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Abstract
ABSTRACT

1 Introduction

There has been a long-standing tradition in Western philosophy, with its roots in an-
cient Greek philosophy, that “genuine knowledge” (epistémé) must be expressible in
verbal formulas (logoi), and that “genuine thinking” is a process of logical deduction
or discursive reasoning. There are many reasons for challenging these assumptions
(and they have been questioned or denied since ancient times), but they are still
prevalent in contemporary cognitive science and artificial intelligence. Contemporary
attacks on discrete knowledge representation and processing come from two fronts.
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On the one side, we have discovered the practical limitations of discrete represen-
tations of knowledge (e.g., semantic networks) and rule-based models of cognition.
The practical evidence can be found is the rise and fall of expert systems in the ‘70s
and ‘80s, but the fundamental problems were predicted by Dreyfus long ago [1]. The
other challenge has come from neuroscience, which has demonstrated the importance
of continuous representations and processes in natural intelligence. Information is
represented by continuously variable firing rates and phase relationships; by synaptic
efficacies which depend continuously on the distribution and arrangement of recep-
tors for neurotransmitters; by graded electrical interactions in dendritic trees with
complex geometries; and so forth. In addition we can observe the practical success of
artificial neural networks, which usually use continuous representations (in emulation
of continuously variable neuron impulse rates).

To better understand information representation and processing in natural and ar-
tificial neural networks, we need new, continuous models of knowledge and cognition.
These models will make fundamentally different assumptions from the traditional
theory of knowledge and, as a consequence, answer fundamentally different questions
[13]. In our own investigations we have adopted a principle of continuity, which con-
strains all our models to be continuous. (This paper is primarily a summary of prior
work, which is discussed in more detail in earlier publications [3, 6, 7, 9]. Most of
these and others are available at http://www.cs.utk.edu/ "mclennan.)

2 Representations

In nature, continuous information representation is much more common than dis-
crete. Visual representations vary continuously in brightness and color, auditory in
frequency and amplitude, tactile in pressure, and so forth. Motor output is con-
tinuously variable in force and direction. Finally, as previously noted, many neural
representations are continuous in rate, phase, electrical potential, and so forth. Thus
it is reasonable to take continuous (analog) representations as given, and to treat
(approximately) discrete representations as a special case. In mathematical terms,
we are dealing with continuous (e.g. real or complex) variables.

Of course, most representations comprise more than a single real variable, and
so it is common to make use of vector spaces in the analysis of both natural and
artificial neural networks. However, in many cases the dimension of the vector space
is so large, that it is better to treat the vectors as continuous fields extended over
some bounded continuum [2, 5, 10, 11]. This is especially the case for the numerous
cortical maps found in the brain, which may be as small as several square millimeters,
but still contain hundreds of thousands or millions of neurons.

In summary, traditional, discrete knowledge representation makes use of discrete
structures, such as strings or graphs, but connectionist knowledge representation is
more appropriately modeled by finite dimensional vectors or (approximately) infinite-
dimensional continuous fields. We call continuous representations images.



Figure 1: Example of degrees of well-formedness of two-dimensional vectors, wherein

normalized vectors are considered perfectly well-formed. In this example the degree

of well-formedness is measured by f(|[v||?), where f(z) = 22—,
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Figure 2: Inherent fuzziness of syntactic well-formedness. Just as the degree of well-
formedness decreases continuously from 1 to 0, so also the interpretation must vary
continuously from a defined interpretation to an undefined interpretation.

Traditional theories of discrete knowledge representation distinguish well-formed
structures (such as “WFFs” — well-formed formulas), which can be interpreted,
from ill-formed structures, which cannot. Similarly, in connectionist systems, certain
images may be well-formed, in the sense that they are suitable for interpretation or
further processing. For a simple example, in some system “well-formed vectors” might
be required to be normalized. Clearly, however, no practical system can determine if
a vector is exactly normalized, nor can the proper operation of such a system depend
on exact normalization. Thus, the well-formedness of a vector must be continuous
function of its length, or, in other words, the set of well-formed vectors is fuzzy (Fig.
1). This example illustrates the general situation: although the distinction between
well- and ill-formed images may be as sharp as we please, it must be continuous,
and therefore there will be images with intermediate degrees of well-formedness (and,
hence, interpretability) [9].

In a natural computation system, images need not represent in the literal sense
of referring to some actual or potential external state of affairs; that is, images need
not have a semantic interpretation. Rather, the primary requirement of an image is
its pragmatic utility, its ability to fulfil its function in a natural or artificial agent
[13]. Nevertheless, images often do represent objects or situations in some domain of
interpretation, and in these cases the interpretation must be a continuous function of
the image [6, 9]. Often this dependence is natural, as when a cortical map represents
a retinal image, the spectrum of a sound, or a location in three-dimensional space.



Certainly there are situations in which the natural interpretation of an image is
discrete. For example, an image may represent a proposition which is either true
or false (i.e., fuzzy truth is not permitted), or an image might represent the choice
between two mutually exclusive actions (e.g., fight or flight). In such a situation,
the continuity principle requires that the discrete interpretations be embedded in
a continuous domain of interpretation (Fig. 2). For example, in the two preceding
examples, the dichotomous choices could be represented by +1 and —1, which could be
embedded in the continuum [—1, +1]. This does not mean that we now have degrees
of truth, or a spectrum of actions between fight and flight. Rather, the absolute value
|I| of an interpretation I € [—1,+1] could represent the interpretability of the image,
or the system’s confidence in the image’s interpretation. If |I| is zero or near zero,
then the image is effectively uninterpretable (i.e., ill-formed). Regardless of confidence
or interpretability, the image represents a discrete meaning, determined by its sign,
sgnl € {—1,0,1}, where 0 (“undefined”) must be added to the range of semantics.
The sign might be extracted by a continuous sigmoid function, as is commonly used
in artificial neural networks. (Additional discussion of the representation of semantics
and pragmatics can be found in prior articles [11].)

Discrete representations, such as those used in traditional knowledge representa-
tion, are constructed from atomic components by the application of specific syntactic
constructions. The models, of course, are written language, formal logic, and mathe-
matics as finite strings of atomic symbols. In contrast, images need not be constructed
from atomic components. Even vectors, which are commonly thought of as compris-
ing their coordinate components, may be more naturally decomposed into other com-
ponents (such as their principal components). Further, infinite-dimensional images
(fields) may not have nontrivial components; certainly they cannot be constructed
finitely from the infinity of their point values. In practice, fields and many finite-
dimensional images are given as wholes, without any unique “natural” or “preferred”
decomposition; indeed, finding an appropriate decomposition may be an important
problem for an image processing system to solve [6, 7, 13].

Nevertheless, there are various decompositions that can be applied to a field to
reduce it to a discrete set of continuous quantities; examples are generalized Fourier,
Gabor, and wavelet decompositions [4, 9]. In effect, what these accomplish is to
represent a given image (e.g., a 2-dimensional image) as a (linear) combination of fixed
elementary images of the same dimension, weighted by a discrete set of continuous
coefficients (“zero-dimensional fields”) [9, 11].

3 Processes

The principle of continuity, as well as our knowledge of neural processes, suggests that
information processing be considered a continuous-time process, such as a system of
differential equations [8, 9, 12]. (I will consider discrete-time processes shortly.) In
the simplest case, the differential change of state is a (possibly nonlinear) function
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Figure 3: A detministic process.

of time and the current state, w = F(t,1); the state comprises one or more images
(fields or finite-dimensional vectors). (Without loss of generality we can take the
output of the process to be a continuous projection of the state.) More typically, the
change of state also depends on one or more time-varying input images ¢, that is,
b = F(t,v,¢). The process function F' is required to be a continuous function of
time, state, and input (Fig. 3).

One common example is a gradient descent process, which reduces, by steep-
est descent, some potential function V, which might represent error or cost: ¢ =
—rVV(¥). The best-known example is the back-propagation algorithm, but it is
more commonly implemented as a discrete-time approximation of the gradient pro-
cess, Aw = —nVE(w), where E(w) is the error for weight vector w.

Indeed, traditional recurrent artificial neural net algorithms are discrete-time pro-
cesses, in which the state (and output) at one time step is a function of the in-
put and the previous state, 1, = F(¢,_1,¢,). So, for back-propagation, w, =
w,_1 — nVE(w,_1). Discrete-time processes of this kind are useful on conventional
computers, but they don’t seem to be found in natural intelligence, or in artificial
systems modeled on it. Therefore we suggest that future research should focus on
continuous-time information processing [13].

In the traditional theory of discrete computation, we know that information pro-
cesses can be represented as finite sets of discrete rules, that is, by programs. This
allows us to describe these processes, by reducing them to rules, but it also allows us
to create universal machines (e.g., programmable general-purpose computers) capa-
ble of obeying the rules. Similarly, continuous processes can be described by systems
of differential equations, which can be used to program general purpose analog com-
puters [14, 15, 16, 17]. Nevertheless, differential equations are not necessarily finite
rules, for they may incorporate real or complex coefficients that cannot be expressed
in discrete, finite terms [12, 13]. More interestingly, and more relevantly to natural
and artificial neural networks, many important continuous processes will be described



or governed by guiding images [9]. The simplest example of a guiding image is a po-
tential surface, mentioned above. Given a potential surface V' and an initial state 1y,
the subsequent trajectory is determined by a gradient process, 1) = —rVV ().

The concept of a guiding image suggests an intriguing new idea of programming;
the metaphor is different: instead of a program being written, a guiding image is
painted or sculpted [9)].

Nondeterministic processes, that is, processes whose trajectories are not com-
pletely determined by the initial state and inputs, are often useful for describing
information processing in natural and artificial neural networks. We may use a non-
deterministic process to describe a natural system when we don’t know all the factors
governing the trajectory, or when it’s preferable to omit their description. Alter-
nately, we may design a nondeterministic system when we don’t wish to prescribe
precise trajectories, either because it’s unimportant or because we want to leave the
possibilities open.

Nevertheless, nondeterministic processes are subject to constraints, which de-
termine the possible trajectories. Further, the principle of continuity dictates that
there be a continuum between possible and impossible trajectories, and so the con-
straints must be “soft.” For example, soft constraints can be defined by a function
P(,v)) € [0,1], which defines the “facility” of a change v in a state ¢ [9]. If
P(¢),1)) = 0 then the change is impossible; if P(1),7)) = 1 then it is as easy as it
can be. Alternately, each potential trajectory has a cumulative “cost” or “difficulty”
D(%, Y) € [0, —00), defined by the integral of D(1), Y) = —log P(1, 1)), that is,

Cw) = [ Dlt), d(e)de

but trajectories with infinite cost are not allowed.

Guiding images can be used to define the soft constraints of a nondeterministic
process. For example, we may allow the process to take any path down a potential
surface without constraining it to the path of steepest descent [9]. That is, state
changes di for which —VV (1)) -dy > 0 are allowed, whereas those for which it is < 0
are impossible (Fig. 4). Since the facility function must be continuous, we may define
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that is, the positive part of the inner product of the normalized vectors.

Natural and artificial intelligence in the real world are continually faced with noise,
error, inaccuracy and other sources of uncertainty. In practice, all images and pro-
cesses must be assumed to have an element of uncertainty. One way to accommodate
this is to replace images by probability density functions (PDFs) of images, and to
replace trajectories of images by trajectories of these PDF's. For example, the instan-
taneous state 1 (t) is replaced by the PDF W(¢),t), and the instantaneous input ¢(t)
by ®(¢,t). The process is then defined on the PDFs, U = F(t,¥,®). The approach
has much in common with the treatment of the wave-function in quantum mechanics.
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Figure 4: Nondeterministic computation by descent on potential surface. The facility
of change in a given direction is shown by the length of the arrow (which is propor-
tional to the cosine of its angle with the negative gradient. The dotted line separates
impossible changes to the left from possible changes t o the right.

4 Emergent Rules

Certainly many cognitive processes can be described, at least approximately, by dis-
crete rules; these include language and discursive reasoning. How can continuous
neural network processes account for rule-like behavior? This is a large and impor-
tant topic, about which I can make only few remarks.

Rule-based information processing can be described in the following terms [9]: (1)
The state, or a part of the state, is classified into one of a finite number of distinct
situations. (2) From the classified situation certain limited index information, appro-
priate to the situation, is extracted, which refers to the particulars of the situation;
traditionally, we refer to the rule’s variables being bound to components of the situ-
ation. (3) The classification determines the rule to be applied, which creates a new
situation (from a finite set of possibilities) incorporating some or all of the particulars
indexed in (2). Thus, rule-like behavior can be described as the composition of two
functions. The first analyzes the state and projects it into a low-dimensional space
representing the classification of the situation and the index information. The second
function synthesizes the new state by means of the index information.

Now, the interesting observation is that a system will exhibit rule-like behavior
whenever it could be factored into two functions in this way, regardless of whether
the system actually projects the state into a low-dimensional space. In particular, a
system might be using only a low-dimensional subspace of what is in reality a higher-
dimensional intermediate representation. When this possibility is seen, ones realizes
that there is a whole spectrum of degrees of rule-like behavior [9]. For example, inter-
mediate states might be confined to the subspace most of the time, but occasionally
go outside of it. Further, the intermediate representation might only appear to be
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Figure 5: Implementation of Discrete-time Nondeterministic Process



lower dimensional, since most of the variation might be in a few dimensions, while
still having some variation in the other dimensions. Such possibilities may explain
the exceptions, subtlety and sensitivity of rule-like behavior in humans and other
animals.

The foregoing account of rule-like behavior provides the basis for an explanation
of how rule-like behavior may emerge and how (apparent) rules may be continuously
adaptive [9]. For example, if through ordinary neural network learning, a system
adapts to use only a low-dimensional subspace of the sort described, then the system
will exhibit rule-like behavior, even though it makes no use of rules. This may occur
if the system could be so factored (or approximately factored), that is, even if there
is no explicit intermediate representation.

Furthermore, such a set of “virtual rules” may reorganize by continuous adapta-
tion into a partially or completely different set of rules [9]. For example, through
adaptation the intermediate subspace might expand to occupy a larger part of the
whole intermediate space, and then contract again into a completely different sub-
space. Because the rules do not actually exist, and are only a descriptive device used
by observers of the system, the reorganization is more in our discrete description than
in the actual continuous system. At the beginning and end of the adaptive processes
the system might appear to be using different rule sets, but in fact no discrete rules
have been added or deleted (because there are no discrete rules).

5 Generative Specification of Well-formedness

In the theory of discrete formal systems it is usual to specify the set of WFFs by means
of a generative grammar, that is, a nondeterministic computational process that is
capable of generating all the WFF's from a fixed starting symbol. Since continuous
images are not typically constructed from atomic images, the generative approach is
less useful with continuous formal systems than with discrete, but it is still interesting
to consider how we might go about it.

Similarly to WEFs, we can define a (fuzzy!) set of well-formed continuous images
by specifying a nondeterministic process that generates them from a fixed initial im-
age. For a very simple example, if we wanted to generate normalized two-dimensional
vectors, we could start with the (0,0) vector and nondeterministically increase its
length until it’s approximately 1. For the guiding image of such a nondeterministic
process we could use a potential surface, V(x) = —f(1 — ||x||), where f increases
monotonically from 0 (Fig. 6). Note: Instead of expressing grammars by discrete
rules, we use guiding images.

For more complex, structured images, such as those found in visual perception and
language, we need ways of describing recursively-structured images. This is easily
accomplished for fields, or images extended over some continuum (typically some
Euclidean space). In such a case the domain of one field can be continuously embedded
in the domain of the other, and so the one image can be embedded in another. (Since
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Figure 6: A simple continuous grammar. Nondeterministic descent on this potential
surface from (0,0) generates normalized two-dimensional vectors.
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the result is required to be continuous, we must specify some “blending function”
to smooth the transition between the embedded and embedding images.) By such a
procedure an image may even be embedded in itself (at a smaller scale, of course, for
finite images).

To use these techniques for the generative description of well-formed images, we
must of course have some method of specifying where such embeddings are permitted.
Therefore, in general, certain qualities of the embedding image will constrain where
embeddings of various sorts are permitted, or we will have a separate “embedding
map,” generated in parallel to the embedding image, which provides this information.
Of course, by the continuity principle, there must be some fuzziness in the permis-
sibility of embedding. Further we will usually have a finite set of generative guiding
images for the embeddable images of various sorts, which may in turn permit embed-
dings into themselves. In summary, let it be observed again that the “grammar” for
the well-formed images comprises a set of guiding images.

6 Conclusions

In conclusion, I have shown, I hope, that by pursuing consistently continuous models
of information representation and processing, we are led to new perspectives that
will help us to understand information representation and processing in natural and
artificial recurrent neural networks. There is much work yet to be done, which should
be interesting as well as challenging, since we have centuries of experience in discrete
knowledge representation, but very little in its continuous analogues.
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