
“Who Cares About Elegance?”

The Role of Aesthetics in

Programming Language Design∗

Bruce J. MacLennan

Computer Science Department

University of Tennessee, Knoxville

maclennan@cs.utk.edu

Abstract

The crucial role played by aesthetics in programming language design and the im-
portance of elegance in programming languages are defended on the basis of analogies
with structural engineering, as presented in Billington’s The Tower and the Bridge.

Keywords: programming language design, aesthetics, elegance, analysis, feature
interaction, efficiency, economy, pedagogy

1 The Value of Analogies

Programming language design is a comparatively new activity — it has existed for less than
half a century, so it is often worthwhile to look to older design disciplines to understand
better this new activity. Thus, my book Principles of Programming Languages: Design,

Evaluation, and Implementation, grew out of a study of teaching methods in architecture,
primarily, but also of pedagogy in other disciplines, such as aircraft design. Analogies have
also been drawn between programming languages and cars (Fortran = Model T, C =
dune buggy, etc.).

These analogies can be very informative, and can serve as “intuition pumps” to enhance
our creativity, but they cannot be used uncritically because they are, in the end, just
analogies. Ultimately our design decisions must be based on more than analogies, since
analogies can be misleading as well as informative.

In this essay I’ll address the role of aesthetics in programming language design, but I
will base my remarks on a book about structural engineering, The Tower and the Bridge, by
David P. Billington. Although there are many differences between bridges and programming
languages, we will find that many ideas and insights transfer rather directly.

According to Billington, there are three values common to many technological activi-
ties, which we can call “the three E’s”: Efficiency, Economy and Elegance. These values

∗This report may be used for any nonprofit purpose provided that its source is acknowledged. It will be

adapted for inclusion in the third edition of my Principles of Programming Languages.

1



correspond to three dimensions of technology, which Billington calls the scientific, social

and symbolic dimensions (the three S’s). We will consider each in turn.

2 Efficiency Seeks to Minimize Resources Used

In structural engineering, efficiency deals with the amount of material used; the basic crite-
rion is safety and the issues are scientific (strength of materials, disposition of forces, etc.).
Similarly, in programming language design, efficiency is a scientific question dealing with
the use of resources. There are many examples where efficiency considerations influenced
programming language design (some are reviewed in my Principles of Programming Lan-

guages). In the early days, the resources to be minimized were often runtime memory usage
and processing time, although compile-time resource utilization was also relevant. In other
cases the resource economized was programmer typing time, and there are well-known cases
in which this compromised safety (e.g. Fortran’s implicit declarations). There are also
many well-known cases in which security (i.e. safety) was sacrificed for the sake of efficiency
by neglecting runtime error checking (e.g. array bounds checking).

Efficiency issues often can be quantified in terms of computer memory or time, but
we must be careful that we are not comparing apples and oranges. Compile time is not
interchangeable with run time, and neither one is the same as programmer time. Similarly,
computer memory cannot be traded off against computer time unless both are reduced to a
common denominator, such as money, but this brings in economic considerations, to which
we now turn.

3 Economy Seeks to Maximize Benefit versus Cost

Whereas efficiency is a scientific issue, economy is a social issue. In structural engineering,
economy seeks to maximize social benefit compared to its cost. (This is especially appro-
priate since structures like bridges are usually built at public expense for the benefit of
the public.) In programming language design, the “public” that must be satisfied is the
programming community that will use the language and the institutions for which these
programmers work.

Economic tradeoffs are hard to make because economic values change and are difficult
to predict. For example, the shift from first to second generation programming languages
(e.g. Fortran IV to Algol 60) was largely a result of a decrease in the cost of computer
time compared to programmer time, the shift from the second to the third generation (e.g.
Pascal) involved the increasing cost of residual bugs in programs, and the fourth generation
(e.g. Ada) reflected the increasing cost of program maintenance compared to program
development.

Other social factors involved in the success or failure of a programming language include:
whether major manufacturers support the language, whether prestigious universities teach
it, whether it is approved in some way by influential organizations (such as the US Depart-
ment of Defense), whether it has been standardized, whether it comes to be perceived as a
“real” language (used by “real programmers”) or as a “toy” language (used by novices or
dilettantes), and so forth. As can be seen from the historical remarks in my Principles, so-



cial factors are frequently more important than scientific factors in determining the success
or failure of a programming language.

Often economic issues can be quantified in terms of money, but the monetary values of
costs and benefits are often unstable and unpredictable because they depend on changing
market forces. Also, many social issues, from dissatisfaction with poorly designed software
to human misery resulting from system failures, are inaccurately represented by the single
dimension of monetary cost. All kinds of “cost” and “benefit” must be considered in seeking
an economical design.

4 Elegance Symbolizes Good Design

“Elegance? Who cares about elegance?” snorts the hard-nosed engineer, but Billington
shows clearly the critical role of elegance in “hard-nosed” engineering.

4.1 For the Designer

It is well-known that feature interaction poses a serious problem for language designers
because of the difficulty of analyzing all the possible interactions of features in a language
(see my Principles for examples). Structural engineers face similar problems of analytic
complexity, but Billington observes that the best designers don’t make extensive use of
computer models and calculation.

One reason is that mathematical analysis is always incomplete. The engineer must make
a decision about which variables are significant and which are not, and an analysis may lead
to incorrect conclusions if this decision is not made well. Also, equations are often simplified
(e.g., made linear) to make the analysis feasible, and this is another potential source of
error. Because of these limitations, engineers that depend on mathematical analysis may
overdesign a structure to compensate for unforeseen effects left out of the analysis. Thus
the price of safety is additional material and increased cost (i.e. decreased efficiency and
economy).

Similarly in programming language design, the limitations of the analytic approach often
force us to make a choice between an under-engineered design, in which we run the risk
of unanticipated interactions, and an over-engineered design, in which we have confidence,
but which is inefficient or uneconomical.

Many people have seen the famous film of the collapse in 1940 of the four-month-
old Tacoma Narrows bridge; it vibrated itself to pieces in a storm because aerodynamical

stability had not been considered in its design. Billington explains that this accident, along
with a number of less dramatic bridge failures, was a consequence of an increasing use of
theoretical analyses that began in the 1920s. However, the very problem that destroyed
the Tacoma Narrows bridge had been anticipated and avoided a century before by bridge
designers who were guided by aesthetic principles.

According to Billington, the best structural engineers do not rely on mathematical
analysis (although they do not abandon it altogether). Rather, their design activity is guided
by a sense of elegance. This is because solutions to structural engineering problems are
usually greatly underdetermined, that is, there are many possible solutions to a particular
problem, such as bridging a particular river. Therefore, expert designers restrict their



attention to designs in which the interaction of the forces is easy to see. The design looks
unbalanced if the forces are unbalanced, and the design looks stable if it is stable.

The general principle is that designs that look good will also be good, and therefore the
design process can be guided by aesthetics without extensive (but incomplete) mathemat-
ical analysis. Billington expresses this idea by inverting the old architectural maxim and
asserting that, in structural design, function follows form. He adds (p. 21), “When the
form is well chosen, its analysis becomes astoundingly simple.” In other words, the choice of
form is open and free, so we should pick forms where elegant design expresses good design
(i.e. efficient and economical design). If we do so, then we can let aesthetics guide design.

The same applies to programming language design. By restricting our attention to
designs in which the interaction of features is manifest — in which good interactions look
good, and bad interactions look bad — we can let our aesthetic sense guide our design and
we can be much more confident that we have a good design, without having to check all
the possible interactions.

4.2 For the User

In this case, what’s good for the designer is also good for the user. Nobody is comfortable
crossing a bridge that looks like it will collapse at any moment, and nobody is comfortable
using a programming language in which features may “explode” if combined in the wrong
way (PL/I being the classic example). The manifest balance of forces in a well-designed
bridge gives us confidence when we cross it. So also, the manifestly good design of our
programming language should reinforce our confidence when we program in it, because we
have (well-justified) confidence in the consequences of our actions.

We accomplish little by covering an unbalanced structure in a beautiful facade. When
the bridge is unable to sustain the load for which it was designed, and collapses, it won’t
much matter that it was beautiful on the outside. So also in programming languages. If the
elegance is only superficial, that is, if it is not the manifestation of a deep coherence in the
design, then programmers will quickly see through the illusion and loose their (unwarranted)
confidence.

In summary, good designers choose to work in a region of the design space where good
designs look good. As a consequence, these designers can rely on their aesthetic sense,
as can the users of the structures (bridges or programming languages) they design. We
may miss out on some good designs this way, but they are of limited value unless both the
designer and the user can be confident that they are good designs. We may summarize
the preceding discussion in a maxim analogous to those in my Principles of Programming

Languages:

The Elegance Principle

Confine your attention to designs that look good because they are good.

5 The Programming Language as Work Environment

There are other reasons that elegance is relevant to a well-engineered programming language.
The programming language is something the professional programmer will live with — even



live in. It should feel comfortable and safe, like a well-designed home or office; in this way
it can contribute to the quality of the activities that take place within it. Would you work
better in an oriental garden or a sweatshop?

A programming language should be a joy to use. This will encourage its use and de-
crease the programmer’s fatigue and frustration. The programming language should not be
a hindrance, but should serve more as a collaborator, encouraging programmers to do their
jobs better. As some automobiles are “driving machines” and work as a natural extension
of the driver, so a programming language should be a “programming machine” by encour-
aging the programmer to acquire the smooth competence and seemingly effortless skill of
a virtuoso. The programming language should invite the programmer to design elegant,
efficient and economical programs.

Through its aesthetic dimension a programming language symbolizes many values. For
example, in the variety of its features it may symbolize profligate excess, sparing economy or
asceticism; the kind of its features may represent intellectual sophistication, down-to-earth
practicality or ignorant crudeness. Thus a programming language can promote a set of
values. By embodying certain values, it encourages us to think about them; by neglecting
or negating other values, it allows them to recede into the background and out of our
attention. Out of sight, out of mind.

6 Acquiring a Sense of Elegance

Aesthetics is notoriously difficult to teach, so one may wonder how to acquire that refined
sense of elegance necessary to good design. Billington observes that this sense is acquired
through extensive experience in design, which, especially in Europe, is encouraged by a
competitive process for choosing bridge designers. Because of it, structural engineers design
many more bridges than they build, and they learn from each competition they loose by
comparing their own designs with those of the winner and other losers. The public also
critiques the competing designs, and in this way becomes more educated; their sense of
elegance develops along with that of the designers.

In conclusion, I think we should say to students of programming language design: You
should design many languages — design obsessively — and criticize, revise and discard your
designs. You should also evaluate and criticize other people’s designs and try to improve
them. In this way you will acquire the body of experience and the aesthetic sense that you
will need when the “real thing” comes along.

7 References

1. Billington, David P., The Tower and the Bridge: The New Art of Structural Engi-

neering, Princeton: Princeton University Press, 1983. Chapters 1 and 6 are the most
relevant.

2. MacLennan, Bruce J., Principles of Programming Languages: Design, Evaluation, and

Implementation, second edition, New York: Holt, Rinehart & Winston (now Oxford
University Press), 1987.


