
Continuous Formal Systems:

A Unifying Model in Language and Cognition

Bruce J. MacLennan

Computer Science Department

University of Tennessee, Knoxville�

July 3, 1995

1 Introduction

The idea of a calculus or discrete formal system is central to traditional models of
language, knowledge, logic, cognition and computation, and it has provided a unify-
ing framework for these and other disciplines. Nevertheless, research in psychology,
neuroscience, philosophy and computer science has shown the limited ability of this
model to account for the exible, adaptive and creative behavior exhibited by much
of the animal kingdom. Promising alternate models replace discrete structures by
structured continua and discrete rule-following by continuous dynamical processes.
However, we believe that progress in these alternate models is retarded by the lack
of a unifying theoretical construct analogous to the discrete formal system.

In this paper we outline the general characteristics of continuous formal systems
(simulacra), which we believe will be a unifying element in future models of lan-
guage, knowledge, logic, cognition and computation.1 Therefore, we discuss syntax,
semantics, inference and computation in the context of continuous formal systems.
In addition, we address an issue that the discrete models were inadequate to address:
the gradual emergence of (approximately) discrete structures from a continuum. This
is relevant to the emergence of linguistic structures, including semantics and syntax,
and to the emergence of rule-like regularities in behavior.

�Email: maclennan@cs.utk.edu, URL: http://www.cs.utk.edu/~mclennan. To appear in the
proceedings of the IEEE Workshop on Architectures for Semiotic Modeling and Situation Analysis
in Large Complex Systems, August 27{29, 1995, Monterey, CA.

1The reasons for our de�nitions of continuous formal systems are presented in earlier publications,
including MacLennan (1993a, 1994a, 1994b, 1994c, 1994d)
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2 Characteristics of Continuous Formal Systems

Since it is easiest to understand continuous formal systems (CFSs, simulacra) in con-
trast to the traditional, discrete formal systems (DFSs, calculi), for each characteristic
I will describe the discrete system �rst and then the continuous. The two descriptions
are parallel, so far as that is possible.

Overall, DFSs are de�nite: de�nite in syntax, semantics and computation. In
contrast, continuous formal systems may be characterized, for the most part, by
replacing \de�nite" by \continuous" in the description of DFSs. Continuity may be
de�ned as follows: In�nitesimal changes have in�nitesimal e�ects. Therefore:

A continuous formal system (simulacrum) is continuous in syntax, se-
mantics and computation.

The following sections explain the consequences of continuity in each of these domains.

2.1 Syntax

In a DFS an expression (or formula) is a de�nite arrangement of de�nite tokens.
The de�niteness of the tokens implies that they are discrete and may be de�nitely
classi�ed as to type. The de�niteness of the expression means that we know de�nitely
how the tokens are arranged and whether the arrangement is syntactically correct.
All matters of syntax are de�nite; that is, they may be answered true or false.

As expressions are the concrete representational vehicles of a DFS, so images are
the concrete representational vehicles of a CFS.2

An image displays a continuous pattern of bounded variation over a bounded
continuum. The well-formedness (syntactic correctness) of an image de-
pends continuously on its pattern of variation. All matters of syntax are
continuous; that is, they are matters of degree.

We will consider some examples of images. In the realm of written communication
there are pictures, written language, and diagrams, such as graphs and maps, in which
continuous variation has signi�cance. In the foregoing examples variations of intensity,
color and texture extend over a two-dimensional region. In other images, such as
auditory signals (including speech), variations of intensity and pitch extend over an
interval of time. Gestures are three-dimensional images that extend over time and

2This terminology is generally consistent with Peirce's semiotics, wherein he distinguishes three
kinds of signs: icons, indices and symbols. Icons refer by virtue of their own character or form, that is,
by some similarity with their referent. Peirce distinguishes three subkinds of icons: images, diagrams

and metaphors. Many of what I call images are images in Peirce's sense, since they correspond to
their referents in a direct way; other representations, which I call images (such as Fourier or wavelet
transforms), might be better classi�ed as diagrams, since their relationships to their referents are
more abstract. See Peirce's Collected Papers (2.243{52, 274{302), Buchler (1955, pp. 101{7), and
Goudge (1969, pp. 141{3).
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three spatial dimensions. Images are also found in the brain: consider the continuous
variation of electrochemical activity over the neuropil. (Even if we take discrete
synapses to be the sites of activity, the distribution is practically continuous, since
there are approximately a billion (109) synapses per mm2 for cortex.) In general, any
continuous quantity extended over space, time or other dimensions (e.g. frequency,
energy) may serve as the substrate for an image.

2.1.1 Finiteness

Finiteness is an important characteristic of formal systems, whether discrete or con-
tinuous, because formal systems are abstractions of mechanical information process-
ing. Such a process is physically realizable only if it uses �nite resources (matter
and energy). Thus, in a DFS for example, the formulas are required to be �nite in
length, and the computations should terminate (comprise a �nite number of steps).
(Consider Turing machines and context-free grammars for examples of the �niteness
requirement.)

A reasonable standard for physically realizable images is to require that they be
�nite energy functions (i.e. functions with a �nite L2 norm:

R

 �

2(x)dx < 1). This
is a mathematically convenient de�nition since it means that images are elements of
Hilbert spaces. In fact, more restricted de�nitions are adequate in most cases. For
example, images will be �nite energy if we require that: (1) the extent of an image
is �nite (i.e., either it is de�ned over a bounded continuum, or if it de�ned over an
unbounded continuum, then it is 0 outside of some bounded region of that continuum);
and (2) the image has bounded variation over its extent. These requirements eliminate
images that are either in�nitely extended or unbounded in value. The requirements
ensure that images can be represented with �nite matter or energy. (The �niteness
of continuous computation will be taken up later.)

2.1.2 Dimension

Another issue relevant to the physical realizability of images is their dimension (the
degrees of freedom of their extent). Mathematically, images can extend over any
number of dimensions, but practically they are limited to a few dimensions. Physical
images can extend over time, over at most three space dimensions, or over various
other physical dimensions (frequency, energy, orientation, color, etc.), either singly
or in combination. Analogously, although in principle the formulas of a DFS may
be of any dimension, in practice they are one-dimensional strings or occasionally
two-dimensional arrays of characters. In the discrete case we know this is not a fun-
damental limitation, since higher-dimensional formulas can be represented as strings,
so long as corresponding changes are made to the computational processes.

So also higher-dimensional images may be represented by lower dimensional im-
ages without loss of information. Speci�cally, a band-limited �nite-energy image of
any dimension can be represented by a �nite number of zero-dimensional images,
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that is, by its generalized Fourier coe�cients (or, equally well, by Gabor coe�cients,
wavelet coe�cients, etc.). (If necessary this �nite set of zero-dimensional images can
be embedded in a single one-dimensional image.) Of course, the computational pro-
cesses must be altered to operate on this indirect representation. This can always be
done in principle, but, compared to the original process, the altered process may be
either more or less amenable to mechanical implementation.

In conclusion, the dimensionality of the representational medium does not limit
the dimensionality of the images that can be represented in it (perhaps indirectly). For
example, human primary visual cortex (area V1), which is physically two-dimensional,
represents images extended over at least four dimensions (two spatial, one spatial
frequency and one orientation; see MacLennan 1991 for a survey).

2.2 Semantics

The issue of syntactic correctness is one of interpretability. In traditional logic only
the syntactically correct expressions are interpretable. In continuous logic, images are
interpretable to the extent that they are well-formed. Continuity does not preclude
there being some images that are entirely uninterpretable and others that are entirely
interpretable, but there must also be intermediate images with intermediate degrees
of interpretability. So also for well-formedness.

In a DFS every well-formed expression has a de�nite meaning. In particular, each
token type has a de�nite meaning, and the meaning of an expression is a de�nite
function of the arrangement and meanings of the constituent tokens. In contrast:

The meaning of an image depends continuously on the form of the image,
and an image has a meaning to the degree that it is well-formed (syntac-
tically correct).

For example, normalized two-dimensional vectors might be interpreted to repre-
sent orientations, but the degree of well-formedness, and hence interpretability, must
drop continuously to zero as the vector's magnitude deviates from 1 (Fig. 1).3

For a less abstract example, suppose that the well-formed images are the Times
Roman letters `T' and `F', which are interpreted as true and false, respectively. As
an image deviates more from these archetypes, it becomes progressively less inter-
pretable, and may not be interpretable at all (Fig. 2). It will be apparent that the
well-formed images are a fuzzy set (which may be de�ned by a \continuous grammar,"
which is described below.)

Given the membership functions �T and �F for the T and F sets (assumed dis-
joint), we can de�ne a formal interpretation function. Suppose that the domain of

3Of course, there is nothing that stops us from interpreting any nonzero vector as an orientation.
The point is that we may, for some reason, choose to limit the well-formed vectors to normalized
vectors; for example, a computational process might require normalized input.
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Figure 1: Example of degrees of well-formedness of two-dimensional vectors, wherein
normalized vectors are considered perfectly well-formed. In this example the degree
of well-formedness is measured by f(kvk2), where f(x) = x2e2(1�x).

5



T F

true false

undef

degree of
well−formedness

domain of
interpretation

interpretation

0

1

Figure 2: Inherent fuzziness of syntactic well-formedness. Just as the degree of well-
formedness decreases continuously from 1 to 0, so also the interpretation must vary
continuously from a de�ned interpretation to an unde�ned interpretation.

interpretation includes true, false and undef, as well as linear combinations of undef
with the other two (Fig. 2). The interpretation of an image � is de�ned:

I(�) = �T(�)true+ �F(�)false+ [1� �T(�)� �F(�)]undef :

As required, this function satis�es:

I(`T') = true, since �T(`T') = 1;

I(`F') = false, since �F(`F') = 1;

I(�) = undef, if �T(�) = 0 and �F(�) = 0:

For imperfectly-formed images (e.g., 0 < �(�) < 1) the interpretation will be between
undef and the interpretation of the corresponding perfectly-formed image.

If D is the domain of interpretation of a DFS, it can be made the domain of
interpretation of a CFS as follows. Let the unit interval U = [0; 1] represent degrees
of well-formedness. Then a pair (x; y) 2 U�D combines a degree of interpretability x
and the interpretation y of a perfectly-formed image. Since all uninterpretable images
are equivalent, de�ne an equivalence relation on U�D:

E[(x1; y1); (x2; y2)] � (x1 = x2) ^ (x1 = 0 _ y1 = y2):

Thus all pairs (interpretations) with a zero �rst component are equivalent, no matter
what their second component. Finally we may de�ne D, the continuous domain of
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interpretation corresponding to D, as the quotient set D = (U�D)=E of equivalence
classes under E. Then undef = [(0; y)], the equivalence class of interpretations of
completely ill-formed images. We can see that D has a continuum of interpretations
between undef and each of the members of D (the interpretations of perfectly-formed
images).

If I(`x') is the interpretation of `x' in a DFS, and if in a corresponding CFS `x'
has a fuzzy set with membership function �x, then the interpretation of an image �
in this set (i.e., �x(�) 6= 0) is

I(�) = [(�x(�); I(`x'))]:

Note that a \propositional image," that is, an image with a truth value, must
have a continuous domain of interpretation, but this is not the same as saying it
has a continuous truth value (as in fuzzy logic). As depicted in Fig. 2, there may
be only two truth values (true and false), but varying degrees of interpretability
(corresponding, for example, to con�dence of interpretation). The interpretation is
undef in the absence of any con�dence.

2.3 Computation

In a DFS the computational process, by which one expression is derived from another,
is de�nite; that is, the computation comprises a de�nite sequence of discrete steps
of de�nite type. At each step it is de�nite which rule (type of computation) may be
applied, which is de�nitely constrained by the syntax of the expression, and the result
of the step is a de�nite result of the expression to which the rule is applied. On the
other hand:

In a CFS the computational process, by which one image is derived from
another, is continuous; that is, the computation comprises a continuous
process of continuously changing direction. At each point the in�nitesimal
change e�ected by the process is a continuous function of the form (shape)
of the image, and the result of the change is a continuous function of the
image at that time.

As in a DFS, computation depends on the form, but not the meaning, of the image.
Examples of continuous computations include: continuous approximations, con-

tinuous optimization processes (such as hill-climbing), continuous control (e.g., robo-
tics, sensory-motor coordination), continuous deformations and transformations, con-
tinuous mental image manipulation (as in Roger Shepard's well-known experiments),
gradual learning processes, and computation on analog computers.4

4A more detailed discussion of the relation of continuous (analog) and discrete (digital) com-
putation, including an exploration of the philosophical issues, can be found in earlier publications
(MacLennan 1993b, 1994b, 1994c, 1994d).
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Formally, a continuous computational process has at each time t a state  t, which
is an image drawn from a continuum. In a deterministic computation the state at
any time interval u in the future is a continuous function of the current state, that is,

 t+u = P ( t; u):

Clearly, the process function P satis�es the group properties:

P ( ; 0) =  ;

P [P ( ; u); v] = P ( ; u+ v):

In all ordinary cases the state images will form a linear space, which means that we
can di�erentiate them with respect to time:

_ t = lim
u!0

 t+u �  t

u
=
@P ( t; u)

@u

�����
u=0

:

Thus, a deterministic continuous computation can be expressed by a di�erential equa-
tion, _ t = Q( t), where Q( ) = @P ( ; u)=@uju=0. Further, continuous computations
(such as control processes) can depend, in addition, on one or more input signals
(images) �t, e.g., _ t = Q( t; �t).

2.3.1 Termination

There are ordinarily two ways in which computation in a DFS can halt. First it may
enter a state to which no rules are applicable; thus no further state change is possible.
Second, the computation may enter one of a designated set of terminal states, which
signal the completion of the computation; no attempt is made to apply rules to
terminal states. In a well-structured DFS the two kinds of termination ordinarily
coincide; that is, it is arranged so that a state is terminal if and only if no rules
are applicable to it. In any case, whether a computation has terminated is always a
de�nite matter.

In a CFS there are two ways a computation can terminate. First, the
computation may asymptotically approach or reach a point attractor, in
which case the computation is said to have stabilized. Second, the compu-
tation may enter a designated subspace of terminal states, in which case
no further computation takes place; such a process is said to have com-
pleted. Ordinarily the two methods of termination coincide; that is, the
computation stabilizes if and only if it completes by reaching a terminal
state.

In either case, the computation approaches termination continuously (and
so, in e�ect, termination is a matter of degree).

Figure 3 illustrates the two kinds of termination.
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stabilization completion
t t

Figure 3: Kinds of termination of continuous computation. The diagram on the left
depicts termination by stabilization: the state asymptotically approaches or reaches
a point attractor. The diagram on the right depicts termination by completion: the
state enters a predesignated set of terminal states (in this example, those below the
dotted line).

2.3.2 Programs

In a DFS the permissible types of computation at each step are given by rules, which
together constitute an expression (as de�ned above); this expression is called a pro-
gram for the computation. Further, there is a simple, mechanical relationship between
the rule set and each step of the computational process.

It is di�cult to be more precise than this, when the variety of traditional formal
systems is considered. Take for examples the predicate calculus, Turing machines, the
lambda calculus, Markov algorithms, Post productions, combinatory logic, recursive
functions and digital computers. Almost any de�nite process is permissible provided
it is mechanical, i.e. can be carried without the exercise of intelligence.

In a CFS the moment-to-moment changes are guided continuously by an
image, called a guiding image for the computation.

There is a simple, mechanical relationship between the guiding image and
the trajectory of the computed image.

The notion of a guiding image is especially interesting, since it amounts to a program
\written" (better: \sculpted") in a continuous language. It is di�cult to be more pre-
cise about the mechanical relationship, except that it should not require intelligence,
and we should be able to see how, at least in principle, it could be implemented by a
machine or physical process.

A simple example of a guiding image is a potential surface. Gradient descent is
a deterministic computation guided by the image. Formally, if the potential surface
P is the guiding image, then the computation is given by _ = �rrP ( ). Of course,
the trajectory of the computation also depends on its initial state  0, which may
represent the input to the computation.

More interesting guiding images determine the trajectory in a less direct way,
e.g., by de�ning Fourier coe�cients, the coe�cients of a di�erential equation, or the
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boundary conditions of partial di�erential equations. For another example, consider
any one-dimensional image � such that x�x > 0 for x 6= 0. It is the guiding image of
the computation �x = ��(x), which causes x to oscillate in a manner determined by
�.

For a �nal example, Jonathan Mills (1995) has developed Kirkho� machines,
which solve the two-dimensional di�usion equation (@ =@t = a2r2 ) given guiding
images in the form of boundary conditions, sources and sinks. The computation
is implemented by the actual di�usion of charge carriers in a spatially-continuous
semiconducting mass.

2.3.3 Nondeterministic Computation

In a DFS a nondeterministic computational process de�nes sequences of allowed (dis-
crete) changes to an expression, which permit one expression to be derived from
another, in accord with a rule set. In the usual formulation, inference rules constrain,
but do not determine, the steps of a (valid) derivation (computation).

In a CFS a nondeterministic computational process associates degrees of
facility with possible in�nitesimal changes in an image; the facilities of
changes are determined by the guiding image. The probabilities of various
computational trajectories depend on their cumulative facilities.

Notice that continuity requires that there be a continuum between allowed and dis-
allowed trajectories. For example, a nondeterministic computation might permit any
energy-decreasing trajectory, with facility being determined by the rate of decrease.

Speci�cally, suppose the potential surface P is the guiding image of the computa-
tion. The in�nitesimal energy change _P resulting from an in�nitesimal state change
_ is given by _P ( ) = rP ( ) � _ . Since we require _P ( ) < 0 whenever _ 6= 0, we can
de�ne the facility of change _ from state  as follows:

F ( ; _ ) =
h
�rP ( ) � _ 

i+
;

that is, the positive part of �rP ( ) � _ . Thus, F ( ; _ ) > 0 to the extent that _ 
decreases energy, and F ( ; _ ) = 0 if _ would increase energy or leave it unchanged
(Fig. 4). Indeed, we can see that the facility of an in�nitesimal change is proportional
to the angle between the change and the negative gradient of the guiding image:

F ( ; _ ) =
h
k �rP ( )k k _ k cos �

i+
;

/ krP ( )k cos �, for � �=2 � � � �=2:

2.4 Grammars

In a DFS a generative grammar is a rule set describing a nondeterministic computa-
tional process capable of generating from a single token of �xed type any and only
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Figure 4: Nondeterministic computation by descent on potential surface. The facility
of change in a given direction is shown by the length of the arrow (which is propor-
tional to the cosine of its angle with the negative gradient. The dotted line separates
impossible changes to the left from possible changes to the right.

the well-formed expressions, which are among the set of terminal states. The process
may be made deterministic by specifying, by an expression, the choice of rule to be
applied at each step. A recognitive grammar is an computational process that reduces
any arrangement of tokens of the allowed types to a single token of one of two types,
meaning that the arrangement is or is not well-formed.

A continuous generative grammar is the guiding image of a nondetermin-
istic computational process capable of generating, with varying facility,
terminal images from a �xed starting image. There will be a continuum
between images generated by the grammar and those not so generated, so
well-formedness is a matter of degree. The process may be made determin-
istic by specifying, by an image, the direction of change at each instant.

A continuous recognitive grammar is a computational process that re-
duces an image to a real number in [0; 1] representing its degree of well-
formedness.

A continuous recognitive grammar is an example of a guiding image (continuous
program) for a (fuzzy) decision problem.

A simple example of a continuous grammar uses the nondeterministic descent
on the potential surface in Fig. 5 to generate normalized two dimensional vectors
from the starting image (0; 0). In a simple example such as this the well-formedness
surface can be used directly as the guiding image, that is, as the \grammar." The
\energy" of the terminal image represents its degree of well-formedness (zero energy
= perfectly-formed, higher energy = less-well-formed).

A more complex continuous grammar, comparable to a regular expression, is
shown in Fig. 6. The state  t = (yt; at) circles at a constant rate _a = r, and any

11



-2
-1

0

1

2
-2

-1

0

1

2

0
0.2
0.4
0.6
0.8
1

-2
-1

0

1

2

Figure 5: A simple continuous grammar. Nondeterministic descent on this potential
surface from (0; 0) generates normalized two-dimensional vectors.

a (y, a)

y

Figure 6: Continuous grammar for generating damped sinusoids.
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Figure 7: Typical damped sinusoid generated by simple continuous grammar

potential-decreasing path is allowed (i.e., _y � 0, and _y = 0 only if y = 0). The termi-
nal images are at the bottom of the cylinder. Thus this nondeterministic computation
sequentially generates damped sinusoids of the form �t = yt sin at where 0 � y and
_y � 0 (Fig. 7). Similar techniques can be used for generating nested images.

There are of course many mechanisms by which nondeterministic computation
can generate terminal images under the control of guiding images, just as there are
many di�erent discrete grammatical formalisms (e.g., regular expressions, context-
free grammars, various \normal forms"). So also, important classes of continuous
\languages" (fuzzy sets of well-formed images) may have di�erent grammatical mech-
anisms that generate them.

3 Objects, Time and Change

Certainly, language and cognition sometimes resemble a DFS, and the dominant
paradigm in linguistics, cognitive science and arti�cial intelligence has been that they
are DFSs. Although this paper is based on the premise that CFSs provide better
models of language and cognition, we must nevertheless ask how it is that a CFS can
look enough like a DFS that investigators have been fooled into thinking that language
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and cognition are discrete. In one sense the answer is trivial: one can design a CFS
that approximates a given DFS as closely as one likes; and vice versa, a DFS can
be found that approximates a given CFS to any desired degree. However, the more
interesting issue is: How do (approximately) discrete formal systems emerge from
continuous representations by means of continuous computation? The answer to this
question is a step towards understanding the origin of apparently discrete faculties,
such as language and formal reasoning, from the underlying continuous sensory-motor
processes.

3.1 Objects

An important part of this process is the perception of objects; indeed, objects are the
prototypes of the tokens manipulated by calculi, as we can see even in the etymology
of the word (Latin calculus = small stone used in counting, voting, games, etc.). An
object can be de�ned as a stable bundle of properties (cf. elementary particles in
physics as bundles of quantum numbers). That is, an object retains its properties
when its context is changed, which is what allows an object to be separated from its
background. In other terms, an object is equivalent to a set of invariances (MacLen-
nan 1994b, 1994c). For example, the spatial relations among the parts of a rigid object
are invariant in spite of its motion; also, a melody has an invariant pitch-contour in
spite of the key into which it's transposed. To understand how stable (or invariant)
bundles of properties can be detected, we must consider how CFSs represent change
(for invariance presupposes variation).

3.2 Gabor Representations

I think there is a fallacy in attempting to reduce motion to space and time (or change
to some measurable property and time). Zeno showed us long ago the paradoxes
inherent in the concept of instantaneous velocity (the derivative). More recently
Einstein in his special theory of relativity showed the inseparability of space and
time; indeed, relative motion is the primary, from which the time and space axes
derive their position.

Consider a changing image such as a sound. In the time domain such a signal can
be considered a variation of amplitude extended over time, but in the frequency do-
main it may be considered a spectrum: variations of amplitude (and phase) extended
over frequency.

Gabor (1946) observed that neither view accurately reects our perception of
sound, which is simultaneously of pitch and duration (frequency and time). By ap-
plying the mathematics of the Heisenberg Uncertainty Principle, he showed how any
�nite signal (i.e. signal of �nite duration and bandwidth) could be decomposed into a
�nite number of \elementary signals," now known as Gabor functions.5 Each elemen-

5MacLennan (1991) provides an intuitive presentation of Gabor's proof.
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Figure 8: Gabor elementary function, which is a complex-valued function of time (or
any other real quantity). The time axis extends from left to right through the center
of the spiral; the imaginary axis is vertical and the real axis is horizontal.

tary signal represents the maximum localization in time and frequency permitted by
the uncertainty principle. That is, rather than reducing a signal to either the time or
frequency domain, Gabor reduces the signal to elementary conjuncts of time and fre-
quency. Gabor's elementary functions di�er from other elementary functions in that
they are localized in both time and frequency; in contrast sinusoidal basis functions
are not localized in time, and radial basis functions are not localized in frequency.

To put it di�erently, Gabor's analysis shows us how a �nite sound is composed of a
�nite number of \elementary sounds," which is more informative than either the time
or frequency domain descriptions. In a similar way we can decompose a time varying
image into a set of \elementary changes" from which we may detect the covariances
and contravariances that separate an object from its context. Next we'll consider one
way of accomplishing this separation.

As a starting point consider a one-dimensional image extended in time, �t. The
Gabor transform of this will be a two-dimensional image extended in time and space
(representing frequency), �tf . The magnitude of �tf measures the degree to which
at time near t the image contains frequencies near f . Formally, the Gabor transform
is given by the inner product �tf = h�; (�)tf i, where (�)tf is a Gabor function spread
(as determined by �) around t and f (Figs. 8-9):


(�)
tf (� ) = e��(��t)

2=�2e2�if� :

The �rst exponential is a Gaussian with standard deviation �=2
p
�; that is, � is pro-

portional to its spread. The second, complex exponential is the conjugate exponential
form of the trigonometric functions, and is periodic with frequency f .

The Gabor transform is not limited to temporal images. If �x were an image
extended in space (or some other dimension), then its Gabor transform �xu represents
the presence in the image at locations near x of spatial frequencies near u.

Now suppose we have a two-dimensional image �xt extended over space and
time, that is, a time-varying one-dimensional image. Its Gabor transform is a four-
dimensional image �xutf , where x is spatial location, u is spatial frequency, t is time
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Figure 9: Real and imaginary components of Gabor elementary function. The upper
diagram is the real component, a Gaussian-modulated cosine; the lower diagram is
the imaginary component, a Gaussian modulated sine.
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Figure 10: Object detection example. An image of an object with a high spatial
frequency moving in front of a background with a low spatial frequency.

and f is (temporal) frequency. Thus the magnitude of �xutf measures the degree to
which at locations near x and times near t there is a grating of frequency near u os-
cillating at a rate near f . The two-dimensional Gabor transform is given by the inner
product �xutf = h�; (��)xutf i, where the two-dimensional Gabor elementary function is
de�ned:


(��)
xutf (�; � ) = (�)xu (�) 

(�)
tf (� ):

To see how the Gabor transform facilitates object detection, consider the Gabor
representation of an image of an object with spatial frequency uo moving at a velocity
vo across a background with a spatial frequency ub (Fig. 10). The background will
cause energy to be concentrated in �xubt0 for any places x and times t where it is not
occluded by the moving object. The object will cause energy to be concentrated near
�xuotfv, where fv = uov, for all locations x and times t where the object occludes the
background. Figure 11 depicts �xuotf at �xed t; it shows how the Gabor representation
� separates the moving object from its background.

I have said vaguely that �xutf measure movement \near" x, u, t and f . How
near? This is given by the Gabor Uncertainty Principle, which is just the Heisenberg
Uncertainty Principle applied to arbitrary �nite signals. If �x represents any func-
tion's localization in space, �t its localization in time, �u its localization in spatial

17



f

x

fv

0

Figure 11: Depiction of Gabor representation of object moving across background.
Activity at fv represents the moving object, activity at f = 0 represents the back-
ground.

frequency, and �f its localization in temporal frequency, then we must have (Fig. 12):

�x�u � 1=4�;

�t�f � 1=4�:

Thus, if change is better localized in time, it is more poorly localized in temporal
frequency (and hence velocity), and vice versa; the same applies for space and spatial
frequency. We can trade localization in one variable for localization in its conjugate
variable, but the joint minimum uncertainty cannot be better than 1=4�.6

The uncertainties �x, �t, �u and �f , are determined by the shape parameters,
� and �, of the Gabor elementary function:

�x = �=2
p
�;

�u = ��1=2
p
�;

�t = �=2
p
�;

�f = ��1=2
p
�:

Thus � determines the most something can be localized in space and therefore the
minimum size objects that can be detected; conversely it determines how acurately
\textures" (spatial frequencies) are distinguishable, which a�ects its ability to sep-
arate objects from the background. In e�ect the choice of � and � determines the
mesh of the perceptual �sh-net, and therefore the size of the �sh that inevitably slip
through it.7

6MacLennan (1991) provides an intuitive presentation of Gabor's proof.
7Speci�cally �x, �t, �u and �f are the standard deviations of the Gabor elementary function

over each of its dimensions (both extension and frequency).
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Figure 12: Minimum joint localization in time and frequency domain given by Gabor
Uncertainty Principle.

3.3 Multiresolution Representations

One solution to the �xed resolution of the Gabor representation is to use a mul-
tiresolution representation, which uses di�erent tradeo�s between conjugate variables
at di�erent scales. In particular, smaller scale features are associated with higher
frequencies and therefore with a wider tolerance in uncertainty in the frequency do-
main. Figure 13 compares the division of \Fourier space" by the Gabor transform
and multiresolution analyses. Wavelet analysis produces such a multiresolution rep-
resentation by scaling a single \mother wavelet," usually by factors of 2, to achieve
di�ering scale sensitivities. One common mother wavelet, the Morlet wavelet, which
is a slight modi�cation of the Gabor elementary function, is de�ned:

 xu(�) =
1
4
p
�

�
e2�iu� � e�u

2=2
�
e�(��x)

2=2

The one-dimensional Morlet transform is then given by the inner product �xu =
h�; xui.

4 Emergence of Rules

Certainly, people and other animals sometimes exhibit rule-like behavior, and until
recently both cognitive science and arti�cial intelligence made the assumption that
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Gabor multiresolution

Figure 13: Comparison of Gabor and multiresolution representations. The Gabor
transform divides \Fourier space" (frequency cross time) into identical cells, whereas
multiresolution transforms, such as wavelet transforms, allow the frequency/time lo-
calization tradeo� to scale with frequency. At larger scales, time resolution is worse,
but frequency resolution is better, and vice versa.

rule-like behavior is a consequence of following rules. Now connectionism has shown
how rule-like behavior can emerge from processes that are not following rules. In
addition, it demonstrates the possibility of approximately rule-like behavior, which
exhibits rule-like behavior when it is appropriate, but is able to bend or adapt the
rules when that is more e�ective. In this way we can begin to understand and imitate
the exible rule-like behavior of the natural world. We'll take a brief look at the
emergence of rule-like behavior from the perspective of CFSs.

In typical rule-like behavior the situation (the \input") is classi�ed into one of a
small number of cases. From each of these cases a small amount of index information
is extracted, which is su�cient to identify the particulars to which the action for that
case applies.8 Thus a rule takes the form: \If some things are in this kind of situation,
then take this corresponding action regarding those things." Thus the response (or
\output") depends only on the (low-dimensional) classi�cation of the situation and
the (low-dimensional) indices required to identify the objects to which it applies.

In other words, a rule reduces a situation, with its (perhaps) complex internal
relationships, into a simple classi�cation and the indices. Aside from the particulars
represented by the indices, the entire situation is reduced, in e�ect, to a point, so the
rule cannot be sensitive to any aspects of the situation not represented in its classi�-
cation (i.e., in the low-dimensional features extracted from the situation). Thus a rule
cannot be context-sensitive, that is, sensitive to aspects of the situation not explicitly
represented in the low-dimensional features. Other than the particularization of the
actions by the indices, the number of possible actions (responses) is limited to the

8An index is a sign that points at an object (Peirce's terminology; see footnote 2). For concrete-
ness, think of it as the object's coordinates.
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number of kinds of situations; there can be no continuous sensitive dependence of the
response on the nuances of the situation.

Behavior appears rule-like to the extent that the functional dependence of outputs
on inputs can be factored through a low-dimensional space (representing the kind of
situation and the indices). However, it is not necessary that rule-like behavior actu-
ally be generated in his way, that is, by means of an intermediate low-dimensional
representation. Indeed, exibility depends on avoiding this representational bottle-
neck, either by there being no intermediate representation, or by the intermediate
representation being of comparatively high dimension. Then we have the possibil-
ity of exibility and adaptation for, as the situation demands, the representation can
expand beyond the low-dimensional subspace (which manifests in the rule-like behav-
ior) of the intermediate space, perhaps later settling into a di�erent low-dimensional
subspace (and therefore constellating as di�erent rule-like behavior).

5 Conclusions

We have shown that the concept of a continuous formal system (or simulacrum) is
analogous to a discrete formal system (or calculus), but that the former is continuous
where the latter is de�nite. Nevertheless, the theory of CFSs forces revisions in our
notions of syntax, semantics, computation, program, grammar and rule. It promises
a new theory of representations in arti�cial intelligence, cognitive science, linguistics
and philosophy, which can better address the emergence of discrete entities, such as
objects and rules, from the underlying continuous processes. In particular, we have
considered how a multiresolution representation of change can aid the detection of
discrete structures. It is our hope that continuous formal systems will provide a the-
oretical framework for understanding emergent and adaptive information processing
in all its manifestations.
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