). To illus-
trate the process, begin with an unrealistically sim-
ple example. Suppose that a neural network needs to 
compute a function =v F u( )k k  for a finite number 
of possible inputs u1, . . ., uN. If a single neuron in 
the input area responds to each possible input, then 
that neuron can project to a single neuron in the 
output area representing the corresponding output. 
Mathematically, let uk  be a vector of neural activi-
ties in which only the neuron representing uk  is 
active and likewise let vk  be a vector in which only 
the neuron representing vk  is active. Then the con-
nection weights implementing F are computed by 
the sum of outer products

∑=
=

W v u ,j jj

N T

1

and we have =v Wuk k ; this works because the  
vectors uk  are orthogonal.

More realistically, as in a radial basis function 
network, neurons are broadly tuned, and therefore 
a neuron will respond to a range of inputs, some 
more strongly, some less. As a consequence, a par-
ticular input will be represented by a population 
code, with individual neurons responding in accor-
dance with how closely they are tuned to the input. 
Therefore, a particular input u will generate a pat-
tern of activity x in which each xk  represents how 

strongly unit k responds to u, and x will be a 
weighted linear combination of the unit vectors:

∑=
=
xx u .k kk

N

1

These weights will be passed through the linear 
associator and will weight the corresponding  
output values:

x xWx v u u v .j j
j

N

k k
k

N

j j
j

N
T

1 1 1
∑ ∑ ∑=













=
= = =

More generally, because the transformation is 
represented by the pattern of input–output connec-
tions, the activity of the neurons can represent  
pragmatic factors, such as the importance, urgency, 
or reliability of the input information, which is  
then transferred to the output representation 
(MacLennan, 1999).

BLESSING OF DIMENSIONALITY

Richard Bellman (1961) coined term the “curse of 
dimensionality” to refer to the computational prob-
lems arising from the exponential increase in the 
volume of space as the dimension of data increases. 
In the context of neural networks, more neural 
units mean more weights to be adjusted, and there-
fore slower learning. However, there is a comple-
mentary “blessing of dimensionality” (Donoho, 
2000) in that certain things become easier in the 
very-high-dimensional spaces typical of biological 
nervous systems, which have been called hyperdi-
mensional spaces (Kanerva, 2009). Hyperdimen-
sional spaces have some unintuitive properties, to 
which I turn.

An unusual and paradoxical property of high-
dimensional spaces is that as the dimension 
increases, an increasingly large fraction of the  
volume of an object is concentrated near its sur-
face. Consider the example of an n-dimensional 
cube of width d; its volume is dn . Next consider a 

shell of thickness ε/2 within this cube; the volume 
of the cube within the shell is d( )n− ε . The frac-

tion of the cube’s volume that is inside the shell 
itself is then

d d

d
d

( )
1 (1 / ) ,

n n

n
n− − ε = − − ε

which approaches 1 as n increases; that is, the vol-
ume is concentrated in the shell, namely, within å/2 
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of the surface. Therefore, if we pick a random point 
uniformly within the volume, it is very likely to be 
near to the surface, and that probability increases with 
dimension. This property is not peculiar to n-dimen-
sional cubes but also applies to n-dimensional  
spheres and other shapes.

The significance of the foregoing observations 
for neural computation is that if a vector is drawn 
randomly from a bounded, high-dimensional vol-
ume, then it is very likely to be near the surface 
of that volume. For example, if weight vectors are 
bounded in magnitude (e.g., w 1≤ ), which is a 
reasonable assumption, then for large n, randomly 
chosen weight vectors will be approximately nor-
malized (e.g., w 1≈ ). Many neural network algo-
rithms work better with approximately normalized 
vectors, which is therefore a reasonable assump-
tion when the number of neurons is large and the 
vectors are random. This is one of the blessings of 
dimensionality.

We have seen that memory traces are less likely 
to interfere with each other if they are nearly 
orthogonal, that is, their inner products are small. 
However, with increasing dimension randomly 
chosen vectors are increasingly likely to be nearly 
orthogonal. I illustrate this in the case of bipolar 
vectors, but it is true more generally. Let u and v be 
two n-dimensional random bipolar vectors. Then 
their inner product

u vu v i ii

nT

1∑=
=

is a sum of n random 1s± . This is like tossing a fair 

coin n times; the result is a binomial distribution 
with 0 mean and variance n2σ = . For large n, this 

is closely approximated by a Gaussian distribution 
with the same mean and variance. Because, for 
example, with 99.99% probability, the inner product 
will be within 4σ  of the mean, with this probability 

we have < nu v 4T , that is, ϕ < nu v cos 4 . 
Because for bipolar vectors = = nu v , we con-
clude that with 99.99% probability the cosine of the 
angle between the vectors ϕ  is less than n4/ , 
which decreases with increasing n. For example, 
with =n 10,000  (a small number of neurons in bio-
logical terms), the cosine will be less than 0.04 with 

99.99% probability. In general terms, the probability 
that the cosine is less than ε  is given by

( ){ }ϕ < ε = ε

≈ −ε + − ε

n

n n

Pr cos erfc 2

exp( /2) exp( 2 /3)1
6

2 1
2

2

(using the approximation to erfc from Chiani, 
Dardari, & Simon, 2003). Therefore, the probability 
of the vectors deviating from orthogonality by more 
than ε  decreases exponentially with n, or, equiva-

lently, the probability of any required degree of 
approximate orthogonality increases exponentially 
with dimension.

The import of the foregoing is that neural sys-
tems whose function requires keeping memory 
traces distinct and noninterfering (such as episodic 
memory) can do this by, in effect, assigning random 
codes in a hyperdimensional space. Random codes 
can result from neural representations composed of 
many random conjunctions of features. Such traces 
can be imprinted quickly by Hebbian learning and 
have large basins of attraction. Therefore, presenta-
tion of a partial trace can cue retrieval of the entire 
trace by pattern completion.

CONCLUSIONS

Biological neural networks can be modeled in vari-
ous ways depending on the sorts of questions the 
models are intended to answer. In particular, rate-
based neuron models can illuminate processes, 
including pattern recognition and categorization, 
pattern completion and association, and soft con-
straint satisfaction. Neural network models are also 
capable of various kinds of adaptation, including 
unsupervised learning, reinforcement learning, and 
error-driven learning. These models, which have 
varying degrees of fidelity to established neuro-
physiological processes, can facilitate understanding 
perception, learning, and motor control in nervous 
systems. They also illuminate principles of neural 
information representation and processing, includ-
ing coarse coding, sparse distributed representation, 
topographic cortical maps, generalizing versus sepa-
rating memories, and the blessing of dimensionality. 
Artificial neural network models also can be applied 
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to practical machine learning and to psychological 
data processing (e.g., clustering, pattern classifica-
tion, regression).
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