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Abstract

Connectionist approaches to cognitive modeling make use of large networks of simple
computational units, which communicate by means of simple quantitative signals. Higher-level
information processing emerges from the massively-parallel interaction of these units by means of
their connections, and a network may adapt its behavior by means of local changes in the strength
of the connections. Connectionist approaches are related to neural networks and provide a distinct
alternative to cognitive models inspired by the digital computer.
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Body text

Definitions

To facilitate the following discussion, it will be helpful to define some terms. A typical connectionist
network comprises a (potentially large) number of simple processing ‘units’. The units are often
called (artificial) neurons, but that terminology begs the question of their relation to biological
neurons, so it will be avoided here. In the most common case, the units form a weighted sum of
their (quantitative) inputs and pass the result through a simple, nonlinear ‘activation function’,
which limits the range of possible outputs. The resulting value is considered the ‘activity’ of the unit,
which may be transmitted to other units (through outgoing connections). In some cases the activity
of a unit is a combination of its inputs and previous activity, which provides a kind of short-term
memory residing in the collective activities of the units.

The weighted sum results from the fact that each connection in the network has an associated
‘weight’ (analogous to synaptic efficacy in biological neural networks), which multiplies the quantity
transmitted by that connection. Positive weights correspond to excitatory connections and negative
weights to inhibitory; zero-valued weights correspond to the absence of a connection.
Mathematically, connection weights are often treated as a ‘weight matrixX’ W, with element Wl.j



being the weight of the connection to unit i from unit j. Learning and adaptation take place by

modification of the weights according to some ‘learning algorithm’ (see below); thus the connections
constitute the network’s long-term memory. ‘Connectionism’ derives its name from the fact that
knowledge resides in the patterns and weights of the connections.

Many connectionist networks are organized into ‘layers’, analogous to functional areas in the brain;
information usually moves in lockstep from layer to layer. Although many networks are ‘feed-
forward’, that is, the information moves through successive layers from input to output, other
networks are ‘recurrent’, which means that there may be feedback connections from a layer to itself
or to earlier layers. Recurrent networks are able to recognize and process ‘temporally-extended
patterns’, that is, sequences of related inputs.

It must be stressed that there are exceptions to all of the preceding general statements about
connectionist networks, and connectionist approaches are best viewed as forming a Wittgensteinian
family resemblance.

History

A short history of connectionist approaches will be presented, first in the narrower context of
cognitive science and artificial intelligence, then in the broader context of epistemology, linguistics
and the philosophy of mind. Although the size of this article does not permit detailed citations of the
literature, many of the seminal articles are collected in Anderson and Rosenfeld (1988) and
Anderson et al. (1990). See also: Cognitive Psychology, History; Cognitive Science, History.

Narrower History

According to the second edition of the Oxford English Dictionary, the term ‘connectionism’ was first
used by E. L. Thorndike in his Fundamentals of Learning (1932) to refer to the reduction of mental
processes to the connections between stimuli and responses, that is, to a form of associationism,
and so connectionist theories have been set in opposition to cognitive theories. The term is used
somewhat differently now (so that ‘connectionist cognitive science’ is not an oxymoron), but retains
some similarities to associationism. However, to understand the relation it is better to look at
connectionism from the perspective of neural network models of cognition.

In the early 1940s W. S. McCulloch and W. Pitts investigated the computation of logical functions by
simple neuron-like elements; in effect they showed that these elements could compute logical ‘and’,
‘or’, ‘not’, and so forth. In his Organization of Behavior (1949) D. O. Hebb suggested that learning
takes place by the formation of ‘cell assemblies’, and that this occurs through the strengthening of
connections between simultaneously active neurons in neural networks, which are initially randomly
connected. His description of this process inspired one of the simplest connectionist learning rules
(see below).

In the late 1950s F. Rosenblatt began to investigate the application of simple neuron models called
‘perceptrons’ to perceptual problems such as classifying printed letters. He developed a learning
algorithm for simple (single-layer) perceptron networks, which iteratively adjusted the connection
weights (strengths) whenever the network made a mistake. He proved that if the network were



capable of solving the problem at all, then the algorithm would eventually find the connection
weights to solve it. However, there are many problems that a single-layer network cannot solve, and
Rosenblatt never succeeded in finding a multilayer learning algorithm.

A key event in the history of connectionism was the publication of M. Minsky and S. Papert’s
Perceptrons (1969), which demonstrated limitations of simple perceptron networks. Specifically,
they proved that single-layer perceptron nets could discriminate only those categories that are
‘linearly separable’ (see Perceptrons). Their proof did not apply to multilayer nets (for which there
was still no learning algorithm), but they suggested that similar limitations would be found for these
too. Nevertheless, their book was widely interpreted as showing the impotence of neural networks
in general, and is commonly blamed for discouraging research in the field for a decade. (The extent
to which it actually did so is, perhaps, a topic for historians of science.)

It will be worthwhile to comment on the role of holography in the development of connectionist
approaches. As early as 1929 K. S. Lashley had conducted experiments suggesting that individual
memory traces were not localized in any one place, and that degradation of memory was
proportional to the amount of cortical mass destroyed, thus implying that individual traces were
distributed over large areas of cortex. In a well-known 1950 paper, he despaired of ever
understanding how such a nonlocal memory could operate. The principles of holography had been
described by D. Gabor in 1949, but it was not until the advent of optical holography in the early
1960s that is began to be seen as a solution to Lashley’s dilemma. Although an analogy between
holography and memory had been suggested as early as 1963 by P. J. van Heerden, the holographic
hypothesis has been developed most extensively by K. H. Pribram and his colleagues since 1966 (see,
e.g., Anderson et al. (1990), ch. 7). In the late 1960s and early 1970s holographic and holography-
inspired models of associative memory were also investigated by H. C. Longuet-Higgins, D. J.
Willshaw and others. Some connectionists were influenced by the critiques of traditional, rule-based
Al by the phenomenologist philosopher H. L. Dreyfus (What Computers Can't Do, 1972). Although he
stressed the limitations of rule-based systems, he also explained that some of these limitations
would not apply to analog systems operating on principles similar to holography. See also:
Distributed Cognition; Memory Trace, Nature of; Models of Neural Basis of Learning and Memory.

Although a number of investigators (including J. A. Anderson, S. Grossberg and T. Kohonen)
continued connectionist research through the 1970s, the field was quiet until rejuvenated by the
work of D. E. Rumelhart, J. L. McClelland, and other members of the ‘PDP (Parallel Distributed
Processing) Working Group’. Many of their publications were collected in a widely-read two-volume
set (Rumelhart et al., 1986). The credibility of connectionist approaches was also enhanced by J.
Hopfield’s publication in 1982 of a simple recurrent net capable of associative memory and pattern
completion.

Broader History

Although connectionism can be viewed as an approach to knowledge representation and inference
of relevance only to cognitive science, in fact it has much broader implications, for it challenges
assumptions about knowledge that have been largely unquestioned since ancient Greek philosophy.
Already in the philosophies of Socrates, Plato and Aristotle there is a preference for knowledge
expressed as logical relations among discrete, language-like structures, and for a view of cognition as



mechanized deduction. These ideas influenced many later philosophers, including Hobbes (who
equated thinking with computation), Leibniz (who experimented with formalized systems of
knowledge representation and mechanical deduction), and Boole (who invented mathematical
logic). These ideas were also influential in the development of logical positivism, which dominated
the philosophy of science in the first half of the twentieth century. The idea persisted in the
assumption that there must be a ‘language of thought’, because it is ‘the only game in town’ (i.e., no
one could think of an alternative). Similarly, most research in artificial intelligence (Al) took for
granted that intelligence resides in the structures of a ‘knowledge representation language’ and in
deduction-like formal rules for their manipulation. Throughout the 1970s Al researchers
concentrated their attention on expert systems, which depended on expertise represented
symbolically (see Expert Systems). Disappointment with the performance of these systems was one
of motivations for the connectionist renaissance.

In summary, the Western tradition (with some exceptions) has displayed a kind of linguistic
chauvinism, which presumes that all knowledge and cognition can be expressed in language-like
structures. Knowledge is expressed at a ‘symbolic’ level, that is, in terms of atomic (indivisible),
word-level categories related by sentence-like logical structures. On the other hand, most
connectionist approaches represent knowledge as a ‘subsymbolic’ level, that is, in terms of minute,
quantitative features related by low-level, often statistical, connections. In other words, knowledge
is more akin to an image than to a sentence (see Imagery vs. Propositional Reasoning; Mental
Imagery, Psychology of). Therefore, some of connectionism's advocates see it as a fundamentally
new view of knowledge and cognition, which is leading to a paradigm shift in cognitive science and
philosophy and is engendering a new Al. Specific innovations of the connectionist approach are
discussed below. See also: Artificial Intelligence: Connectionist and Symbolic Approaches; Knowledge
Representations, Theory of; Production Systems, in Cognitive Psychology, Schemas, Frames and
Scripts, in Cognitive Psychology; Symbolic Approaches, in Cognitive Science.

Mechanisms of Adaptation and Learning

Virtually all connectionist approaches incorporate adaptive mechanisms or ‘learning algorithms’,
which allow the network to improve its performance; here a few will be discussed briefly.

Correlational Learning

‘Correlational learning’ (‘Hebb's rule’), the simplest connectionist learning algorithm, takes its
inspiration from Hebb’s hypothesis that the simultaneous activity of two neurons strengthens the
connection between them. It makes a change in connection weight proportional to the product of
activities of the units it connects. Thus, the change in the weight Wl.j of the connection to unit i

from unit j is proportional to y,x;, where y, is the activity of unit i and x; is the activity of j. This

learning rule can be viewed as a highly simplified model of long-term potentiation. See also: Long-
term Potentiation and Depression (Cortex); Models of Neural Basis of Learning and Memory;
Regulation of Synaptic Efficacy.

The effect of this rule is that the weight becomes a correlation coefficient between the activities of
the units it connects. That is, the connection will become stronger (more positive) to the extent that
the units are simultaneously positive or simultaneously negative. The connection will become more



inhibitory (more negative) to the extent that one unit is positive while the other is negative. If there
is, on average, no systematic relation between the activities of the two units, then the weight will
tend toward zero, effectively disconnecting the units.

The correlational learning rule is the basis of a simple associative memory known as a ‘linear
associator’. In this connectionist network, there are two layers of linear units, an input layer and an
output layer; each input unit is connected to every output unit, so that the output is a linear function

of the input, y = MX. A series of pairs of pattern vectors (yl,Xl),...,(yp,Xp) may be presented to

the input and output layers of such a network and the weights adjusted according to the learning
rule. The goal of the linear associator is that the network associate each X, with the corresponding

y, - In fact it can be shown that if the set of input patterns is orthogonal, then the output Wx, will

be proportional to the desired y, (see Linear Algebra for Neural Networks).

Delta Rule

An improvement called the ‘delta rule’ can be made in the linear associator; it illustrates a
fundamental approach to connectionist learning. The idea is that we define the error, as a function
of the weight matrix, as the sum of the differences between the desired and actual outputs of the

network, E(W)=2:D(yk,WXk). The weight matrix is then changed by ‘gradient descent’,

k

which means that the elements of W are changed in the relative proportion that causes a maximal

incremental decrease of E(W) .

If the difference between patterns is measured by Euclidean distance squared, D(y,y’) = ||y—y’||2

(that is, the sum-of-squares error), then the delta rule is essentially equivalent to linear regression. If
the input patterns are linearly independent, then the delta rule will converge to a weight matrix that
associates perfectly, y, = WX, . If they are not, then the weight matrix will be that which minimizes

the total error; that is, it will be the best linear prediction of the output patterns from the input
patterns (see Linear Algebra for Neural Networks).

The delta rule also illustrates an important characteristic of most connectionist networks: their
ability to generalize to inputs other than those upon which they have been trained. The delta rule
provides only linear generalization, but other algorithms, such as backpropagation (see below), can
make nonlinear generalizations. Typically, connectionist categories are represented by concrete
prototypes rather than by definitions in terms of necessary and sufficient conditions or other
abstract symbolic structures. Network behavior then depends on similarity to the prototypes rather
than on formal manipulation of symbolic structures.

Backpropagation

Gradient descent may be applied also to multilayer networks of nonlinear units, so long as the
activation function is differentiable. The ‘backpropagation algorithm’ (also called the ‘generalized
delta rule’) efficiently computes the weight changes by starting with the last layer and working
backward layer by layer. It has been rediscovered a number of times, perhaps first by P. Werbos in



1974, but its importance in connectionism began with its rediscovery in the early 1980s. There are
also special adaptations of backpropagation for recurrent networks. Backpropagation has a number
of limitations, including: (1) it may be quite slow, (2) it does not necessarily take the shortest path to
an error minimum, and (3) it may get trapped in local minima. Nevertheless, it remains a
fundamental learning algorithm and has been subject to many practical improvements. See also:
Backpropagation.

Other Learning Algorithms

The preceding are examples of ‘supervised learning’ procedures, which means that the correct
answer Yy, is available for each training input X, . Although this is appropriate for modeling some

cognitive processes and for many practical problems, for others ‘unsupervised learning’ is
preferable. In these procedures, the network is not trained to produce any specific outputs, but it
allowed to group or categorize inputs according to standards inherent in its design. Thus
unsupervised learning is often equivalent to some kind of statistical clustering. Between these two
extremes is ‘reinforcement learning’, in which the algorithm is told whether or not the output is
correct, but not what the correct output is. In unsupervised and reinforcement learning, as in
supervised learning, the network is normally expected to generalize to novel inputs reasonably.
There are now hundreds of connectionist learning algorithms, of greater and lesser relevance to
cognitive science and neuroscience, but this must suffice for an introduction. See also: Artificial
Neural Networks: Associative and Self-organizing.

Example: Learning Past Tenses

Since the early 1980s, connectionist networks have been used for an enormous number of practical
applications and for modeling many aspects of cognition. One notable example must suffice here;
see Rumelhart et al. (1986) for additional examples.

Rumelhart et al. (1986, Vol. 2, Chap. 18) trained a connectionist network to produce the past tenses
of English verbs. The inputs were vectors representing phonological features of the present tenses
and the outputs were vectors representing the phonological features of the corresponding past
tenses. Learning was observed to pass through three stages. In the first stage, the most common
verbs were learned, essentially by rote as individual special cases. In the second stage, the network
learned how to form regular past tenses (for it was able to generalize to novel regular verbs), but
over-generalized by treating the (previously correctly processed) irregular verbs as though they were
regular. In the third stage, the network (re)learned the correct formation of the irregular past tenses
without losing its ability to form regular past tenses. It is interesting and highly suggestive that
children pass through these same three stages; the model also exhibited errors of the same kinds
made by children.

Although this experiment can be (and has been) criticized on a number of grounds as a model of
language learning, it is perhaps more valuable as a demonstration of how a connectionist network
can exhibit apparently rule-like behavior, but not be following any explicit rules. In particularly,
exceptions to the rules are handled automatically without explicit accommodation. Thus it is
paradigmatic of connectionist cognitive models. See also: Connectionist Models of Development;
Connectionist Models of Language Processing.



Issues

Connectionist Representations

Connectionist approaches represent and process information in a way that is fundamentally
different from symbolic approaches, in which knowledge is represented in discrete structures
relating atomic lexical-level ‘features’ (i.e., categories of the sort for which natural languages have
words). In symbolic approaches, information is processed by formal logic-like rules, which rearrange
these atomic units of meaning. In connectionist approaches, on the other hand, information is
represented by patterns of activity distributed over large numbers of units, which individually have
no lexical-level meaning. The latter are often termed ‘microfeatures’, but they are fundamentally
different from features, which are supposed to be complete, context-free units of meaning.
Microfeatures are just components of distributed representations and are usually individually
uninterpretable.

Instead of rules, connectionist information processing is defined by quantitative connections
between microfeatures and takes place at a subsymbolic level (Smolensky 1988). Cognition then is
an emergent effect of large numbers of these interactions (which therefore constitute the
‘microstructure’ of cognition). Indeed, according to this account, apparent symbolic processing is
just such an emergent effect of these subsymbolic interactions.

Traditional (symbolic) models of knowledge have been criticized for their ‘brittleness’. That is, when
a set of rules is formulated in an attempt to model the behavior of some expert, it is generally found
that the rules do worse than the expert, since the expert applies rules flexibly and makes ad hoc
exceptions to them as required by the particulars of the situation. Of course, additional rules can be
formulated to cover the exceptions, but then these are likewise found to have exceptions, and so
forth. The attempt to reduce flexible behavior to inflexible rules leads to a combinatorial explosion
of possibilities which exceeds the capacities of brains and computers.

Connectionist approaches seem better able to account for the flexibility and context-sensitivity of
natural intelligence. This is because the connection weights function as a large number of ‘soft
constraints’, none of which are individually necessary or sufficient to produce a result. Therefore
connectionist networks can accommodate inputs that are exceptional in various ways, either by
ignoring the anomalous aspects, or by corresponding adjustment of their output. As a consequence,
their performance is also robust in the face of noise in the input or damage to the network. Further,
to the extent that microfeatures of the environment are represented in the input, the network can
process information in a way that is sensitive to the context. See also: Artificial Intelligence:
Connectionist and Symbolic Approaches; Concept Learning and Representation, Models;
Connectionist Models of Concept Learning; Knowledge Representation; Production Systems, in
Cognitive Psychology; Schemas, Frames and Scripts, in Cognitive Psychology; Symbolic Approaches, in
Cognitive Science.

Rules and Constituent Structure

Connectionist networks have been criticized for their ‘opacity’ or ‘uninterpretability’. That is, when a
connectionist network has been trained to perform some task, it is difficult to extract from the



network human-interpretable rules; although the network performs correctly, we cannot see the
rules it is apparently following. The reason of course is that it is not following rules, and the
individual units and weights represent microfeatures and constraints that are lexically meaningless
(i.e., have no lexical-level meaning). There are mathematical procedures for extracting rule-like
information from networks, but they give only approximations to the network’s behavior. This is
analogous to what has been observed during knowledge acquisition for expert systems: after the
fact, human experts can account in terms of rules for their decision making, but the rules do not
adequately predict the expert's future decisions.

Quite naturally, some of the severest criticisms of connectionism have come from linguists and other
cognitive scientists committed to a ‘language of thought’, that is, to the hypothesis that cognition
must be understood in terms of the manipulation of propositional or sentential symbolic structures.
These criticisms have focused on the alleged inability of flat connectionist representations to capture
the rich hierarchical symbolic structure of human language and propositional attitudes, and the
related sensitivity of cognition to their constituent structure. However, experiments in connectionist
symbol processing have shown that connectionist networks can be sensitive to the constituent
structure of representations without explicit representation of that structure and without the use of
explicit symbolic rules (as in the learning of past tenses). There is much more to the issue than this,
however, and the early collection by Pinker and Mehler (1988) is still a good introduction to the anti-
connectionist position. See also: Artificial Intelligence: Connectionist and Symbolic Approaches;
Connectionist Models of Natural Language Processing.

Computability

If connectionism is viewed as a fundamentally new approach to information representation and
processing, then the question arises of its power relative to conventional digital computation, as
modeled by the Turing machine. At one level this question is easy to answer. On one hand, since
connectionist networks are routinely simulated on digital computers, it is apparent that they have no
greater power than a Turing machine. On the other hand, researchers have shown that various sorts
of connectionist networks can simulate Turing machines, which therefore have no greater power
than the networks. The conclusion would seem to be that connectionist networks are equivalent to
Turing machines in computing power.

However, at a different level the question is problematic, for the Turing machine model is based on
certain idealizing assumptions about what is significant and insignificant in models of computation,
assumptions which are questionable when applied to connectionist models. In particular, the Turing
machine model is based on the assumption that computation proceeds by the recognition of atomic
tokens of definite type according to the discrete application of finite, definite rules; these processes
are assumed to operate with complete reliability. These assumptions are a poor match to
connectionist approaches, in which information is represented in distributed patterns of continuous
activity, and in which recognition is a matter of degree. Nevertheless, questions of computability are
also important in connectionism, but relevant answers may require the development of a new
theory of computation that makes idealizing assumptions more relevant to connectionist
approaches. See also: Theory of Computation.



Relation to Biological Neural Networks

Connectionist networks are often called ‘neural networks’ and described in terms of (artificial)
neurons connected by (artificial) synapses, but is this more than a metaphor? Generally,
connectionist models have reflected the contemporary understanding of neurons. For example,
McCulloch and Pitts focused on the all-or-nothing character of neuron firing, and modeled neurons
as digital logic gates. Newer connectionist models have had a more analog focus, and so the activity
level of a unit is often identified with the instantaneous firing rate of a neuron. However, these
models still ignore many important properties of real neurons, which may be relevant to neural
information processing (Rumelhart et al., 1986, vol. 2, Chap. 20). As a consequence neuroscientists
have stressed the differences between biological neurons and the simple units in connectionist
networks; the relation between the two remains an open problem. Nevertheless, it is much easier to
envision neural implementations of connectionist networks than of symbol-processing architectures.

Another divergence between biological neural nets and many connectionist models arises from the
topology of the layers. Although the neurons in a layer may be numbered 1,2,...,N, these labels
are arbitrary, and there is no implication that neurons 1 and 2 are any closer together in space than
neurons 1 and 3. In the brain, in contrast, many neural populations are organized into ‘topographic’
or ‘computational maps’ in which the physical positions of neurons is systematically correlated with
properties of some sensory or motor domain (e.g., position on the skin, location is the visual field,
edge orientation, sound frequency, reach direction). Neural representations often take the form of
spatially distributed fields of activity across these maps, and neural information processing in them
depends crucially on spatial relations through such mechanisms as local excitation and lateral
inhibition. Some connectionist models incorporate spatial relations, but many do not, and so they
might not be adequate models of natural cognitive processes and processes.

Situated Embodiment

Connectionist approaches share a weakness with symbolic computational approaches in that they
often treat cognitive processes as computations whose aim is to produce an appropriate output
given some input; cognition is treated as an abstract process. However, natural cognition is both
situated and embodied.

‘Situated’ refers to the fact that natural agents are embedded and engaged purposefully in a
structured physical environment (often including other agents). The situated approach focuses on
the effect that the structure of the environment and the agent’s ongoing interaction with it has on
the emergent cognitive structures that coordinate that interaction. Therefore, unsituated models,
such as many connectionist models, are fundamentally incomplete and unlikely to be able to
account for natural cognition. These issues can be addressed by embedding connectionist models
into situated robots or sufficiently realistic simulated environments.

Cognition is ‘embodied’ in the sense, first, that it is implemented by neurophysiological processes,
and so connectionist models should take account of that fact (see above). More importantly,
however, cognition is embodied in the sense that its principal function is the control of a physical
body in its environment. On the one hand, this means that biological neural networks must be
capable of controlling in real time the dynamical complexities of living bodies interacting with their
physical environments. On the other, it means that a biological control system can exploit the



dynamical properties of the body, thereby decreasing the computational load on its nervous system.
Both of these are important constraints on the architecture of biological neural networks and on the
structure of emergent neural representations, indeed, on the structure of knowledge. Due to its
neural orientation and respect for performance issues, connectionism is generally compatible with
an embodied approach, but most connectionist models do not address embodiment.

The benefits and limitations of embodiment are investigated in such disciplines as embodied
cognitive science and embodied Al; see Pfeifer and Bongard (2007) for a useful review.

Dynamical Systems Approach

The requirements of situated embodiment imply that an adequate theory of cognition must address
the real-time control of the coupled dynamics of the body and its environment. However typical
connectionist models incorporate a notion of sequence, but not of time. That is, the network is
understood as a functional composition in which each layer of units takes as input the output of the

preceding layer: y = D x))---]]). The network defines the sequence of computations,
y n n-1 2 1

but not their durations. Some recurrent connectionist networks produce sequences of outputs
¥,5¥,,... from corresponding sequences of inputs X,,Xx,,... by feedback of an internal state

variable r: y, = f(xi,ri_l), r= g(xi,};_l). However, such models do not address the essential

i
dynamical, real-time coupling of an agent’s nervous system, body, and environment. To address
these issues the ‘dynamical systems approach’ views neural networks as dynamical systems and
investigates issues such as stability and attractor dynamics that lead to the emergence of
representations (e.g., Thelen and Smith, 1994). In particular, dynamic field theory incorporates
dynamics and computational maps into connectionism. See also: Classical Mechanics and Motor
Control; Motor Control Models: Learning and Performance; Self-organizing Dynamical Systems.

See Churchland (1986) and Quinlan (1991) for an introduction to connectionist approaches. See also:
Connectionist Models of Concept Learning,; Connectionist Models of Development.

Cross References

See also: Artificial and Natural Computation; Artificial Neural Networks: Neurocomputation;
Connectionist Models of Concept Learning; Connectionist Models of Development; Mathematical
Learning Theory; Mathematical Learning Theory, History of; Mathematical Psychology; Mathematical
Psychology, History of, Neural Networks and Related Statistical Latent Variable Models; Neural
Networks: Biological Models and Applications.
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