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Abstract 

Field computation deals with information processing in terms of 
.fields, continuous distributions of data. Many neural phenomena are 
conveniently described as fields, including neuron activity from large 
(brain area) to small (dendritic) scales. Further, it is often useful to 
describe motor control and sensorimotor coordination in terms of ex- 
ternal fields such as force fields and sensory images. We survey the 
basic concepts of field computation, including both feed-forward field 
operations and field dynamics resulting from recurrent connections. 
Adaptive and learning mechanisms axe discussed briefly. The appli- 
cation of field computation to motor control is illustrated by several 
examples: external force fields associated with spinal neurons (Bizzi 
& Mussa-lvaldi 1995), population coding of direction in motor cor- 
tex (Georgopoulos 1995), continuous transformation of direction fields 
(Droulez & Berthoz 1991a), and linear gain fields and coordinate trans- 
formations in posterior parietal cortex (Andersen 1995). Next we 
survey some field-based representations of motion, including direct, 
Fourier, Gabor and wavelet or multiresolution representations. Fi- 
nally we consider briefly the application of these representations to 
constraint satisfaction, which has many applications in motor control. 

1 Mot iva t ion  

My purpose in this chapter is to introduce the general concepts of field com- 
putation and to describe some possible applications of it to motor control. 
Field computation deals with continuous distributions of activity such as 
are found in the topographic maps and other functional areas of the brain 
(Knudsen et al. 1987), but also with external distributions of quantity, such 
as force fields. In field computation we are generally concerned with the 
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topology of the space over which a quantity is distributed; this contrasts 
with the common approach in neural network modeling, which treats neural 
activity as a vector, that  is, as quantity distributed over a space with no sig- 
nificant topology (since the axes are independent and, in effect, all equally 
distant from each other). 

After defining fields and surveying their occurrence in the brain, I will 
give a brief introduction to the mathematics of field computation and then 
consider several problems in motor control f rom the perspective of field 
computation. 

2 Fields 

2.1 D e f i n i t i o n  

For the purposes of field computation, a field is defined to be a spatially con- 
tinuous distribution of quantity. Field computation is then a computational 
process that  operates on an entire field in parallel. Often we treat  the field 
as varying continuously in time, although this is not necessary. 

It is sometimes objected that  distributions of quantity in the brain are 
not in fact continuous, since neurons and even synapses are discrete. How- 
ever, this objection is irrelevant. For the purposes of field computation, it 
is necessary only that  the number of units be sufficiently large tha t  it may 
be treated as a continuum, specifically, that  continuous mathematics can be 
applied. There is, of course, no specific number at which the ensemble be- 
comes "big enough" to be treated as a continuum; this is an issue tha t  must 
be resolved by the modeler in the context of the use to which the model will 
be put. However, since there are 146 000 neurons per mm 2 throughout most 
of the cortex (Changeux 1985, p. 51), it is reasonable to say that  activity in 
a region of cortex more than a square millimeter in size can be safely treated 
as a field. 

Mathematically, a field is treated as a continuous, usually real-valued, 
function r over some continuum fl, its domain or extent. For example, if ~ is 
a circular disk representing the retina, then for any point p E fl, r might 
be the light intensity at p. The field's domain has some topology (relations 
of connectivity and nearness); for example, the topology of the retina is a 
two-dimensional continuum. 
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2.2 R e a l i z a t i o n  in t h e  B r a i n  

There are several levels of neural activity that can be viewed as field com- 
putation. 

The most obvious fields, which are measured by multiple electrode record- 
ing or by noninvasive imaging, such as NMR, are those comprising the spik- 
ing activity of neurons. Since, as we have seen, there are 146 thousand 
neurons per square millimeter of cortex, regions of cortex of this size are 
more than big enough to be treated as continua (reasonably, a tenth of a 
square millimeter is more than large enough). Indeed, Knudsen et al. (1987) 
observe that computational maps in the brain may be as small as a square 
millimeter, and perhaps smaller. 

In cortical regions where the information is represented by impulse rate, 
the field is real-valued; thus r t) or ep(t) represents the instantaneous im- 
pulse rate at location p and time t. Recently Hopfield (1995) has argued that 
information may be represented by a combination of impulse frequency and 
phase (relative to a global "clock" field or to other neurons); in some cases 
at least, the phase represents an analog value and the amplitude represents 
its importance. In such cases it's natural to treat the field as complex- 
valued, with the complex number's phase angle representing the impulse 
phase and its magnitude representing the impulse amplitude. Thus we write 
ev(t) - %(t)eiep(t), where %(t)  is the time-varying amplitude and Or(t) the 
time-varying phase. Synapto-dendritic transmission of such a field, which 
affects both its amplitude and phase, can be represented as multiplication 
by a constant complex number. For example, suppose a field ~ = zr re- 
suits from transmitting field r through synapses z v - wpe lip that introduce 
amplitude change w v and phase shift ~p. Then, 

ev(t) -[wpeir ap(t)eWp (t) -[wpav(t)]e@p(t)+r 

More compactly, r = (weir w) - (wa)ei(i+~ This encoding allows the 
soma potential to combine both the analog values and the importance of 
signals arriving at the synapses. 

At the next level down we can consider the synaptic fields associated 
with one neuron or a group of neurons. For example, ep(t) represents the 
time-varying activity (measured, for example, by presynaptic potential or 
by neurotransmitter flux across the synapse) of synapse p. Certainly a pyra- 
midal cell with 200 thousand synapses on its dendritic tree can be said to 
have a synaptic field, and even neurons with smaller numbers of inputs can 
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treated as processing fields. The topology underlying the field is determined 
by the dendritic tree, so in many cases the synaptic field cannot be treated 
separately f romthe  dendritic field (discussed next). 

When we view the neuron at the level of the dendritic fields, we are 
concerned with the time-varying electrical potential field over the dendritic 
membrane. This varies continuously from point to point on the membrane 
and is determined by the detailed morphology of the dendritic tree. To a 
first approximation, field computation in the dendritic tree can be treated 
as a linear system (MacLennan 1993). 

Finally, there are fields at larger scales. For example, the phase delays 
discussed by Hopfield (1995) may be relative to "the phase of an oscillating 
field potential" in an area (Ferster ~: Spruston 1995). Further, there are 
global brain rhythms (a, 0 etc.). 

All the preceding fields are dynamic, changing on times scales of mil- 
liseconds or faster. It is often worthwhile to consider fields that are static or 
that change on slower time scales (for example, through learning or adap- 
tation). Such fields are represented in the connectivity patterns between 
neurons and in patterns of synaptic efficacy. For example, suppose that a 
topographic map A projects to a topographic map B in such a way that  the 
activity r of a neuron at location u in B depend on the activities r  
of neurons at locations v in A, and that the strength of the dependence is 
given by Ku,. In the simplest case we have a linear dependence, 

r  K,,,r 

which we may write as a field equation, r = Kr The "kernel" K of 
this operator defines a connectivity field between A and B. 

2.3 R e d u c t i o n  of  D i m e n s i o n  

The cortex can directly represent "two-and-one-half dimensional" axonal 
fields. By "two-and-one-half dimensional" we mean a discrete stack of two- 
dimensional continua; for example, we might have six continua correspond- 
ing to six layers in the cortex. (Although synaptic and dendritic fields are 
embedded in three-dimensional space, the complex structure of the den- 
dritic tree gives them a more complex non-Euclidean topology, therefore the 
notion of dimension is not directly applicable to them.) Some fields are nat- 
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urally two dimensional, for example, a light intensity field over the retina or 
a pressure field over the skin. 

There are many cases where the cortex must represent fields defined 
over more than two dimensions. For example, since cells in VI are selective 
for orientation (~ as well as retinal position (r, 0), the activity fields are 
naturally three-dimensional, r 0, (~). Furthermore, there is substantial 
evidence (surveyed, for example, in MacLennan 1991) that  they are sensitive 
to spatial frequency f as well, so we actually have four-dimensional fields 

0, 1). 
In these cases, representation in the cortex requires that  the field be 

reduced to two dimensions in a way that  does as little violence to the prox- 
imity relations as possible. The simplest way to do this is to "slice" the 
field, as we might slice a pepperoni, and arrange the pieces in a plane. More 
generally, the field must be cut into "nearly two-dimensional" parts that  
can then be arranged systematically in a plane. This is one reason for the 
striate and columnar structure found in many brain areas. 

Non-Euclidean fields are found in neuropil (the dense nets comprising the 
tangled dendritic trees of many neurons) and other places where the pattern 
of connections alters the effective distance between points of activity. Such 
fields may be defined over spaces with unusual (e.g. nonmetric) topologies 
since, for example, the distance a signal must travel in going from A to B 
may be different from the distance from B to A. 

2 .4  E x t e r n a l  F i e l d s  R e l e v a n t  t o  M o t o r  A c t i v i t y  

Not all the fields of interest are in the brain. When investigating motor 
activity we also have to consider the musculo-skeletal system as well as 
fields external to the animal. Further, for sensory-motor coordination we 
have to include various sensory fields (e.g., visual, proprioceptive, auditory, 
vestibular). Here I'll look briefly at three examples (discussed in more detail 
in section 6). 

First, premotor circuits in the frog spinal column have associated con- 
vergent force fields in the vicinity of the frog's leg; the activation of multiple 
circuits creates a linear superposition (sum) of these fields, and the result- 
ing convergent force field guides the leg to a fixed destination independently 
of its current position (Bizzi ~z Mussa-Ivaldi 1995). This is a kind of field 
computation, except that  the purpose is not the computation of abstract 
quantities, but the generation of concrete physical forces. Nevertheless, the 
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mathematics of field computation can be used to describe and analyze the 
motor system. 

One way to understand (nondiscursive) action planning is in terms of 
environmental potential fields, an approach which has been useful in both 
robotics (e.g., Khatib 1986, Rimon &: Koditschek 1989) and neuroscience 
(e.g., Hogan 1984). In moving from one place to another we naturally select 
a path that minimizes some notion of work. We avoid obstacles, of course, 
and generally try to have a minimum path length, but this strategy may be 
modified by judgments of the ease of passage, etc. For example, we may go 
around a hedge even though the shortest path is through it; the path around 
minimizes work (broadly defined). Our knowledge of a region of space can 
be represented by a potential field in which the height of the potential at 
a location reflects the difficulty in going through that location. As will be 
described later, field operations can be used to find (in parallel) an inexpen- 
sive path through the potential field, and to revise the path dynamically if 
the potential field is discovered to be inaccurate (e.g. we find a large mud 
puddle in our path). 

The potential field is not limited to encoding environmental difficulty; it 
can also represent internal constraints, such as the range or facility of motion 
of joints and limbs. Further, the potential field can be defined over nonspa- 
tial continua, to allow planning paths through more abstract "spaces." 

Finally, Sanger (submitted) has explained how neural population codes 
can be interpreted in terms of conditional probability density fields (CPDFs) 
defined over possible stimuli. Each neuron has a CPDF that corresponds to 
its receptive field; the CPDF of a population over s short time interval is 
given by the product of the CPDFs of the neurons firing in that interval. 

3 Field Operations 

3.1 D e f i n i t i o n  

The primary defining feature of field computation is that it operates on an 
entire field in parallel. For example, operations that process a retinal image 
in parallel, or which generate a spatial or motor map in parallel, are clear 
examples of field computation. On the other hand, a process that generates 
one or a few scalar signals sequentially in time is not considered field com- 
putation (except in a degenerate or trivial sense). The point is not to have 
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a clear and. absolutely precise demarcation between field computation and 
non-field computation - -  it is fundamentally a matter  of degree - -  but to 
distinguish field computation as a style of computation from computation 
that  is scalar or low-dimensional. The operational criterion is the ability to 
apply continuous mathematics to the spatial distribution of quantity. 

In this section we consider field operations, which are commonly imple- 
mented by nonrecurrent or feed-forward connections between brain areas. 
That  is, a pattern of activity r over an area A at time t causes a pattern 
of activity r  = F[r over an area S at a slightly later time t'. More 
generally, activity pattern r  over region B depends on earlier activity 
patterns Cx, . . . ,  Cn over regions A 1 , . . . ,  An: 

r = F [ r  r  

where ~1, . . . ,  ~n are fixed delays. Field operations may be classified as linear 
(including multilinear) or nonlinear. 

3.2 L i n e a r  O p e r a t i o n s  

A process is linear when its response to a superposition of inputs is the super- 
position of its response to the inputs taken separately, L(r + r  "+r = 
Lr + Lr + - - .  + LCn. We must remark that  there can be no purely linear 
processes in the nervous system, for if there were, it would mean that  a 
response to twice the input is always twice the response to the single input, 
and likewise for any amplification of the input, L(cr = cLr This cannot 
happen, for neurotransmitters become depleted, the firing rates of neurons 
are limited by their refractory period, etc. Therefore, processes in the ner- 
vous system are at best saturating linear, that  is, approximately linear until 
nonlinear saturation effects begin to dominate. In neuroscience, linearity is 
always an approximation, adopted for its mathematical convenience. 

3.2.1 D o m a i n  C o o r d i n a t e  T r a n s f o r m a t i o n  One of the simplest lin- 
ear transformations is a domain coordinate transformation, which are usually 
implemented by the anatomical pattern of projections from one area to an- 
other. These operations transform the coordinates of the field's domain, thus 
distorting the shape of the field, perhaps for some information processing 
end or for a more efficient allocation of "neural real estate." (An exam- 
ple, the "logmap transformation" in the primary visual cortex, is discussed 
below.) 
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In general, if h  9 A " B is a mapping from coordinates in region A to 
coordinates in region B, then the activity field r defined over B, which is 
induced by activity field r over A, is given by r o h = r that is, for any 
coordinates p E A, r = r Thus, if we ignore scaling of amplitudes, 
the activity induced by the projection at h(p) in B is equal to the source 
activity at p in A. Most such coordinate transformations are "one-to-one 
and onto," in which cases we can define the induced activity field directly: 
~ =  r  or 

r = r 

for all q E B. That is, the activity at q in B is given by the activity at 
h -1 (q) in A. (Note that  the field transformation from r to r is linear even 
if the coordinate transformation h is not.) 

For example, a coordinate transformation, the logmap transformation 
(Baron 1987, pp. 181-186), takes place between the retina and its first 
projection in the primary visual cortex (VI). If retinal coordinates are rep- 
resented by a complex number z in polar coordinates (giving an angle and 
distance from the center of the retina), then the field r in VI is related to 
the retinal field r by 

r  = 

where e z is the complex exponential function. The effect of this is r r, 0) = 
r 0), that is, radial distance is transformed logarithmically. 

In addition to devoting more "neural real estate" to the center of the 
retina, this transformation has the effect of converting rotations and scale 
changes of centered images into simple translations (Schwartz 1977, Baron 
1987, ch. 8). To see this, note that if r = r is a scaled version of r 
then the corresponding VI field is 

~'(log z) = r - r - r sz) - r s) + (log z)], 

which is ~b(logz), the image of qS, translated by log s. Similarly, if r - 
cp(e i~ is a rotation of r through angle 0, then the corresponding field is 

r  - = r  = r + log  

which is r z), the image of r translated by 0 (in a perpendicular direc- 
tion to the other translation). 
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3.2.2 R e p r e s e n t a t i o n  in an  O r t h o g o n a l  Bas is  Most of the linear 
operators of interest to neuroscience can be computed efficiently by neu- 
ral networks. 1 This is because such operators have an or thonormal  set of  
e igenfunct ions  e1, ~2, . . . with associated eigenvalues )~1, )~2, . . . .  Therefore 
the operator can be written as a summation" 

Lr  = ~ ,kk(r r162 
k 

a procedure we call fac tor ing a l inear operator through a discrete space. 
This is an infinite sum, but there are only a finite number of eigenvalues 
greater than any fixed bound, so that  the operator can be approximated 
by finite sums. The computation r = Lr  is accomplished in two steps. In 
the first, inner products are formed between the input field and each of the 
eigenfunctions Ek yielding a finite-dimensional vector c, given by ck = ~k" r 
Each of these inner products could, in principal, be computed by a single 
neuron. This step effectively represents the input in a finite-dimensional 
vector space, that  is, in a space with no significant topology (i.e., the axes 
are independent, none are nearer to each other than to the others). In 
the second step, the computed coefficients are used to amplitude-modulate 
the generation of fixed fields (specifically, the eigenfunctions), which are 
superposed to yield the output  field: r = ~kCkAkek" This computation, 
likewise, can be computed by a single layer of neurons. 

Even if the eigenfunctions of the operator are not known, in practical 
cases the operator can still be factored through a discrete space, since it 
can be computed via a finite-dimensional representation in terms of any or- 
thonormal basis for the input space. First compute the coefficients by inner 
products with the basis functions, ck = ~ k ' r  (accomplished by neurons with 
receptive fields ~k). A finite-dimensional matrix product, d = Mc  is com- 
puted by a single-layer neural network with fixed interconnection weights: 

Mjk = / 3 j .  L~k.  

Again, topological relations between the vector and matrix elements are not 
significant, so there are few constraints on their neural arrangement. The 
output is a superposition of basis functions weighted by the computed dj, 
~" = ~ j  d j~j  (accomplished by neurons with output  weight patterns/~j).  

1Specifically, they are Hilbert-Schmidt operators, to which the following remarks apply. 
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Computing the linear operator by means of the low-dimensional space 
spanned by the basis functions avoids the biologically unrealistic dense (all- 
to-all) connections implicit in the direct computation of the operator: r  
fa LxyCydy. (The preceding results are easily extended to the case where 
the input and output spaces have different basis fields.) 

3 .3  M u l t i l i n e a r  O p e r a t i o n s  

Multilinear operations are functions of two or more arguments that  are lin- 
ear in each of their arguments separately. The most common multilinear 
operations are bilinear, that  is, linear in each of two arguments. Again, 
no biological process can be purely multilinear, since its linearity must be 
limited by saturation and other consequences of the biology. 

3.3.1 C o n v o l u t i o n  and  co r r e l a t i on  Twoclosely-related bilinear oper- 
ations that  are especially important  for information processing are convolu- 
tion and correlation. In the simplest case, correlation can be described as a 
comparison of two fields at all possible relative positions. More specifically, 
if X is the correlation of two one-dimensional fields r and r  X = r * r  
then x(r) reflects how well r and r match (in an inner-product sense) when 
relatively displaced by r. 2 Mathematically, 

x(r) = / a  r - r)r (1) 

Higher dimensional correlations are the same, except that  r is a relative 
displacement vector rather than a scalar. 

Convolution, X = r | r  is essentially the same as correlation, except 
that  the field r is reflected before the comparison takes place: 

x ( r ) - / a  r  s)r (2) 

Convolution is useful because: (1) its algebraic properties are more like mul- 
tiplication, and thus more familiar, than correlation; and (2) many physical 
processes (e.g. linear systems, such as dendritic nets) perform convolutions. 

2Correlation can be defined relative to other kinds of transformation besides displace- 
ment, and to other measures of similarity besides the inner product; see MacLennan (1994) 
for details. 
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3.3.2 P a t t e r n  Man ipu l a t i on  One reason correlation and convolution 
are of interest is that  they can be used for pattern recognition and genera- 
tion. For example, the correlation r 1 6 2  will have peaks wherever the pattern 
r occurs in field r (or vice versa); occurrences of patterns less similar to r 
(in an inner-product sense) will cause lesser peaks. Thus correlation r  r 
returns an activity pattern representing the spatial distribution in r of fields 
resembling r 

This operation is approximately reversible. Suppose that  7 is a radial 
field, such as a Gaussian, with a single narrow, sharp maximum. Convolving 
7 with a pattern r has the effect of blurring r by 7 (i.e. smoothing r by a 
window of shape 7): 

(~ | r - / ~  7(~- u)r 

Further, if 7 is first displaced by r, then the effect of the convolution is to 
blur r and displace it by r: 

(T~7) | r = T~ (7 | r 

[The Tr operation translates (displaces) a field by r: Trr - r  r).] 
Finally, since convolution is bilinear, if r is a field containing a number of 
sharp peaks at various displacements rk, then r | r will produce a field 
containing blurred copies of r at corresponding displacements: 

r 1 7 4 1 6 2  = | r = ~ ( T ~ )  | r = ~ T~(~ | r 
k k 

(The convolution of a superposition is a superposition of the convolutions.) 
Such an operation could be used for constructing a representation of the 
environment for motion planning. For example, if ~ is the shape of an 
obstacle retrieved from memory, and ~ is a map of the location of obstacles 
of this kind in the environment, then r | r represents the approximate 
boundaries of such obstacles in the environment. 

3.3.3 Convo lu t ion  Connec t ions  Since convolution and correlation are 
bilinear operators, that is, linear in each of their arguments, if one of the 
arguments is relatively fixed (as it would be, for example, when a sensory 
signal is correlated with a learned pattern), the operator is linear in its other 



48 B. MacLennan 

argument: r 1 6 2  = Lr  for fixed r Patterns of neural connectivity are often 
equivalent to a convolution or correlation with a fixed field. For example, 
the dependence of the activity at B~ on the activity at Av might fall off as 
some simple function (e.g. Gaussian) of the distance between u and v, or as 
some more complex (e.g. nonsymmetrical) function of the relation between 
u and v. In the former case we have a radial connectivity field ~([[v - ul[), 
in the latter a connectivity kernel a ( v -  u). In either case, the contribution 
of region A to the activity at Bu can be written fa ~v_~,r Therefore, 
the field r contributed to B by A is defined 

r = fa  a~_~r 

which is ~ | r the convolution of the (unvarying) connectivity kernel 
with the activity field r 

Viewing such connectivity patterns as convolutions may illuminate their 
function. For example, by the "convolution theorem" of Fourier analysis, the 
convolution r = ~ | r is equivalent to the multiplication ~(t)  = gq~(t), 
where ~ ( t ) a n d  ~(t)  are the Fourier transforms (over the space domain) of 
the activity fields and K is the Fourier transform of the connectivity kernel. 
Thus ~(t)  represents the spatial frequency spectrum, at time t, of activity in 
region A, and K represents a (comparatively unvarying) spatial frequency 
"window" applied to this activity by its connectivity to B. For example, if 

is a Gaussian, then K is also Gaussian, and the effect of the connections 
is spatial low-pass filtering of the activity in A. 

Many linear operators on fields can be approximated by convolutions 
implemented by neural connectivity. We will illustrate this with one useful 
operator, the derivative. Suppose we have a one dimensional field r and 
we want to compute its derivative r = r It happens that  the derivative 
can be written as a convolution with the derivative of the Dirac delta func- 
tion 3 (MacLennan 1990): r = ~ | r Like the Dirac delta, its derivative 
is not physically realizable, but we can compute an approximation that  is 
adequate for neural computation. To see this, suppose that  we low-pass fil- 
ter r before computing its derivative; this is reasonable., since the frequency 
content of r is limited by neural resolution. In particular, suppose we filter 
r by convolving it with a Gaussian 7; thus we will compute the approximate 

3The Dirac delta is a "generalized function" that has the value zero everywhere except 
at the origin, where it has the value infinity. 
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derivative r = ~' | (7 | r But convolution is associative, so this is equiv- 
alent to r - (~ | 7) | r The parenthesized expression is the derivative of 
the Gaussian function, so we see that  an approximate derivative of a field 
can be computed by convolving it with the derivative of a Gaussian (which 
is easily implemented through neural connectivity): 

r ~ 7 ' | 162  

The derivative is approximate because of the filter applied to r the transfer 
function of which is the Fourier transform of 7, which is itself Gaussian. 

It should be noted that such an analysis can be applied when regions A 
and B are coextensive, and so no real "projection" is involved. For example, 
A and B might represent two populations of neurons in the same region, so 
that  the connectivity field ~ or L reflects how cells of type B depend on 
neighboring cells of type A. Indeed, A and B might be the same  cells, if we 
are describing how their recurrent activity depends on their own preceding 
activity and that  of their neighbors. Thus we might have a linear differential 
field equation of the form r = ~; | r or, more generally, r = LC(t). 
(See Section 4 for examples.) 

3.3.4 C o n v o l u t i o n  over  T r a n s f o r m e d  C o o r d i n a t e s  In the defini- 
tions of correlation and convolution, Eqs. 1 and 2, the expressions s -  r and 
r -  s show us that  these operations are sensitive to distance and direction 
in the domains of the fields, that  is, they depend on the coordinates over 
which the fields are defined. For example, if ~p results from r by a coor- 
dinate transformation, ~b = r o h - t ,  then the results of convolving r with 
a Gaussian 7 will not be the same as the results of convolving r with V- 
The convolution 7 | r averages over regions that  are circular in r domain, 
whereas 7 | ~ averages over circular regions in r  domain. For example, 
because of the logmap transformation between the retina and VI, a Gaus- 
sian convolution in VI will not have the effect of a Gaussian convolution in 
retinal coordinates or vice versa. This sensitivity of convolutions and corre- 
lations to the coordinate system can be a problem that  needs to be solved 
or a computational resource that can be exploited. 

Suppose we have two domains f2 and f~' such that  fields over Q' are trans- 
formations of fields over f2; let h : f2 > f2' be the coordinate transformation 
(an isomorphism). For example, f2 and f2' might be two brain regions (such 
as the retina and VI), or one or the other might be an external region (such 
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as physical.space around the body). Let (~ and r be two fields over ~ and 
suppose we want to compute the convolution r = (r | r for example we 
might want to do a Gaussian convolution in retinal space. However, suppose 
that  the convolution is to be computed by means of fields defined over the 
transformed domain ~ ' .  We are given the transformed (I) = r o h -1 and 
want to compute ~ so tha t  ~ o h = r = (~ | r We can get this by changing 
the integration variable of the convolution (assumed to be scalar to keep the 
example simple): 

V(~) = (~ | r -~(~)],  
J h  

j (  ~[h -~ (~)-  ~]r 

- , ~ [ h  -1  (u)  - h -~  ( v ) ] r  -~  (v)]  h,[h_~ ( v ) ] '  

[ ~[h -~ (,~) - h-~ (,,)] 
~I,(v)dv. Ja , h'[h-~(o)] 

If we define the connectivity field 

A ~  = 
. [ h  - '  (~) - h - ,  (0)] 

h,[h-~(,)]  

then the convolution integral becomes 

 9 ,, =/~,  A,~,~,~dv, 

which is the integral operator, ~ = A(I). This is a linear operator, but not a 
convolution, which means that  it is still implemented by a simple pattern of 
connectivity, but tha t  it is not a single pattern duplicated throughout the 
region. (If, as is often the case, the transformation h is a homeomorphism, 
then it will preserve the topology of ~,  which means that  a local convolution 
a in ~/will translate into local connections A in 12'.) 

We remark without proof that  if the domains are of more than one 
dimension, then the connectivity kernel is defined 

Auv -- (~[h -1  (u)  - h -1  (v)]  J[h -~ (v) ] ,  

where J[h-l(v)] is the Jacobian of h -1 evaluated at v. 
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Now, conversely, suppose we do a convolution  9 - F | (I) in the trans- 
formed coordinates; what is its effect in the original coordinates? By a 
similar derivation we find that  r = C r  where the kernel is defined 

= r[h(x) - h(y)] J[h(y)]. 

In effect, the convolution kernel F is projected backward through the trans- 
formation h. For example, if, like the logmap transformation, h expands 
the space in the center of the visual field and compresses it at the periph- 
ery, then the back-transformation of F will result in a C that  defines small 
receptive fields near the center of the visual field, and large ones near its 
periphery. 

4 F i e l d  D y n a m i c s  

The field operations considered above are examples of nonrecurrent oper- 
ations, typically implemented by feed-forward connections between neural 
areas. In this section we will consider recurrent operations, which are typ- 
ically implemented by feed-back or reciprocal connections. Thus there are 
dynamical relations between several areas that  govern the variation in time 
of one or more fields; these processes are especially important in motor con- 
trol, since time-varying motor fields in the central and peripheral nervous 
systems must be generated to control physical movement. 

Field dynamics are most conveniently expressed by differential field equa- 
o 

tions, in which the time-derivative r of a state field r is given as a function 
of the current state field r  and some, possibly time-varying, input field 
r 

r = Fie(t) ,  r 

More generally, we may have a system of state fields Ck, k = 1 , . . . ,  m, each 
evolving under the influence of each other and one or more input fields Ck, 
k = 1 , . . . , n .  Thus, 

~k(t) - F k [ r  era(t); Cx(t) , . . . ,  Cn(t)]. 

(For purposes of mathematical modeling, equations involving second- and 
higher-order time derivatives can be placed in this form by adding state 
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fields to explicitly represent derivatives, in which case we must carefully dis- 
tinguish fields represented in neural tissue from those introduced for math- 
ematical convenience.) As before, we may distinguish between the cases in 
which the dependence is (approximately) linear or not. 

4.1 L i n e a r  D y n a m i c s  

In the (approximately) linear case F can be separated into two linear op- 
erators L and M operating on the state and input, respectively; the time 
derivative of the state is a superposition of the results of these operations: 

- Lr  + Me.  

Next we'll consider several important examples of linear field processes. 
A diffusion process is defined by a linear differential field equation: 

= k2V2r 

where the Laplacian is defined- 

02r 
= 

k 

and the summation is over all the dimensions xk of the extent of r 
Many useful computations can be performed by diffusion processes; for 

example chemical diffusion processes have been used for finding minimum- 
length paths through a maze (Steinbeck et al. 1995). Also, diffusion equa- 
tions have been used to implement Boltzmann machines and simulated 
annealing algorithms, which have been used to model optimization and 
constraint-satisfaction problems, such as segmentation and smoothing in 
early vision, and correspondence problems in stereo vision and motion esti- 
mation (Miller et al. 1991, Ting & Iltis 1994). 

Ill the brain, diffusion processes, implemented by the spreading activa- 
tion of neurons, could be used for planning paths through the environment. 
For example, a diffusion process is approximated by a network in which each 
neuron receives activation from its neighbors, without which its activity de- 
cays. Thus the change in activity of neuron x is given by 

( 1 ) r  
n i 
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where r axe the activities of its n neighbors xi. More clearly, writing (r 
for the average activity of its neighbors, 

~x = k2 ((r -- Cx). 

The averaging process can be accomplished by convolution with a radial 
function, such as a Gaussian: 

= k | r - r  

Constraints on the path (impassable regions) are represented by neurons 
whose activity is inhibited; relatively impassable regions can be represented 
by neurons that  are only partly inhibited. 

4.2 N o n l i n e a r  D y n a m i c s  

In the nonlinear case, the variation in the state field r is a nonlinear function 
F of the state and the input field r 

r = F[r  r 

Many computational processes, especially optimization processes, can be 
described by gradient descent; this is most commonly seen in low-dimensional 
vector spaces, but applies as well to field computation, as will now be ex- 
plained. Often the suitability of a field r for some purpose can be measured 
by a scalar function U(r (for reasons that will become apparent, we will 
take lower numbers to represent greater suitability). For example, r might 
represent an interpretation of sensory data and U(r might represent the 
internal incoherence of that interpretation (so that the lowest U(r gives the 
most coherent r More relevantly, r might represent a motor plan of some 
kind, and U(~b) the difficulty, in some sense, of that plan. Then minimizing 
U(~b) gives an optimal plan. By analogy with physical processes, U(r is 
called a potential function. 

One way to find a state ~b that minimizes U is by a gradient-descent 
process, that is, a process that causes r to follow the gradient VU(r of the 
potential. The gradient is defined: 

OU 
(vu)  = o r  
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(where, for notational convenience, we treat the field r as a high-dimensional 
vector). The gradient VU(r is a field (over the same domain as r giving 
the "direction" of change that most rapidly increases U, that is, the rela- 
tive changes to areas of r that will most rapidly increase U. Conversely, 
the negative gradient - V U  gives the direction of change that most rapidly 
decreases U. (This is because V is linear and so V ( - V )  = -VU. )  

In a gradient-descent process the change of state is proportional to the 
negative gradient of the state's potential: 

= 

(The constant r determines the rate at which the process takes place.) The 
resulting "velocity" field r is called a potential flow. 

It is easy to show that a gradient-descent process cannot increase the 
potential, and indeed it must decrease it unless it is at a (possibly local) 
minimum (or other saddle point). In this way gradient-descent can be used 
for optimization (although, in general, we cannot guarantee that a global 
minimum will be found). 

A common, special case occurs when the potential is a quadratic func- 
tion: 

v ( r  = r 1 6 2  + p.  r + a, 

where by r 1 6 2  we mean the quadratic form: 

r 1 6 2  r162 

The coupling field Q, which is of higher type than r (i.e., Q is a field over 
12• is required to be symmetric (Qxy = Q~x). In this case the gradient 
has a very simple (first degree) form: 

v u ( r  = 2Q~ + p, 

where, as usual, Q~ is the integral operator (Qr  = fa Qxyr In many 
cases p = 0 and gradient descent is a linear process: 

Notice that - Q , y  represents the coupling between regions x and y of 
the state field and therefore how the potential varies with coherence between 
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activity in these parts of the field. If Qxy > 0 then the potential will be lower 
to the extent Cx and r covary (are positive at the same time or negative 
at the same time) since then -r _ 0; if Qxy < 0, the potential will 
be lower to the extent they contravary. Thus - (QO)x gives the change to 
Cx that maximally decreases the potential according to the covariances and 
contravariances requested by Q. 

5 Learning 
Representations of motion patterns can be quickly learned and adapted 
by a variety of field computational methods; many involve the extraction 
of frequency-domain information from example motions (by application of 
inner-product or filtering techniques). Invariances in sensorimotor coordi- 
nation can emerge similarly from simple correlational adaptive algorithms. 
Since an adequate treatment of field-computational approaches to learning 
is beyond the scope of this paper, I will give just two examples of the field- 
computational approach. 4 

5.1 C o r r e l a t i o n a l  L e a r n i n g  

Many familiar neural network learning algorithms, including correlational 
(Hebbian) and back-propagation learning, are easily transferred to the field 
computation framework. For example, Hebbian learning rules can be de- 
scribed in terms of an outer product of fields, r A r 

( r  A = 

(Notice that if r is a field over fl and r is a field over 12', then r A r is 
a field over 12• For example, simple correlational strengthening of an 
interconnection kernel K resulting from pre- and post-synaptic activity fields 
r and r is given by/~" = r r A r where r is the rate. Such a process might 
occur through long-term potentiation (LTP). 

Recent studies (surveyed in Singer 1995) indicate that moderately weak 
positive correlations cause synaptic efficacy to be weakened through long- 
term depression (LTD), while very weak connections have no effect on effi- 
cacy. For (biologically realistic) non-negative activity fields, the change in 

4See Section 6 for a discussion of some representations and MacLennan (1994) for 
example adaptive algorithms. 
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the intercoanection matrix is given by/'~" = r v ( r  A r where the upsilon 
function is defined: 

v(x) = tanh a(x - O) - 

tanh fl(x - ~/) + 1 

When z > O, v(x) > 0 and LTP results, but as x drops below 0, v(z) 
becomes negative, achieving its minimum at x = T/; further decreases of z 
cause v(x) to approach 0. (The slopes in the LTP and LTD regions are 
determined by ~ and ft.) 

5.2 G r a d i e n t  D e s c e n t  

In general, if F(pl, . . . ,  p,~; r  Cn) - F p ( r  Cn) is some field compu- 
tational process governed by parameters p l , - - - ,  pn (such as synaptic weights), 
and if M[r  r Fp ( r  Cn)] is some performance measure for F on 
the input fields r162  then for fixed r 1 6 2  we may define a po- 
tential field #Up = M[r  Cn; Fp ( r  Cn)] over the parameter space. 
If smaller values of M represent better performance, and if M is bounded 
below (i.e., there is a best performance), then we can do gradient descent 
on the parameter space, 15 = - r V # .  

The same analysis can be applied when F is parameterized by one or 
more fields (typically, interconnection fields). In this case, gradient descent 
occurs by gradual modification of the parameter fields. For example, in 
the case of one parameter field, #u~ - M[r  Cn; F~( r  Cn)], the 
descent is given by r = - r V # .  Of course, more sophisticated hill-descending 
algorithms can also be implemented by field computation. 

6 Examples of Motor Field Computation 

6.1 E x t e r n a l  F o r c e  F i e ld s  a n d  M o t o r  B a s i s  F i e l d s  

Bizzi & Mussa-Ivaldi (1995) survey experiments showing that regions in the 
spinal chord of the frog define associated force fields in the vicinity of the 
leg; that  it, microstimulation of that spinal region causes the leg to exert a 
consistent force, which depends on the position of the leg, thus defining a 
force field over its range of motion. They further show that microstimulation 
of multiple spinal regions create a force field that is the linear superposition 
(sum) of the individual force fields, and that this superposition determines 
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the location to which the leg moves. Specifically, a time-varying force field 
F(t)  results from a linear superposition of time-varying basis fields Ck(t), 
each generated by a premotor circuit in the frog's spinal chord: 

F ( t )  =  kCk(t). 
k 

As few as four convergent force fields Ck are sufficient to generate a wide 
variety of resultant fields. 

6 .2  P o p u l a t i o n  C o d i n g  o f  D i r e c t i o n  

Georgopoulos (1995) surveys research on population coding in motor cortex 
of the direction of arm motion. The population codes are naturally treated as 
fields, and the transformations of directions are simple field computations.  
We consider a region fl in motor cortex in which activity is observed in 
anticipation of reaching motions. Each cell u E fl has a preferred direction 
Du in three-dimensional space. Cell activity r falls off with the cosine of 
the angle 8u between the reaching direction r and the preferred direction 
D~. Since (for normalized vectors) the cosine is equal to the inner product  
of the vectors, r .  D~ = cos0u, we can express the activity: 

Cu = a + br. Du, (3) 

for some constants a and b. 5 Thus the motor cortex represents a vector 
field D of the preferred directions, and the population coding of an intended 
motion r is a scalar activity field r .  D given by the inner product of the 
motion with the preferred-direction field. 

There is another way of looking at the population coding r of a motion r, 
which is sometimes more illuminating. Since all the neurons have the same 
receptive field profile, we may rewrite Eq. 3 in terms of a radial function ~o 
of the difference between the preferred and intended direction vectors: 

Cu = Q ( D u -  r), 

where 
= a + b - blJvil /2. 

5For a typical case shown in Georgopoulos (1995, Fig. 32.1) and normalized vectors, it 
appears a ~ 30 impulses/sec, and b ~ 20 impulses/sec. 
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This is .because the Euclidean distance is related to the inner product in a 
simple way- 

a + b -  bllD~ - r[12/2 = a q- b - b(lID~ll 2 + Ilrll 2 

= a + b D ~ . r  

= a + b c o s 0 ~  

- 2 D ~ .  r ) / 2  

(provided [Ir l l -  1 = IID~Ii). 
Now let r be the direction field, defined over three-dimensional space, 

that  corresponds to r Tha t  is, the value of r at neural location u equals the 
value of ~b at spatial location Du, or r = CD~, which we may abbreviate 
r = r o D. For simplicity we suppose D is one-to-one, so we can define 
by r = r o D -1. Notice that  D effects a change of coordinates from neural 
coordinates to three-dimensional space. The direction field r can also be 
expressed as the result of convolving the receptive field ~o with an idealized 
direction field ~r, a Dirac delta, which has an infinite spike at r but is zero 
elsewhere: 

r174 
This is because convolving Lo with ~r effectively translates the center of ~o to 
r; equivalently, the convolution blurs the idealized direction field ~r by the 
receptive field profile ~o. 

6 .3  C o n t i n u o u s  T r a n s f o r m a t i o n  of  D i r e c t i o n  F i e l d s  

There is considerable evidence that  humans and monkeys are able to con- 
tinuously transform images for various purposes. Aside from introspection, 
such evidence comes from the behavioral experiments pioneered by Shep- 
ard (e.g. Shepard & Cooper 1982) and, more recently, from direct neuronal 
measurement of motor cortex (surveyed in Georgopoulos 1995). 

Droulez & Berthoz (1991b) give an algorithm for the continuous trans- 
formation of direction fields, specifically, for the updating, when the eye 
moves, of the remembered location, relative to the retina, of an ocular sac- 
cade. 6 Suppose the field r is a population code in retinal coordinates for 
the destination of the saccade. If in time At the eye moves by a vector Ar  

6This process may take place in the superior colliculus, frontal eye field or posterior 
parietal cortex (Droulez & Berthoz 1991b). 
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in retinal coordinates, then the field encoding the destination of the saccade 
must be updated according to the equation 

r  + t + = t). 

Eye motion is assumed to be encoded by a two-dimensional rate-encoded 
velocity vector v, which gives the eye velocity in retinal coordinates. It is 
easy to show that 

r + At) = r + At v .  vC(t). (4) 

(The gradient Vr points in the direction of the peak, provided there is only 
one peak; if there are multiple targets, it points to the nearest target.) This 
equation, which gives a discrete update after a time At, can be converted ~ 
into a equation for the continuous updating of r by taking the limit as 
At ~' 0: 

This can be understood as follows: Since v represents the motion of the eye 
relative to the retinal field, - v  represents the direction in which the field 
peak should move. In front the peak (that is, in its direction of required 
movement), the gradient, which points toward the peak, points in the op- 
posite direction to - v .  Therefore - v - V r  at that point will be negative, 
which means that r = v .  Vr > 0, and the field intensity in the front of 
the peak increases. Conversely, behind the peak the gradient points in the 
same direction as the required movement, s o - v .  Vr > 0, which means 

= v .  Vr < 0, and the field intensity on the back of the peak decreases. 
Therefore, the peak moves in the required direction. 

Equation 4 must be recast for neural computation, since the vector field 
Vr has to be represented by two neural populations (for the two dimensions 
of retinal coordinates). Thus we write 

0r 0r 
V" V r  -- V X ~  x -~ t~y~yy. 

Since the neural population is discrete and the neurons have receptive 
fields with some diameter, the neural representation imposes a low-pass 
filter on the direction field. Writing 7xy for a two-dimensional Gaussian, the 
filtered field can be written 7xy | r and substituted into Eq. 4: 

r  = 7 x y | 1 7 4 1 6 2  

= 7xy | r ~- A t  Vx i)x § i)y 



60 B. MacLennan 

As we've.seen, the derivatives of the filtered field can be written as convo- 
lutions with derivatives of Gaussians, so O(Txy | r  = 7~x | r where 7~x 
is a derivative of a Gaussian along the x-axis and constant along the y-axis. 
Thus, 

r  -~- At)  -- ~xy (~ ~) ~- At(Vx')'tx ~) r "~" ?)y')'y (~) r 

Significantly, when Droulez & Berthoz (1991b)started with a one-dimensional 
network of the form 

a | 1 6 2  v f l | 1 6 2  

and trained it, by a modified Hebbian rule, to compute the updated popu- 
lation code, they found that  after training a was approximately Gaussian, 
and ~ was an approximate derivative of a Gaussian. 

Droulez & Berthoz (1991a) suggest biologically plausible neural circuits 
that can update the direction field r which can be expressed in field com- 
putational terms as follows. A field of interneurons S (sum) forms the sum 
of ~he activities of nearby neurons, S = 7xy | r while interneuron fields 
Gx and Gy estimate the partial derivatives by a means of excitatory and 
inhibitory synapses, Gx = 7tx | r Gy = 7y | r Next, a field of interneurons 
P (product) computes the inner product of the velocity vector and the field 
gradient by means of conjunctive synapses: P = vxGx + vyGy. The neu- 
rons in the direction field compute the sum of the S and P interneurons, 
which then becomes the new value of the direction field, r = S + P. Thus 
Droulez 8z Berthoz's (1991a) proposed neuronal architecture corresponds to 
the following field equations, all implemented through local connections: 

S = 7 . y | 1 6 2  

Cx = 
a y  = 

P = v,,Gx +vyGy,  
r = S + P  

6.4 F i e l d s  A s s o c i a t e d  w i t h  P o s t e r i o r  P a r i e t a l  C o r t e x  

Andersen (1995) surveys research indicating that the transformation from 
retina-centered coordinates to head-or  bodv-centered coordinates can be 
understood in terms of fields associated with neurons in area 7a of the pos- 
terior parietal cortex. When the eye position is fixed, these neurons exhibit 
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an ordinary, receptive field (defined over retinal coordinates) in their response 
to a stimulus. On the other hand, when the position of the stimulus on the 
retina is fixed, then these neurons exhibit a response that  varies linearly 
with eye position; this is described by a linear gain field, defined over eye 
position, and has a characteristic direction. Specifically, a linear gain field 
)~ is described by a direction vector d, which is its gradient, d = Vs thus, 
Ap = d .  p at all positions p. Under normal conditions the response of the 
neuron is a product of the receptive field and the linear gain field, and so 
its response is defined over the four dimensions of retinal and eye position. 
The result is a neuron tuned to particular locations in head-centered space, 
but only for certain ranges of eye position. Therefore, single neurons cannot 
encode locations in head-centered space, but a field of neurons can combine 
their responses into a population code for head-centered locations. The re- 
sulting field has a well-defined minimum in head-centered space, which can 
represent the destination of a motion (such as a saccade) and, by means of 
its gradient, a path to that  destination. 

Andersen (1995) also surveys studies of ocular motion planning in the 
lateral intraparietal area of the posterior parietal cortex (see also Goodman 
& Andersen 1989). Microstimulation of neurons create eye movements that  
can be described as vector fields (giving the direction and amount of motion) 
over head-centered coordinates. Three kinds of fields V are typically found: 
(1) constant vector fields (Vp = v for all locations p), (2) vector fields of 
constant direction but decreasing amplitude (Vp = (vTpv) +, that  is, the 
positive part of vWpv), and (3) weakly convergent vector fields, which rarely 
reverse direction. On the other hand, in simulation studies, microstimulation 
of two or more neurons created strongly convergent motion fields by vector 
summation of the individual fields of the neurons. The gradient of such s 
field defines the paths, in head-centered space, to the location defined by 
the minimum. 

6.5 P r o b a b i l i t y  D e n s i t y  F u n c t i o n s  

Sanger (submitted) argues for the interpretation of neural activity in terms 
of external (sensory or motor) conditional probability density functions 
(CPDFs) corresponding to their generalized receptive fields. Thus, a neuron 
i has an associated CPDF ai defined over some bounded range 12 of exter- 
nal phenomena. In particular, the firing of neuron i represents phenomenon 
x E 12 with conditional probability ai(x). Clearly, such a CPDF is a field, 
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and so we s say that each neuron has an associated conditional proba- 
bility field. The conditional probability field associated with a population 
of neurons can then be defined in terms of field operations on the fields of 
the constituent neurons. For example, Sanger shows that over small time 
intervals (such that spiking is relatively unlikely), the field of the population 
is a product of the fields of the neurons that spike in that interval: 

O'p~ -" 1.~ O'i~ 
iEspike 

where I'I represents a pointwise product of the fields, 6rpop(X ) ---- l 'IiEspike 6ri(X)" 
Further, Sanger shows that for any smooth mapping y = f ( z ) ,  there is a 
corresponding piecewise linear mapping on the probability fields Py and Px, 
which is given by an integral operator, P~ = KPx. 

7 R e p r e s e n t a t i o n  o f  M o t i o n  

7.1 I n t r o d u c t i o n  

There are several ways that motion can be represented in fields and gener- 
ated through field computation. Each has advantages and disadvantages in 
terms of efficiency of representation, flexibility and other factors. 

7.2 D i r e c t  ( S p a t i a l )  R e p r e s e n t a t i o n  

One of the simplest ways to represent a trajectory r is by direct spatial 
encoding of the time dimension; then the trajectory can be read sequentially 
from the fixed field. (This process is like playing an audio tape.) More 
precisely, suppose r is a time-varying field defined over an extent 12 
(that is, u E f~), and we want to generate it over the relative time interval 
t E [0, T]. Let h : [0, T] " f~' be a mapping from the time interval to 
another domain of spatial extension; then the trajectory r is encoded by 
a fixed field V~v over 12 x f~ defined by: 

h(t)] = 

The field r is "read out" by sweeping v from h(0) to h(T). 
Since the area of the field r is proportional to the duration of the signal 

r such a representation is feasible only for signals that are comparatively 
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smooth with respect to their duration. (Specifically, by the Nyquist theorem, 
there must be as least two representational units v per unit time for the 
highest frequency component of r 

7.3 F r e q u e n c y - d o m a i n  R e p r e s e n t a t i o n  

Frequency encoding generates a signal r from its (discrete or continuous) 
Fourier transform ~, which is represented spatially. Suppose we have a 
signal r of duration T (or periodic with period T); write it as a discrete 
Fourier series: (2~kt ) 

-  9 ( 5 )  

k=0 T 

(The number of coefficients n is determined by the Nyquist frequency" twice 
the highest frequency in r 

The signal then is determined by the amplitude fields c q , . . . ,  an and the 
phase fields r  Cn (together they constitute the discrete Fourier trans- 
form 9). The signal is generated by using them to control the amplitude 
and phase of a "bank" of sinusoidal signal generators, in accord with Eq. 5. 
(Of course, it's not essential that the signal generators be sinusoidal, since 
the Fourier expansion can be done in terms of any orthonormal basis.) 

The approach is easily extended to the continuous Fourier transform; 
write 1 /~m~x 

r  (t) = ~ J --tOmax ~u~ dw. 

Now define a one-dimensional field of signal generators, e,~(t) = e-i'~t/2rr, 
implemented, perhaps, by pairs of neurons in quadrature phase; then the 
signal is constructed by 

/ ~max 

~b~(t)- ~Pu~v~(t)dw- ~,,c(t) 
�9 .' - - C O m a x  

which..we may abbreviate r  ~e. 
The Fourier representation is especially appropriate when frequency- 

domain transformations need to be applied to the signal, or when the signal 
is periodic (since only one cycle needs to be encoded). If the Fourier rep- 
resentation is translated by Aw along the frequency axis, then the overall 
duration of one cycle changes T > T/ (1  + Aw/w)  (so an increase of fre- 
quency leads to a decrease of duration and vice versa). Conversely, the 
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dura, tion of the signal cannot be cha.nged without changing its frequency 
content (since the fundamenta.1 frequency is the reciprocal of the duration). 

7 .4  G a b o r  R e p r e s e n t a t i o n  

We have seen that a field can represent a trajectory in either the time domain 
o1" the frequency domain. Since each ha.s its advantages and disadvantages, 
often a. combined representation is more suitable. In such a representation 
we ha.ve a time-varying spectrum. 

The foundation for such a representation was laid fifty years ago by Den- 
' 1  nis Ga, ~or. who also received the Nobel Prize for his invention of holography. 

Gabor (1946) observed that we perceive sound in terms of amplitude and 
pitch simultaneously, that is, auditory perception is not entirely in the time 
domain or the frequency domain. He showed that any signal of finite dura,- 
tion and bandwidth could be decomposed into a. finite number of elementary 
information units, which he called logons'. Ea.ch such unit controls the am- 
plitude and phase of a Gabor elementary function, which is a.n elementary' 
signal localized in time and frequency. The relevance of this to motor control 
is that a.ny motor control signal has a calcula.ble Gabor-information content, 7 
which determines a. finite number of coefficients necessa.ry a.nd sufficient to 
generate tha t  signal. Pribram et al. (1984) and Pribram (1991, 139-144) 
l)rovide evidence for Gabor elementary functions in motor control. 

More precisely, at time t the measurement of a frequency component f 
in a signal will require that  the signal be Saml)led for some finite dura.tion 
At. Further, the uncerta.inty A f  in the measured frequency will be less 
the longer the signal is sampled. Indeed, Gabor proves A t A f  >_ 1/4~r (the 
so-called Gabor Uncertaillty Principle ).S (An intuitive presentation of the 
proof can be found in MacLennan 1991.) Therefore A t A f  - 1/4~r defines 
the maximum possible definition of a (finite duration, finite bandwidth) 
signal. A signal of duration T and bandwidth F ca.n be divided into a finite 
number of elementary "'information cells" of (luration ,kt a.nd ba.lldwidth ,'_kf, 
each localized at a different time and frequency. Each cell has an associated 
complex coefficient, which gives the phase a.nd amplitude of the signal in 

. 

: 'Gabor ' s  notion of informal ion is not i.he sanle a.s Shannon ' s :  they are complemen-  
larv  ra ther  than mutual ly  exclusive. See ~ lacLennan  (1991) and c i ta t ions  therein for a 
~liscussio~. 

~The precise constant, l/4r in this case. del',encis on the quantification of the uncer- 
! aint.v of Jnea.-~uretnent ( MacLenna~t 1991 ). 
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the corresponding cell. Let M = T / A t  a.nd N = F / A f ;  then there are 
M N  elementa.ry information cells; in Gal)or's terms, the signal represents 
M N  logons of information, namely, the M N  coefficients associated with the 
cells. 9 This is the most information that ca.n be represented by the signal, 
and these M N  complex coefficients a.re sufficient to regenera.te the signal 
(which is its relevance for motor control). 

Let the cells be la.beled ( j ,k)  for j = 0 , . . . , 2 1 4 -  1 and k = 0 . . . , N -  
1. Then cell ( j ,k )  is centered at time j /_St and frequency k A f.  Each 
cell corresponds to a Gabor elementary function localized to that  time and 
frequency, one form of which is a Gaussian-modulated sinusoid: 

Gjk(t, 0) = exp 
-r( t  - jAt) 2] ,,32 cos[2r kA f ( t  - j a r  - r 

where :3 - 2~/~, Lt  - ,kf  / 2v/r, (the standard devia.tion of the Gaussian 
is .~t). A signal g,(t) is then a superposition of these elementary functions 
with amplitudes O'jk and phase delays r 

31-1 N - 1  
~,(t) - ~ ~ o,j,.ajk(~, Cjk). 

j=0  k=0 

The coefficients O'jk and r  a r e  determined uniquely by the signal g,. 
The Gabor representation shows us how a signM ca.n be generated from 

the control coefficients O'jk and Cjk" during the j t h  time interva.l of length 
_kt we use the coefficients to control a bank of Gaussian-modula.ted sinusoid 
generators (at frequencies k A f);  ajk controls the amplitude of generator k 
and ojk controls its phase. 1~ 

Although the clocking out at discrete time interva.ls of the coefficients 
is not impossible, it may seem a little unna.tural. This can be avoided by 
replacing the discrete matrices ( a j k )  and (oik) by continuous fields. In this 
al)proach the Gabor elementary function generators operate on a continuum 

9For technical reasons (see MacLennan 1991), these M N complex coefficients comprise 
only.2:ll  :V -- _~f, as opposed to 2MN.  independent real coefficients. 

1~ is an additional complication in that  the Gaussian envelopes extend outside 
the nominal At (=  standard deviation} widths of the elementary function. This could be 
solved l)v two or three banks of generators activated in rotation; however a better  solution 
lies in the Gabor transform, discussed below. 
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of frequencies in the signa.l's bandwidth" 

Grv(t r  - T r ( t - r ) 2 ]  , /3 2 c o s [ 2 r v ( t -  r - r 

The outl)ut signal is then generated by an integration: 

$ ( t ) = jfoT jfo F ~ r G . ~ ( t ,  r  

In fact, the output can be generated by a temporal convolution of the control 
fields and a bank of Ga.bor signal generators, but the details will not be 
presented here. It might be objected that  the control fields a and r would 
occupy more neural space than either a direct or Fourier representation, but 
the control fields are relatively low resolution and may be represented more 
compactly. The inequality ,,.Xt A f  > 1/4rr gives the tradeoff in required 
resolution between the time and frequency axes of the control fields. 

,,Unlike the Fourier representation, the Ga.bor representation allows fre- 
quency content and rate to be controlled independently. Thus the amplitude 
and phase fields (a., O) can be "clocked out" a.t a. different rate from that 
a.t which they were stored, or even at a. varying rate, without affecting the 
moment to moment frequency content of the signal. Conversely, shifting 
the representing fields (a.,r along the frequency axis shifts the frequency 
content of the signal, but does not affect its duration or the time-evolution 
of its spectrum. That is, the rate or time-evolution of the signal can be 
controlled independently of the frequency band in which it is expressed. 

7.5 Wavelet & Multiresolution Representat ions  

The Gabor representation uses the same temporal resolution At in each 
frequency band ft-. However. a. At that is a. good resolution at a. low fre- 
tluenc.v lllay n o t  be a good resolution at a high fi'equency. Therefore, in a 
m,ltir~sol~ttios~ representatiol~ higher frequency bands may have a smaller 
(finer) _.it than lower frequency bands. Of course, the Gabor relationship 
,_kt ',_k.f >__ 1 /4r  still holds, so the frequency resohtt.ion A f  must increase 
(i.e. become coarser) at higher frequencies. This is often acceptable, how- 
ever, since the ratio of ._if to the fi'equency remains constant (so this is also 
called a "'constant Q'" representation, since Q = A f  / f) .  

In the most common arrangement, the central frequencies of the fre- 
quency bands increase by powers of 2, fk = 2k f0- Therefore, the widths of 
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the frequen~:y bands also increase by powers of 2, Ark = 2kAf0, but the time 
resolutions decrease (become finer) by powers of 2, Ark - 2-kAt0. In this 
case the elementa.ry functions are generated by contracting and translating 
a. single mother wavelet: 

WjkCt)-  W00[2k(t- j At0)], 

for j = 0, . . . ,  2kT/Ato and k = 1 , . . . , N .  The Ga.bor elementary function, 
or a slight variant of it called the Morlet wavelet, can be used as a mother 
wavelet. The signal then is represented by a. linear superposition of wavelets: 

N 2kT / Ato 

k=0 j=0 

The generation of the signal is controlled by the triangular array of coeffi- 
cients cjk. Like the continuous Gabor tra.nsform, there is Mso a. continuous 
wa.velet transform that represents the coefficients in a. continuous field. Also 
like the Gabor transform, the wavelet transform allows independent control 
of frequency content and time-evolution. However, because of the essen- 
tially exponential measurement of frequency (2 k in the wa.velet vs. k in the 
Gabor), tra.nslation along the frequency axis causes dilation or compression 
of the signal's spectrum. A shift of Af  changes the instantaneous spectrum 
front ~ ( f )  to ~(f/2al).  Much more could be said about the information 
processing affordances of these representations, but it is beyond the scope 
of this paper. 

7.6 C o n s t r a i n t  s a t i s f a c t i o n  

7.6.1 R e p r e s e n t a t i o n  as po ten t ia l  field Ma.ny problems in motor 
control involve the satisfaction of constraints: in some cases the sa.tisfaction 
is inherent in the mechanics of the motor system (and satisfaction takes 
pla.ce through execution of the motion), but in others, such a.s path plan- 
ning, tile optimum is (letermined before motion begins and may need to be 
revised as exigencies arise during its execution. 

As already discussed (Sections 2.4 and 4.2), constraints on motion are 
represented conveniently by a potential field over a spatial map. The po- 
tential field representation is quite general. For example, in addition to the 
representation of hard constraints, increased l)otential can represent the rel- 
ative difficulty of motion through a region of spa.ce. In this way, a path 
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can be chosen tha t  minimizes "work" (a.s defined by the potential  function). 
Further,  the potential can be defined over abstract  spaces; for example,  plan- 
ning a path through a "le~cal  space" could be a. part  of sentence generation. 
We will consider several ways in which an optimal path can be found by field 
computat ion.  

7.6.2 L e a s t  A c t i o n  P r i n c i p l e s  There are many physical "least action 
principles," in which local behavior (of a particle in a field, for example) 
causes the minimization of some global measure of "action" (e.g., t ime, 
distance, energy dissipation, entropy generation). 11 These processes are 
often governed by fields, and therefore some optimization and constraint- 
sa.tisfaction processes in the brain may be implemented through correspond- 
ing field computat ions.  12 One example will be discussed briefly. 

In the same way that  electromagnetic radiation (such as light) "sniffs 
out" in parallel a minimum-t ime path through space (Fermat ' s  Principle), 
so ~lso neural impulse trains can find a minimum-time path through a neural 
network. If transmission delays encode the difficulty of passage through a 
region of some (concrete or abstract)  space, then the pulse train will follow 
the path of least difficulty, and it will automatically shift in parallel to a 
new opt imum if regions change in difficulty; it is not necessary to reinitiate 
the path .planning process fi'om the beginning. 

This works because, near an opt imum path, the cost does not vary, to a. 
first approximation,  with small perturbations of the pa.th, thus the impulses 
passing near to the optimal path tend to stay in phase. On the other hand. 
farther away fi'om the opt imum the cost does vary, to a first approximation,  
with small per turbat ions,  so impulses on nearby paths tend to differ in phase. 
As a result the signals along nonoptimal paths tend to cancel each other out,  
so only the signals along near-optimal paths have significant amplitude.  13 
When difficulties change, the signals near the new opt imum tend to reinforce 
each other,  while those that  are no longer near an opt imum begin to cancel 

11 For a clear, insightful introduction to least, action principles, it. is difficult to do better 
than Feynman et al. (1963-5, ch. II.19). 

~2For example, least action principles are fundanmntal to Pribram's (1991) holonomic 
brain theory (see especially Apps. A, B ). 

13For this cancelation to occur, the impulses must be shaped so that their average 
amplitude is zero. Also, the neurons must. sample sufficiently many paths coming into 
their region to ensure that cancelation is possible: in effect, the neural net must represent 
the search space at sufficiently high resolution. 
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each other .out. 
Sul)l)ose the constant c represents the encoding of difficulty in terms of 

time delay (in units of difficulty per millisecond, for example), so a time 
difference of At represents a difficulty difference of cAt. If the impulses 
have period T, then we ca.n see that for At >> T, signals will tend to cancel, 
whereas for At << T they will tend to reinforce. Thus, impulses of period 
T will be sensitive to differences in difficulty much greater than cT and 
insensitive to those much less than cT; they will find paths within cT of the 
optimum. The sensitivity of search process can be adjusted by varying the 
impulse frequency (higher frequency for a tighter optimum). Specifically, 
if the paths converging on a neuron represent a range of difficulties of at 
least cT. then the neuron will be inactive, showing that it's not near the 
optimal I)ath. The neuron becomes more active, reflecting its nearness to 
the optimum, as the range of input difficulties decreases l)elow cT. 

Further, the amplitude of the impulses can be used to encode the confi- 
del~ce in the difficulty estimate: regions of the spa.ce for which this confidence 
is low will transmit signals more weakly than high-confidence regions. In 
this way, difficult), estimates are weighted by their confidence. Specifically, 
the effect on the signal of passing through a region of space is represented by 
multiplying by a complex number ke id/~, where d is the difficulty estima.te 
a.nd k is the confidence of that estimate. Such a complex multiplication 
could be accomplished by syna.ptodendritic transmission, which introduces 
both an amplitude shift k (reflecting confidence) a.nd a time delay d/c (repre- 
senting difficulty). Such amplitude/phase modulations would be relatively 
fixed, subject to slow adaptive mechanisms. However, the same can be 
accomplished more dynamically (aUowing. for instance, an environmenta.1 
potential field to be loaded into a. bra.in region) by using a.n external bias 
to control the pha,se shift dynamically (Hopfield 1995)and a signal to a 
conjunctive synapse to control the aml)litu(le dynamically. 

7.6.3 M u l t i r e s o l u t i o n  sat isfact ion of cons t ra in t s  Constra.ints can 
also be satisfied by gradient descent on a potential surface representing 
their lack of satisfaction (Sects. 4.2 and 5.2). However. a, problem with 
relaxation techniques is that they may get trapped ill local minima. One 
way to avoid this is to do the relaxation on a multiresolution representation 
of the potential function. At low resolution, local minima, will tend to be 
a,veraged away, so relaxation on a, low-resolution representa, tion will tend to 
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move toward the global minimum. By gradually increasing the resolution, 
l he system can be allowed to settle into a more accurate representation of 
the global minimum. This can be accomplished, for example, by gradually 
activating the higher frequency bands of a Gabor or wavelet representation 
of the potential surface. 

8 Concluding Remarks 

We have seen that field computation deals with information processing in 
terms of fields, which may be described as continuous distributions of data. 
Many neural phenomena are conveniently described as fields, including neu- 
ron activity from large (brain area) to small (dendritic) scales, and it is often 
useful to describe motor control and sensorimotor coordination in terms of 
external fields such as force fields and sensory images. We have surveyed 
the basic concepts of field computation, including both feed-forwa.rd field 
opdra.tions and field dynamics resulting from recurrent, connections. Adap- 
tive and learning mechanisms were discussed briefly. The application of 
field computation to motor control was illustrated by several examples: ex- 
ternal force fields associated with spinal neurons, popula.tion coding of di- 
rection in motor cortex, continuous transformation of direction fields, and 
linear gain fields and coordinate transformations in posterior parietal cortex. 
Next we surveyed some field-based representations of motion, including di- 
rect, Fourier. Gabor and wavelet or multiresolution representations. Finally 
we considered briefly the application of these representations to constraint. 
satisfaction, which has many applications in motor control. 
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