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Abstract

We review the concepts of ®eld computation, a model of computation that processes

information represented as spatially continuous arrangements of continuous data. We

show that many processes in the brain are described usefully as ®eld computation.

Throughout we stress the connections between ®eld computation and quantum me-

chanics, especially including the important role of information ®elds, which represent by

virtue of their form rather than their magnitude. We also show that ®eld computation

permits simultaneous nonlinear computation in linear superposition. Ó 1999 Elsevier

Science Inc. All rights reserved.
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1. Motivation for ®eld computation

In this paper we discuss the applications of ®eld computation to natural and
arti®cial intelligence. (More detailed discussions of ®eld computation can be
found in prior publications [15,16,19,23].) For this purpose, a ®eld is de®ned to
be a spatially continuous arrangement of continuous data. Examples of ®elds
include two-dimensional visual images, one-dimensional continuous spectra,
two- or three-dimensional spatial maps, as well as ordinary physical ®elds, both
scalar and vector. A ®eld transformation operates in parallel on one or more
®elds to yield an output ®eld. Examples include summations (linear superpo-
sitions), convolutions, correlations, Laplacians, Fourier transforms and wavelet
transforms. Field computation may be nonrecurrent (entirely feed-forward), in
which a ®eld passes through a ®xed series of transformations, or it may be re-
current (including feedback), in which one or more ®elds are iteratively trans-
formed, either continuously or in discrete steps. Finally, in ®eld computation,
the topology of the ®eld (that is, of the space over which it is extended) is
generally signi®cant, either in terms of the information it represents (e.g. the
dimensions of the ®eld correspond to signi®cant dimensions of the stimulus), or
in terms of the permitted interactions (e.g. only local interactions).

Field computation is a theoretical model of certain information processing
operations and processes that take place in natural and arti®cial systems. As a
model, it is useful for describing some natural systems and for designing some
arti®cial systems. The theory may be applied regardless of whether the system is
actually discrete or continuous in structure, so long as it is approximately
continuous. We may make an analogy to hydrodynamics: although we know
that a ¯uid is composed of discrete particles, it is nevertheless worthwhile for
most purposes to treat it as a continuum. So also in ®eld computation, an array
of data may be treated as a ®eld so long as the number of data elements is
su�ciently large to be treated as a continuum, and the quanta by which an el-
ement varies are small enough so that it can be treated as a continuous variable.

Physicists sometimes distinguish between structural ®elds, which describe
phenomena that are physically continuous (such as gravitational ®elds), and
phenomenological ®elds, which are approximate descriptions of discontinuous
phenomena (e.g. velocity ®elds of ¯uids). Field computation deals with phe-
nomenological ®elds in the sense that it does not matter whether their real-
izations are spatially discrete or continuous, so long as the continuum limit is a
good mathematical approximation to the computational process.

Neural computation follows di�erent principles from conventional, digital
computing. Digital computation functions by long series of high-speed, high-
precision discrete operations. The degree of parallelism is quite modest, even in
the latest ``massively parallel'' computers. We may say that conventional com-
putation is deep but narrow. Neural computation, in contrast, functions by the
massively parallel application of low-speed, low-precision continuous (analog)
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operations. The sequential length of computations is typically short (the ``100
Step Rule''), as dictated by the real-time response requirements of animals. Thus,
neural computation is shallow but broad. As a consequence of these di�erences we
®nd that neural computation typically requires very large numbers of neurons to
ful®ll its purpose. In most of these cases the neural mass is su�ciently large ± 15
million neurons/cm2 [3, p. 51] ± that it is useful to treat it as a continuum.

To achieve by arti®cial intelligence the levels of skillful behavior that we
observe in animals, it is not unreasonable to suppose that we will need a similar
computational architecture, comprising very large numbers of comparatively
slow, low precision analog devices. Our current VLSI technology, which is
oriented toward the fabrication of only moderately large numbers of precisely
wired, fast, high-precision digital devices, makes the wrong tradeo�s for e�-
cient, economical neurocomputers; it is unlikely to lead to neurocomputers
approximating the 15 million neurons/cm2 density of mammalian cortex.
Fortunately, the brain shows what can be achieved with large numbers of slow,
low-precision analog devices, which are (initially) imprecisely connected. This
style of computation opens up new computing technologies, which make dif-
ferent tradeo�s from conventional VLSI. The theory of ®eld computation
shows us how to exploit relatively homogeneous masses of computational
materials (e.g. thin ®lms), such as may be produced by chemical manufacturing
processes. The theory of ®eld computation aims to guide our design and use of
such radically di�erent computers.

2. Overview of ®eld computation

A ®eld is treated mathematically as a continuous function w over a bounded
set X representing the spatial extent of the ®eld. Typically, the value of the
function is restricted to some bounded subset of the real numbers, but com-
plex- and vector-valued ®elds are also useful. Thus, we may write w : X! K
for a K-valued ®eld.

We write w�u� or wu for the value of a ®eld w at u 2 X. If the ®eld is time-
varying, we write w�t� for the ®eld, and w�u; t� or wu�t� for its value at u 2 X.
Further, to stress the connections between ®eld computation and quantum
mechanics, we may denote real or complex ®elds with the bracket notation of
Dirac [5], jwi or jw�t�i, as appropriate. With this notation, the value of jwi at u
is given by the inner product hu j wi, where huj � hduj is a Dirac delta function
(unit impulse) located at u. 1

1 If /;w 2 U�X� are ®elds of the same type, we use hw j wi and h/;wi for the appropriate inner

product on these ®elds. If they are real- or complex-valued, then h/ j wi � RX /�uwu du, where /�u is

the complex conjugate of /u. If the ®elds are vector-valued, then h/ j wi � RX /u � wu du, where

/u � wu is the ordinary scalar product of the vectors.
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Fields are required to be physically realizable, which places restrictions on
the allowable functions. For example, it is generally reasonable to assume that
®elds are uniformly continuous square-integrable (e.g. ®nite-energy) functions,
kwk2 � hw j wi <1, and that they belong to a Hilbert space of functions.
Thus, Hilbert spaces provide the vocabulary of ®eld computation as they do of
quantum mechanics. (To stress this commonality, this paper will follow the
notational conventions of quantum mechanics.) Nevertheless, not all elements
of a Hilbert space are physically realizable, so we write UK�X� for the set of all
K-valued ®elds over X (the subscript K is omitted when clear from context).
(Hilbert spaces as models of continuous knowledge representation in the brain
are discussed elsewhere [16,18±20,23,28], as is the physical realizability of ®elds
[16].)

A ®eld transformation is any continuous (linear or nonlinear) function that
maps one or more input ®elds into one or more output ®elds. One important
class of linear ®eld transformations are integral operators of Hilbert±Schmidt
type, which can be written wu �

R
X Kuv/v dv, where w 2 U�X0�, / 2 U�X� and K

is a ®nite energy ®eld in U�X0 � X�. This equation may be abbreviated w � K/
or, as is common in quantum mechanics, jwi � Kj/i. We also allow multilinear
integral operators. If /k 2 U�Xk�; k � 1; . . . ; n and M 2 U�X0 � Xn � � � � �
X2 � X1�, then w � M/1/2 � � �/n abbreviates

wu �
Z

Xn

� � �
Z

X2

Z
X1

Muvn���v2v1
/1�v1�/2�v2� � � �/n�vn�dv1 dv2 � � � dvn:

In many cases we are interested in the dynamical properties of ®elds: how they
change in time. The changes are usually continuous, de®ned by di�erential
equations, but may also proceed by discrete steps. As with the ®elds treated in
physics, we are often most interested in dynamics de®ned by local interaction,
although nonlocal interactions are also used in ®eld computation (several ex-
amples are considered later). For example, Pribram [28] has discussed a neural
wave equation, im _w � �ÿ�m2=2�r2 � U�w, which is formally identical to the
Schr�odinger equation, and Kak [11] suggests that global ®eld dynamics may be
a means for reorganization in the brain that is essential for intelligence.

One reason for dynamic ®elds is that the ®eld may be converging to some
solution by a recurrent ®eld computation; for example, the ®eld might be re-
laxing into the most coherent interpretation of perceptual data, or into an
optimal solution of some other problem. Alternately, the time-varying ®eld
may be used for some kind of real-time control, such as motor control [23].

An interesting question is whether there can be a universal ®eld computer,
that is, a general purpose device (analogous to a universal Turing machine)
that can be programmed to compute any ®eld transformation (in a large,
important class of transformations, analogous to the Turing-computable
functions). In fact, we have shown [32] that any Turing machine, including a
universal Turing machine, can be emulated by a corresponding ®eld computer,
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but this does not seem to be the concept of universality that is most relevant to
®eld computation. Another notion of universality is provided by an analog of
Taylor's theorem for Hilbert spaces. It shows how arbitrary ®eld transforma-
tions can be approximated by a kind of ``®eld polynomial'' computed by a
series of products between the input ®eld and ®xed ``coe�cient'' ®elds [15,16].
In particular, if F : U�X� ! U�X0� is a (possibly nonlinear) ®eld transforma-
tion, then it can be expanded around a ®xed ®eld - 2 U�X� by

F �-� /� � F �-� �
X1
k�1

Dk/
�k�

k!
;

where

Dk/
�k� � Dk // � � �/|�����{z�����}

k

;

and the ®elds Dk 2 U�X0 � Xk� are the kernels of the (both Fr�echet and
Gâteaux) derivatives of F evaluated at -, Dk � dkF �-�. More generally, non-
linear ®eld transformations can be expanded as ``®eld polynomials'':

F �/� � K0 � K1/� K2/
�2� � K3/

�3� � � � �
Adaptation and learning can be accomplished by ®eld computation versions of
many of the common neural network learning algorithms, although some are
more appropriate to ®eld computation than others. In particular, a ®eld-
computation version of back-propagation is straight-forward, and Peru�s
[26,27] has investigated ®eld-computation versions of Hop®eld networks.
Learning typically operates by computing or modifying ``coe�cient ®elds'' or
connection ®elds in a computational structure of ®xed architecture.

3. Field computation in the brain

There are a number of processes in the brain that may be described usefully
as ®eld computation. In this section we discuss axonal ®elds, dendritic ®elds,
projection ®elds and synaptic ®elds.

3.1. Axonal ®elds

Computational maps are ubiquitous in the brain [13]. For example, there are
the well-known maps in somatosensory and motor cortex, in which the neurons
form a topological image of the body. There are also the retinotopic maps in the
vision areas, in which locations in the map mirror locations on the retina, as
well as other properties, such as the orientation of edges. Auditory cortex
contains tonotopic maps, with locations in the map systematically representing
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frequencies in the manner of a spectrum. Auditory areas in the bat's brain
provide further examples, with systematic representations of Doppler shift and
time delay, among other signi®cant quantities.

We may describe a computational map as follows. We are given some ab-
stract space X , which often represents a class of microfeatures or stimuli (e.g.
particular pitches, locations on the surface of the body, oriented edges at
particular places in the visual ®eld). If these stimuli or microfeatures are rep-
resented spatially over a brain region X, then there is a piecewise continuous
map l : X ! X giving the location ux � l�x� optimally tuned to microfeature
value x 2 X . The presence of microfeature x will typically lead to strong ac-
tivity at l�x� and lesser activity at surrounding locations; we may visualize it as
an approximate (typically two-dimensional) Gaussian centered at l�x�. In
general we will use the notation cx or jcxi for a localized pattern of activity
resulting from a stimulus x. When the pattern of activity is especially sharply
de®ned, it may be approximated by dx (also written jxi), a Dirac delta-function
centered at the location corresponding to x. The amplitude s of the peak sdx

may encode the degree of presence of the microfeature or stimulus x.
In the presence of multiple stimuli, such maps typically represent a super-

position of all the stimuli. For example, if several frequencies are present in a
sound, then a tonotopic map will show corresponding peaks of activity. Sim-
ilarly, if there are patches of light (or other visual microfeatures, such as ori-
ented grating patches) at many locations in the visual ®eld, then a retinotopic
map will have peaks of activity corresponding to all these microfeatures. Thus,
if features x1; x2; . . . ; xn are all present, the corresponding computational map is
cx1
� cx2

� � � � � cxn
(possibly with corresponding scale factors). In this way the

form of the stimulus may be represented as a superposition of microfeatures.
Computational maps such as these are reasonably treated as ®elds, and it is

useful to treat the information processing in them as ®eld computation. Indeed,
since the cortex is estimated to contain at least 146 000 neurons per square
millimeter [3, p. 51], even a square millimeter has su�cient neurons to be
treated as a continuum, and in fact there are computational maps in the brain
of this size and smaller [13]. The larger maps are directly observable by non-
invasive imaging technique, such as fMRI.

We refer to these ®elds as axonal ®elds, because the ®eld's value at each
location corresponds to the axonal spiking (e.g. rate and/or phase) of the
neuron at that location. If only the rate is signi®cant, then it is appropriate to
treat the ®eld as real-valued. If both rate and phase are signi®cant [10], then it is
more appropriate to treat it as complex-valued.

To see this, consider the relation between an axonal signal and a ®xed ``clock
signal'' with period s. Two pieces of information may be conveyed (e.g. to a
dendrite upon which both axons synapse). The ®rst is the delay /�t� between
the clock and the signal (at time t), which is represented by the phase angle
h�t� � 2p/�t�=s. (Such a delay might result from a di�erence in the integration
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times of a neuron representing a ®xed standard and one encoding some mic-
rofeature or other property.) Second, the average impulse rate r�t� may rep-
resent pragmatic factors such as the importance, urgency or con®dence level of
the information represented by the phase. The two together constitute a time-
varying complex-valued signal, which can be written as the complex expo-
nential, z�t� � r�t�e2pi/�t�=s � r�t�eih�t�. More generally, if we have multiple sig-
nals, then the information may be encoded in their relative phases, and the
clock signal is unnecessary. This is especially the case for complex-valued ax-
onal ®elds, in which the ®eld value is represented in the rate and relative phase
of the axonal impulses.

3.2. Projection ®elds

Next we can consider projection ®elds (or connection ®elds), which are de-
termined by the patterns of axonal connections between brain regions. Typi-
cally they operate on an axonal ®eld and, in the process of transmitting it
elsewhere in the brain, transform it to yield another axonal ®eld. Suppose that
a bundle of axons projects from region X to region X0. For u 2 X0; v 2 X, let
Kuv represent the connection to u from v. (Kuv could be a complex number
representing the e�ect of the axon on the signal; it is 0 if there is no axon
connecting v to u.) Then, the activity wu at destination u is expressed in terms of
the activities /v of source neurons v by wu �

R
X Kuv/v dv; that is, jwi � Kj/i.

Thus, the projection ®eld K is a linear operator.
A linear operator (of Hilbert±Schmidt type) can be resolved into a discrete

neural network by methods familiar from quantum mechanics. Let jeki be the
eigen®elds (eigenstates) of a linear operator L with corresponding eigenvalues
`k. Since the eigen®elds can be chosen to be orthonormal, an input ®eld j/i can
be represented by a discrete set of coordinates ck � hek j /i. (The coordinates
are discrete because there is no signi®cant topological relationship among
them.) Then, jwi � Lj/i can be expanded, jwi �Pk `kjekick. Only a ®nite
number of the eigenvalues are greater than any ®xed bound, so the operator
can be approximated by a ®nite sum. In the ®rst part of the computation, the
discrete set of coe�cients ck are computed by a ®nite number of neurons with
receptive ®eld pro®les ek. In the second stage, each of these neurons projects its
activity ck with a pro®le `kek.

It is not necessary to use the eigen®elds of the operator, for we can resolve
the input ®eld into any set of orthonormal base ®elds jeki and the output ®eld
into any set of orthonormal base ®elds jfji. Then, we can expand

jwi �
X

jk

jfjihfj j L j ekihek j /i:

Let ck � hek j /i be the representation of the input and Mjk � hfj j L j eki the
representation of the operation. Then dj � hfj j wi, the representation of the
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output, is given by a discrete matrix product d � Mc. When a linear operator is
factored in this way, it can be computed through a neural space of compara-
tively low dimension. Such a representation might be used when the projection
®eld (kernel) of L would be too dense.

Generally speaking, axons introduce phase delays, but do not a�ect the
amplitudes or rates of the signals they transmit. Therefore, the e�ect of a
projection ®eld can be described by an imaginary exponential ®eld, Kuv � eihuv .
However, since multiple impulses are typically required to cause the exocytosis
of neurotransmitter from an axon terminal, the axon terminal has the e�ect of
scaling the impulse rate by a factor less than 1. Therefore, the combined e�ect
of the axon and axon terminal is to multiply by a complex exponential,
Kuv � suve

ihuv , where suv and huv are real, 06 suv6 1 and 06 huv < 2p.
Two common kinds of projection ®elds are correlation and convolution ®elds;

in each of these the destination neurons have identical receptive ®eld pro®les.
For example, if the receptive ®eld pro®le is approximately Gaussian, then the
projection ®eld coarse codes (by Gaussian smoothing) an input represented in a
computational map.

More precisely, let / and w be input and output ®elds de®ned over the same
domain X (i.e. the source and destination regions have the same shape). Each
output neuron u has the same receptive ®eld pro®le q, de®ned as a ®eld over X,
but centered on the corresponding location u in the input region. 2 The activity
of output neuron u is the sum of the activities of the neurons surrounding input
location u, but weighted by the receptive ®eld pro®le: wu �

R
X q��r�/�u� r�dr.

(We use the complex conjugate q� to accommodate complex-valued receptive
®eld pro®les.) By letting s � u� r we can see that w is the cross-correlation of q
and /: wu �

R
X q��sÿ u�/�s�ds or w � qI/. The complete projection ®eld is

given by Rus � q��sÿ u� so that jwi � Rj/i.

3.3. Synaptic and dendritic ®elds

A projection ®eld typically terminates in a synaptic ®eld, which denotes the
mass of synapses forming the inputs to a group of related neurons. Synaptic
®elds represent the interface between a projection ®eld and a dendritic ®eld
(discussed next). A synaptic ®eld's value ru corresponds to the e�cacy of
synapse u, which is determined by the number of receptor sites and similar
factors. In the case of synaptic ®elds, the transmitted signal is given by a
pointwise product r�u�w�u� between the synaptic ®eld r and the input ®eld w.
Frequently a projection ®eld and its synaptic ®eld can be treated as a single
linear operator, Luv � ruKuv.

2 This presumes that X is a linear space (e.g. a two-dimensional Euclidean space), so that it makes

sense to translate the receptive ®elds.
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Another place where ®eld computation occurs in the brain is in the dendritic
trees of neurons [18]. The tree of a single pyramidal cell may have several
hundred thousand inputs, and signals propagate down the tree by passive
electrical processes (resistive and capacitive). Therefore, the dendritic tree acts
as a large, approximately linear analog ®lter operating on the neuron's input
®eld, which may be signi®cant in dendritic information processing. In this case,
the ®eld values are represented by neurotransmitter concentrations, electrical
charges and currents in the dendritic tree; such ®elds are called dendritic ®elds.
Such a ®eld may have a complicated topology, since it is determined by the
morphology of the dendritic tree over which it is spread.

Analysis of the dendritic net suggests that the antidromic electrical impulse
caused by the ®ring of the neuron could trigger a simple adaptive process which
would cause the dendritic net to tune itself to be a matched ®lter for the recent
input pattern [18,20].

4. Examples of ®eld computation

4.1. Gabor wavelets and coherent states

Gabor [8] developed a theory of information by generalizing the Heisen-
berg±Weyl derivation of the Uncertainty Principle to arbitrary (®nite-energy)
signals. He presented it in the context of scalar functions of time; I will discuss
it more generally (further details can be found elsewhere [17]). Let /�x� be a
®eld de®ned over an n-dimensional Euclidean space. We may de®ne the un-
certainty along the kth dimension by the root mean square deviation of xk:

Dxk � k�xk ÿ �x�/k �
��������������������������Z

X
/�xx2

k/x dx

s
:

Likewise, the uncertainty along the kth conjugate axis is measured by the root
mean square deviation of uk for the Fourier transform U�u� of /�x�,
Duk � k�uk ÿ �u�Uk.

As in quantum mechanics, we can show DxkDuk P 1=4p. The minimum joint
uncertainty DxkDuk � 1=4p is achieved by the Gabor elementary functions,
which are Gaussian-modulated complex exponentials and correspond to the
coherent states of quantum mechanics:

Gpu�x� � exp�ÿpkS�xÿ p�k2� exp�2piu � �xÿ p��:
The second, imaginary exponential de®nes a plane wave; the frequency and
direction of the wave packet are determined by the wave vector u. The ®rst,
real exponential de®nes a Gaussian envelope centered at p, which has a shape
determined by the diagonal aspect matrix S � diag�a1; a2; . . . ; an�, which
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determines the spread in each variable and its conjugate, Dxk � ak=2
���
p
p

,
Duk � aÿ1

k =2
���
p
p

. Each Gabor elementary function occupies a cell in 2n-di-
mensional ``Gabor space'' of volume

Qn
k�1 DxkDuk � �4p�ÿn

. Each of these
cells corresponds to an elementary unit of information, which Gabor called a
logon.

Now suppose we have a ®eld /�x�, ®nite in extent and bandwidth in all
dimensions; it occupies a bounded region in 2n-dimensional Gabor space. It
is easy to show that N, the maximum number of logons of information, is
given by the volume of the signal in Gabor space. A given choice of
a1; a2; . . . ; an will divide this region into cells of minimum size; corresponding
to each cell will be a Gabor elementary function. Gabor showed that any
®nite-energy function could be represented as a superposition of such ele-
mentary functions scaled by complex coe�cients, j/i �PN

k�1 ckjGki. How-
ever, the Gabor elementary functions are not orthogonal, so the complex
coe�cients are not given by ck � hGk j /i. Nevertheless, for appropriate
choices of the parameters, the Gabor elementary functions constitute a tight
frame [17], for which:

j/i �
XN

k�1

jGkihGk j /i:

There is considerable evidence (reviewed elsewhere [17,28]) that images in
primary visual cortex (V1) are represented in terms of Gabor wavelets, that is,
hierarchically arranged, Gaussian-modulated sinusoids. Whereas the Gabor
elementary functions are all of the same shape (determined by S), Gabor
wavelets scale Duk with frequency (and Dxk inversely with frequency) to
maintain a constant Duk=uk, thus giving a multiresolution representation.
(Typically, they are scaled by powers of 2.)

The Gabor-wavelet transform of a two-dimensional visual ®eld generates a
four-dimensional ®eld: two of the dimensions are spatial, the other two rep-
resent spatial frequency and orientation. To represent this four-dimensional
®eld in two-dimensional cortex, it is necessary to ``slice'' the ®eld, which gives
rise to the columns and stripes of striate cortex. The representation is nearly
optimal, as de®ned by the Gabor Uncertainty Principle [4]. Time-varying two-
dimensional visual images may be viewed as three-dimensional functions of
space±time, and it is possible that time-varying images are represented in vision
areas by a three-dimensional Gabor-wavelet transform, which generates a
time-varying ®ve-dimensional ®eld (representing two spatial dimensions, spa-
tial frequency, spatial orientation and temporal frequency). The e�ect is to
represent the ``optic ¯ow'' of images in terms of spatially ®xed, oriented grating
patches with moving gratings (more detail elsewhere [17]). Finally, Pribram
provides evidence that Gabor representations are also used for controlling the
generation of motor ®elds [28, pp. 139±144; 29].
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4.2. Motion in direction ®elds

Another example of ®eld computation in the brain is provided by direction
®elds, in which a direction in space is encoded in the activity pattern over a
brain region [1,9]. Such a region is characterized by a vector ®eld D in which
the vector value Du at each neural location u gives the preferred direction
encoded by the neuron at that location. The population code / for a direction r

is proportional to the scalar ®eld given by the inner product of r at each point
of D, that is, /u / r �Du. (A more detailed discussion can be found elsewhere
[23, Section 6.2]).

Field computation is used in the brain for modifying direction ®elds. For
example, a direction ®eld representing a remembered location, relative to the
retina, must be updated when the eye moves [6,7], and the peak of the direction
®eld must move like a particle in a direction determined by the velocity vector
of the eye motion. The change in the direction ®eld is given by a di�erential
®eld equation, in which the change in the value of the direction ®eld is given by
the inner product of the eye velocity vector and the gradient of the direction
®eld: d/=dt � v � r/. Each component (x and y) of the gradient is approxi-
mated by a convolution between the direction ®eld and a ``derivative of
Gaussian'' (DoG) ®eld, which is implemented by the DoG shape of the re-
ceptive ®elds of the neurons [23, Section 6.3].

4.3. Nonlinear computation in linear superposition

One kind of ®eld transformation, which is very useful and may be quite
common in the brain, is similar to a radial basis function (RBF) neural network.
In an RBF network a function F : X ! Y is approximated by a linear com-
bination of radial functions of the form: F �x� �PN

k�1 Lkf �kxÿ xkk�. For a
given F, the coe�cients Lk, centers xk and radial function f are all ®xed. It has
been shown that simple networks of this form are universal in an important
sense, and can adapt through a simple learning algorithm [14,25,31].

In transferring these ideas to ®eld computation, we make three changes.
First, as a basis we use functions q�xÿ xk� which need not be radial, although
radial functions are included as a special case. Second, we represent the input
x 2 X by a computational map cx 2 U�X� or, more ideally, by dx; that is, the
input will be encoded by a ®eld with a peak of activity at the location corre-
sponding to the input. Finally, in accord with the goals of ®eld computation,
we replace the summation with integration, F �x� � RX Lvq�xÿ xv�dv. There are
two parts to this operation, the coarse-coding of the input by the basis func-
tions and the linear transformation of the result.

Since, in our continuous formulation, there is a radial function centered at
each possible location in the input space, the coarse-coded result v is de®ned
over the same space as the input, so we may write vy � q�xÿ y�. However,
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because the input is encoded by a map dx, the coarse coding can be accom-
plished by a correlation, v � qIdx.

3 The output is then computed as a linear
function of the correlation ®eld, w � RX Lyvy dy � L�qI/�. (Note that the
output w is typically a ®eld, so that wz �

R
X Lzyvy dy.)

Suppose that the input ®eld is a superposition dx � dx0 of two sharp peaks
representing distinct inputs x and x0. Since the computation is linear we have
L�qI �dx � dx0 �� � F �x� � F �x0� in spite of the fact that F need not be linear.
Further, if, as is often the case, F has been de®ned to produce a computational
map df �x� for some (possibly nonlinear) f, then the network computes both
(nonlinear) results in superposition, df �x� � df �x0�. Further, due to linearity, if the
input maps are weighted by s and s0, perhaps re¯ecting pragmatic factors, such
as the importance of the inputs, then the outputs are similarly weighted,
sdf �x� � s0df �x0�.

Finally, we can consider the case in which the input is a ®eld cx, such as a
Gaussian, representing a fuzzy estimate of x. The fuzzy envelope c is de®ned
c�y ÿ x� � cx�y�. We may compute the output of the network,
jwi � RX F �x� r�c�r�dr. Therefore, we get a superposition of the outputs
F �x� r� weighted by the strengths c�r� of the deviations r of the input.

5. Information ®elds

Hop®eld [10] has proposed that in some cases the information content of a
spike train is encoded in the phase of the impulses relative to some global or
local clock, whereas the impulse rate re¯ects pragmatic factors, such as the
importance of the information. Phase-encoded ®elds of this sort are typical of
the separation of semantics and pragmatics that we ®nd in the nervous system.
Information is inherently idempotent: repeating a signal does not a�ect its
semantics, although it may a�ect its reliability, urgency and other pragmatic
factors; the idempotency of information was recognized already by Boole in his
Laws of Thought.

This characteristic of information may be illustrated as follows:

3 This is the sort of projection ®eld correlation that we have already discussed. Observe, however,

that the computational map / must preserve distances xÿ y in X. This restriction may be avoided

by using a slightly more complex projection ®eld instead of the correlation [23, Section 3.3.4].
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The horizontal distinction is semantic, the vertical is pragmatic. The infor-
mation is conveyed by the di�erence of form, `YES' versus `NO'. The di�erence
of size may a�ect the urgency, con®dence or strength with which the signal is
processed. We may say that the form of the signal guides the resulting action,
whereas its magnitude determines the amount of action [2, pp. 35±36].

Likewise, an information ®eld represents by virtue of its form, that is, the
relative magnitude and disposition of its parts; its signi®cance is a holistic
property of the ®eld. The overall magnitude of the ®eld does not contribute to
its meaning, but may re¯ect the strength of the signal and thereby in¯uence the
con®dence or urgency with which it is used. Thus, a physical ®eld w may be
factored w � sm, where s � kwk is its magnitude and m is the (normalized) in-
formation ®eld, representing its meaning. Information ®elds can be identi®ed
in the brain wherever we ®nd processes that depend on the form of a ®eld, but
not on its absolute magnitude, or where the form is processed di�erently from
the magnitude. Information ®elds are idempotent, since repetition and scaling
a�ect the strength but not the form of the ®eld. Therefore, entropy is an in-
formation property, since it depends only on the form of the ®eld, independent
of magnitude:

S�w� �
Z

X

wu

kwk log
wu

kwk
� �

du �
Z

X
mu log mudu � tr�m log m� � S�m�:

In the foregoing we have been vague about the norm kwk we have used. In
many cases it will be the familiar L2 norm, kwk � phw j wi, but when we are
dealing with information ®elds we should select the norm appropriate to the
measure of ``action'' resulting from the ®eld.

Information ®elds are also central to quantum mechanics. For example, the
quantum mechanical state jwi is considered undetermined with respect to
magnitude [5, p. 17] , so zjwi is the same state as jwi for any (nonzero) complex
z. That is, quantum mechanical states are idempotent. Conventionally, the
state is normalized kwk2 � hw j wi � 1, so that its square is a probability
density function, .x � jwxj2.

Of course, this independence of magnitude is also characteristic of the
quantum potential, which has led Bohm and Hiley [2] to characterize this
®eld as active information. Thus, [2, pp. 28±29], if we write the wave
function in polar form, wx � Rxe

iSx=�h, then the motion of a single particle is
described

oSx

ot
� �rSx�2

2m
� Vx � Qx � 0;

where the quantum potential is de®ned

Qx � ÿ �h2

2m
r2Rx

Rx
:
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Notice that because the Laplacian r2Rx is scaled by Rx, the quantum potential
depends only on the local form of the wave function. Further, since scaling the
wave function does not a�ect the quantum potential, Q�zw� � Q�w�, we see
that the quantum potential depends only on the form of the wave function. As
with many ®elds in the brain, the strength and form a�ect the action in di�erent
ways: the particle moves under its own energy but the quantum potential
controls the energy.

6. Discrete symbols as ®eld excitations

In quantum ®eld theory discrete particles are treated as quantized excita-
tions of the ®eld. Similarly, we have seen particle-like motion of direction
®elds in the brain (Section 4.2). Therefore, it will be worthwhile to see if ®eld
computation can illuminate the emergence of discrete symbols from contin-
uous neurological processes. Although traditional, symbolic arti®cial intelli-
gence takes discrete symbols as given, understanding their emergence
from continuous ®elds may help to explain the ¯exibility of human cognition
[20±22].

Mathematically, atomic symbols have a discrete topology, which means
there are only two possible distances between symbols: 0 if they are the same
and 1 if they are di�erent. This property also characterizes orthonormal ®elds
(base states), which means that orthonormal ®elds are a discrete set,
hw j w0i � 0 and hw j wi � 1.

The simplest examples of such orthonormal ®elds are localized patterns of
activity approximating Dirac delta functions. More realistically we may have
broader patterns of activity cw; cw0 , so long as they are su�ciently separated,
hcw j cw0 i � 0. (If this seems to be a very ine�cient way of representing
symbols, it is worth recalling that cortical density is approximately 146
thousand neurons per square millimeter.) Such localized patterns of activity
may behave like particles, but they also may be created or destroyed or
exhibit wave-like properties. However, the discrete topology is not restricted
to localized patterns of activity. Nonlocal orthonormal ®elds have exactly the
same discrete properties, although they are less easily detected through
imaging.

Further, wave packets, such as coherent states (Gabor elementary func-
tions), can emerge from the superposition of a number of nonlocal oscillators
of similar frequency. (A coherent state results from a Gaussian distribution of
frequencies.) The position of the particle is controlled by the relative phase of
the oscillators (recall Section 3.1) and its compactness by the bandwidth of the
oscillators. (The frequency of the wave packet could encode the role ®lled by
the symbol or establish symbol binding.)
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7. Field computing hardware

Field computation can, of course, be performed by conventional digital
computers or by special-purpose, but conventional digital hardware. However,
as noted previously, neural computation and ®eld computation are based on
very di�erent tradeo�s from traditional computation, which creates the op-
portunity for new computing technologies better suited for neural computation
and ®eld computation. The ability to use slow, low precision analog devices,
imprecisely connected, compensates for the need for very large numbers of
computing elements. These characteristics suggest optical information trans-
mission and processing, in which ®elds are represented by optical wavefronts.
They also suggest molecular processes, in which ®elds are represented by
spatial distributions of molecules of di�erent kinds or in di�erent states (e.g.
bacteriorhodopsin). Practical ®eld computers of this kind will probably com-
bine optical, molecular and electrical processes for various computing pur-
poses.

For example, Mills [24] has designed and implemented Kirkho� machines,
which operate by di�usion of charge carriers in bulk silicon. This is a special
purpose ®eld computer which ®nds the steady state de®ned by the di�usion
equation with given boundary conditions. Mills has applied it to a number of
problems, but its full range of application remains to be discovered.

Further, Skinner et al. [30] have explored optical implementation of ®eld
computers corresponding to feed-forward neural nets trained by back-propa-
gation. The ®elds are represented in ``self-lensing'' media, which respond
nonlinearly to applied irradiance. The concept has been demonstrated by
means of both computer simulation and an optical table prototype.

To date, much of the work on quantum computing has focused on quantum
mechanical implementation of binary digital computing. However, ®eld
computation seems to be a more natural model for quantum computation,
since it makes better use of the full representational potential of the wave
function, a possibility also suggested by Kak [12]. Indeed, ®eld computation is
expressed in terms of Hilbert spaces, which also provide the basic vocabulary
of quantum mechanics. Therefore, since many ®eld computations are de-
scribed by the same mathematics as quantum phenomena, we expect that
quantum computers may provide direct, e�cient implementations of these
computations. Conversely, the mathematics of some quantum-mechanical
processes (such as computation in linear superposition) can be transferred to
classical systems, where they can be implemented without resorting to quan-
tum phenomena. This can be called quantum-like computing, and it may be
quite important in the brain [28].

It is my hope that this overview of ®eld computation will entice the reader to
look at the more detailed presentations listed in the references and perhaps to
explore the ®eld computation perspective.
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