
FOUR RELATIONAL PROGRAMS*

B. J. MacLennan
Computer Science Department

Naval Postgraduate School
Monterey, CA 93943

Abstract:

In this report we demonstrate the relational programming language RPL by using it to develop
four programs. These programs are: (1) computing a table of word frequencies from a text; (2)
minimizing a deterministic finite state automata; (3) Gaussian elimination; and (4) a simple data
processing example involving updating an employee file. Appendix A shows transcripts of
executions of the programs on the Brown and Mitton interpreter [Brown&Mitton]. The reader is
presumed to be familiar with RPL, which is described in [MacLennan83]. For convenience,
however, Appendix B contains the RPL grammar, and Appendix C describes the language
accepted by the Brown and Mitton interpreter.

1. Computing Word Frequencies

The first example, which is adapted from [MacLennan83], it to compute a frequence table F from
a text (sequence of words) S. That is, given S such that S↓i is the ith word, we compute F such
that F↓w is the frequency (number of occurrences) of word w in S. For an example, we take S =
<‘‘to’’, ‘‘be’’, ‘‘or’’, ‘‘not’’, ‘‘to’’, ‘‘be’’>, which is just an abbreviation for the relation:

S = {1:‘‘to’’, 2:‘‘be’’, 3:‘‘or’’, 4:‘‘not’’, 5:‘‘to’’, 6:‘‘be’’}

Pictorially,

1 ‘‘to’’
2 ‘‘be’’
3 ‘‘or’’
4 ‘‘not’’
5 ‘‘to’’
6 ‘‘be’’

In this case, the desired frequency table F is:

F = {‘‘to’’:2, ‘‘be’’:2, ‘‘or’’:1, ‘‘not’’:1}

Pictorially,

‘‘to’’ 2
‘‘be’’ 2
‘‘or’’ 1
‘‘not’’ 1

In other words, ‘‘to’’ occurs twice, ‘‘be’’ occurs twice, ‘‘or’’ occurs once, and ‘‘not’’ occurs once.
Of course, since F is a relation, the order in which the elements are listed is irrelevant.

To dev elop the general word-counting program, we work through this particular example. Since
the frequency table is a function from the words to their frequencies, the first step is to reverse
columns of S:

* The work reported herein was supported by Contract N00014-85-WR-24057 from the Office of Naval Research.

-1-

S−1 = {‘‘to’’:1, ‘‘be’’:2, ‘‘or’’:3, ‘‘not’’:4, ‘‘to’’:5, ‘‘be’’:6}

Pictorially,

‘‘to’’ 1
‘‘be’’ 2
‘‘or’’ 3
‘‘not’’ 4
‘‘to’’ 5
‘‘be’’ 6

Notice that this relation is not a function (i.e., it is not single valued). We can make it a function
by forming the ‘‘unit image’’ of the table:1

unimage S−1 = {‘‘to’’:{1, 5}, ‘‘be’’:{2, 6}, ‘‘or’’:{3}, ‘‘not’’:{4}}

Pictorially,

‘‘to’’ {1, 5}
‘‘be’’ {2, 6}
‘‘or’’ {3}
‘‘not’’ {4}

This tells us, for example, that the word ‘‘be’’ occurs in positions 2 and 6 in the text. We do not
need to know the places where a given word occurs, but only the number of such places.
Therefore, we send the preceding table through the size (cardinality) function (by the relative
product operation):

unimage S−1 | size = {‘‘to’’:2, ‘‘be’’:2, ‘‘or’’:1, ‘‘not’’:1}

This is the desired result; the final step is depicted in Figure 1. Notice that since size is defined
for all sets, it is in effect an infinite relation; this is permitted in RPL.

The resulting program is:

F ≡ unimage S−1 | size

We can turn it into a function definition to compute the frequency table for any text S by:

freq S ≡ unimage S−1 | size

It remains to define the ‘unimage’ function, which is not built into RPL. On the other hand, RPL
does have the builtin operator unimg, defined to that T unimg x is the set of all y such that
x: y ∈ T . This can be used to define unimage. To see this, note that the left section [T unimg] is
the function that takes any x into its image under T . Although T is finite (and extensional),
sections are always intensional, so it is necessary to to convert [T unimg] to its extensional
equivalent. This is accomplished with the RPL restr ict operation, which converts an intensional
relation to an extensional relation by restricting its domain to a finite set. Hence we define:

unimage T ≡ dom T restr ict [T unimg]

The following is an example RPL session that defines the freq function an applies it to a particular
text (‘?>’ is the RPL prompt):

1. This function is related to the RPL unimg operator; see below.

-2-

‘‘to’’ {1, 5}
‘‘be’’ {2, 6}
‘‘or’’ {3}
‘‘not’’ {4}

|

{} 0
{1} 1
{4} 1
{2, 6} 2
{4, 8} 2
{4, 6, 7} 3

...
...

‘‘to’’ 2
‘‘be’’ 2
‘‘or’’ 1
‘‘not’’ 1

Figure 1. Piping unimage S−1 Through size Function

?> unimage T ≡ domT restr ict [T unimg]

?> freq S ≡ unimage S−1 | size

?> freq <‘‘to’’, ‘‘be’’, ‘‘or’’, ‘‘not’’, ‘‘to’’, ‘‘be’’>

{‘‘be’’:2, ‘‘to’’:2, ‘‘not’’:1, ‘‘or’’:1}

?> done

The appendix contains the actual transcript of this RPL session; it shows how programs must be
represented for the Brown and Mitton interpreter. The preceding formulas were produced from
this transcript by a pretty printer.

2. Minimization of Deterministic Finite Automata

The next example program is the equivalence and minimization of deterministic finite automata
by an algorithm developed by Robert Floyd.2 We assume that we have a finite alphabet Σ and a
finite set Q of states. The set F ⊆ Q represents the final (accepting) states. The finite relation T

2. Private communication, 1985.

-3-

is such that for a∈Σ, T↓a is the transition relation for the symbol a. That is, < q, q′ > ∈ T ↓ a if
and only if the symbol a takes state q into state q′.

Our goal is to define a relation R∞ such that < q, q′ > ∈ R∞ if and only if q and q′ are not
equivalent states. This is done in a series of steps, starting from pairs of states that are known to
be inequivalent, namely the final and nonfinal states:

R0 ≡ F ×× (Q \ F)

We now work backward: any states that under the same input lead to inequivalent states are
themselves considered inequivalent. For example, R0 relates inequivalent states; R1 relates states
related by R0 together with those that under the same input character are taken into states related
by R0; R2 relates states related by R0 together with those that under the same one or two input
characters lead to states related by R0; and so on. Each step of this process is accomplished by a
function ψ ; that is, we will define ψ so that Ri+1 = ψ Ri . It will be easy to see that this process
converges in n = (size Q)2 steps, so

R∞ ≡ ψ n R0

Next we considerψ .

As a preliminary we define the polymorphic image of one relation under another relation. If R
and S are two relations, then the polymorphic image under R of S, or more briefly the R-image of
S, is defined

R S ≡ R | S | R−1

This has the following property: R S relates x to y if and only if there are u and v such that R
relates x to u and y to v, and S relates u to v. That is, < x, y > ∈ R S if and only if there are u
and v such that < x, u > ∈ R, < y, v > ∈ R and < u, v > ∈ S. This can be visualized:

x
R

u

S

v
R

y

R S

Now, if we hav e that Ri relates inequivalent states, then (T ↓ a) Ri will relate those states that
are carried by symbol a into states inequivalent by Ri . Thus, we define Ri+1 so that it relates
those states that are related by Ri together with those related by (T ↓ a) Ri , for any a ∈ Σ.
Now, if by [Ri] we mean the function that takes a polymorphic image of Ri , that is,

[Ri] x = x Ri

then it is easy to see that

(T | [Ri]) ↓ a = [Ri] (T ↓ a) = (T ↓ a) Ri

Hence, the union of (T ↓ a) Ri , for all a ∈ Σ, is just the union of the range of the relation
T | [Ri]. This yields the definition of Ri and henceψ :

Ri+1 ≡ ψ Ri ≡ Ri ∪∪(rng (T | [Ri]))

This completes the definition of the inequivalence relation R∞. Two states are now equivalent if
they are not inequivalent:

-4-

R= ≡ Q2 \ (R∞ ∪ R−1
∞)

where Q2 means Q ×× Q.

The minimal machine is constructed on the basis of the equivalence classes of states under R=.
The equivalence class of a state q is just the unit image under R= of q:

eclass q ≡ R= unimg q

The set of all such equivalence classes results from taking the image of Q under eclass:

Q= ≡ eclass img Q

In general, we define

equiv ≡ [eclass img],

so Q= ≡ equiv Q. We take Q= to be the states in the minimal machine.

It remains to construct the transition relation T= of the minimal machine. For all
< q, q′ > ∈ T ↓ a we want

< eclass q, eclass q′ > ∈ T= ↓ a

Thus T= ↓ a is the isomorphic image under eclass of T ↓ a:

T= ↓ a = eclass $ (T ↓ a)

Thus T= is the (finite) composition of [eclass $] and T , which is the (finite) relative product of T
and [eclass $]:

T= ≡ T | [eclass $]

The remainder of the minimal machine is easy to construct. For example, the final states are just
the equivalence classes of the original final states:

F= ≡ equiv F

There follows the actual relational program to minimize a small automaton. It makes use of two
auxiliary functions σ and ρ for defining the union of a set of sets:

-- DFA Minimization

-- Utility Functions

1st ≡ [↓ 1]
2nd ≡ [↓ 2]

r s ≡ r | s | r−1

σ f ≡ (f ° (1st , (ε ° 2nd))) , ([\] ° (I , (un ° ε)) ° 2nd))
f ρ i ≡ 1st ° (σ f while ([≠ ∅] ° 2nd)) ° [i ,]
∪ ≡ [∪] ρ ∅

-- Example DFA

Σ ≡ {1, 2}
T ≡ {1 : {10 : 10, 20 : 20}, 2 : {10 : 30, 20 : 30}}
Q ≡ {10, 20, 30}
F ≡ {30}

-5-

-- Minimization

Q2 ≡ Q ×× Q
n ≡ size Q2

R0 ≡ F ×× (Q \ F)
ψ R ≡ R ∪∪(rng (T | [R]))
R∞ ≡ ψ n R0

R= ≡ Q2 \ (R∞ ∪ R−1
∞)

eclass ≡ [R= unimg]
equiv ≡ [eclass img]

Q= ≡ equiv Q
T= ≡ T | [eclass $]
F= ≡ equiv F

-- Minimized DFA

val Q=
{ {10, 20}, {30} }

val T=
{ 1 : { {10, 20} : {10, 20} },

2 : { {10, 20} : {30} } }
val F=
{ {30} }

The val command prints the value of an identifier.

3. Gaussian Elimination

The matrix is represented as a vector of vectors:

M =

<<

<

<

a11

a21...
an1

, . . . ,

, . . . ,

, . . . ,

a1n,

a2n,
...

ann,

b1

b2...
bn

> ,

> ,

>>

For the sake of simplicity we assume all the aij are nonzero. We use the operator ‘↓’ to select the
kth element of a vector. Thus ‘M ↓ k’ is the kth row of M and ‘M | [↓ k]’ is the kth column of
M .

The Gauss Elimination function will use n successive steps. Each of these steps will accomplish
the transformation

< M , k > → < M ′, k + 1 >

where M ′ is obtained from M by performing the elimination process on the kth column:

M ′ = elim < M , k >

Thus the complete process is defined:

Gauss M = (elim for < 1 , . . . , n >) M

Here we make use of the functional ‘(f for S) x’ which computes the sequence of values

-6-

y1 = f < x, S1 >
y2 = f < y1, S2 >...
yn = f < yn−1, Sn >

and returns yn. The ‘for’ functional is defined in terms of reduction as follows:

f for S ≡ [@ S] ° [f §]

This can be understood by the expansion:

(f for S) x = ([@ S] ° [f §]) x = [@ S] ([f §] x)
= [@ S] (f § x) = (f § x) @ S
= (f § x) S

We turn now to the elimination process. We want M ′ = elim < M , k >, where M ′ results from M
by zeroing all entries in column k of M , except the entry in row k, which is set to one. This can
be accomplished by subtracting an appropriate matrix E from M :

M ′ = matdif < M , E >

Here ‘matdif’ is a component-wise matrix difference function.

The matrix E is produced by multiplying the appropriate factors by the individual rows of M .
For the first elimination step E is:

E1 =

< (1 − 1/a11)M1,

(a21/a11)M1,
...

(an1/a11)M1 >

The matrix resulting from subtracting E1 from M is

M1 =

<<

<

<

1,

0,
...
0,

a12′,
a22′,...
an2′,

. . .

. . .

. . .

a1n′,
a2n′,...
ann′,

b′1
b′2...
b′n

> ,

> ,

>>

At the next stage the elimination matrix is:

E2 =

< (a12′/a22′)M ′2,

(1 − 1/a22′)M2′,...
(an2′/a22′)M2′ >

In general, if M ′′ is the matrix resulting from the k − 1st elimination step, then the elimination
matrix for the kth step is

Ek =

< (a1k ′′/akk ′′)Mk ′′,...
([akk − 1] /akk ′′)Mk ′′,...

(ank ′′/akk ′′)Mk ′′ >

It is easy to see that Ek results from multiplying a vector Vk by the kth row of M ′′. This is just
the outer product of Vk and the kth row of M ′′:

-7-

Ek = outerprod < Vk , M ′′↓k >

The vector Vk is

Vk =

< a1k ′′/akk ′′,...
(akk ′′ − 1) /akk ′′,...

ank ′′/akk ′′ >

This is obtained by forming the scalar product of 1/akk ′′ and the vector

Uk = < a1k ′′, a2k ′′, . . . , akk ′′ − 1, . . . , ank ′′ >

This in turn is the result of subtracting from the kth column of M ′′ the unit vector unit < M , k >,
which has a 1 in the kth position, and a 0 in all others.

We now dev elop an explicit relational formula for Vk . For this purpose it will be convenient to
treat it as a binary function Vk = V < M , k >. We hav e:

V < M , k > = scaprod < 1 / diag < M , k > , Uk >
= scaprod < 1 / diag < M , k > , vecdif < column < M , k > , unit < M , k >>>

The parameter < M , k > can be factored out by use of the construction operation ‘ , ’, which is
defined so that (f , g)x = < fx, gx >. Factoring, we have:

V < M , k > = scaprod < 1 / diag < M , k > , vecdif < column < M , k > , unit < M , k >>>
= scaprod < ([1 /] ° diag) < M , k > , vecdif ((column , unit) < M , k >) >
= scaprod < ([1 /] ° diag) < M , k > , (vecdif ° (column , unit)) < M , k >>
= scaprod ((([1 /] ° diag) , (vecdif ° (column , unit))) < M , k >)
= (scaprod ° ((1 /] ° diag) , (vecdif ° (column , unit))) < M , k >

Canceling < M , k > from both sides yields an explicit formula for V :

V ≡ scaprod ° (([1 /] ° diag) , (vecdif ° (column , unit)))

We proceed similarly to get a formula for elim:

elim < M , k > = matdif < M , Ek >
= matdif < M , outerprod < Vk , M ↓ k >>
= matdif < M , outerprod < V < M , k > , M ↓ k >>

We perform some minor rearrangements so that < M , k > can be factored out of the right-hand
side:

elim < M , k > = matdif < M , outerprod < V < M , k > , [↓] < M , k >>>
= matdif < M , (outerprod ° (V , [↓])) < M , k >>
= matdif < [↓ 1] < M , k > , (outerprod ° (V , [↓])) < M , k >>
= (matdif ° ([↓ 1] , (outerprod ° (V , [↓])))) < M , k >

Canceling < M , k > from both sides yields an explicit formula for elim:

elim ≡ matdif ° ([↓ 1] , (outerprod ° (V , [↓])))

A complete RPL session demonstrating the Gaussian elimination function follows:

-8-

-- Utility Functions

con k ≡ λ x k
transmap f ≡ [| f] ° [#]

vecdif ≡ transmap [−]
scaprod < k, v > ≡ v | [k ×]

outerprod < u, v > ≡ u | (scaprod ° [, v])
matdif ≡ transmap vecdif

column < M , k > ≡ M | [↓ k]
unit < M , k > ≡ < 1 , . . . , size M > | [[= k] → con 1; con 0]
diag < M , k > ≡ M ↓ k ↓ k

f for S ≡ [@ S] ° [f §]

-- Gaussian Elimination

V ≡ scaprod ° (([1. 0 /] ° diag) , (vecdif ° (column , unit)))
elim ≡ matdif ° ([↓ 1] , (outerprod ° (V , [↓])))

Gauss M ≡ (elim for < 1 , . . . , size M >) M

-- Example Matrix

M ≡ << 3, 9, 33 > , < 2, − 1, 1 >>

-- Execution

Gauss M

<< 1. 0,

< 0. 0,

−2. 38419E − 7,

1. 0,

2. 0 >

3. 0 >>

The matrix M represents the equations

3x + 9y = 33
2x − y = 1

The result of Gauss M correctly reflects the solution x = 2, y = 3.

4. Employee File Update

Next we consider a simple data processing example adapted from [MacLennan83]. We are given
an employee file F indexed by employee number. That is, F ↓ n is the record for employee
number n. The employee records themselves are represented by functions from attribute names
into attribute values. For example, if R is an employee record, then R ↓ ‘‘N’’ is the employee’s
name, R ↓ ‘‘R’’ is his hourly rate, and R ↓ ‘‘H’’ is the hours worked this pay period. Here is an
example employee file containing three records:

F ≡ {124 : {‘‘N’’ : ‘‘John’’, ‘‘R’’ : 10, ‘‘H’’ : 100},
118 : {‘‘N’’ : ‘‘Bill’’, ‘‘R’’ : 15, ‘‘H’’ : 120},
207 : {‘‘N’’ : ‘‘Sally’’, ‘‘R’’ : 14, ‘‘H’’ : 115}}

We are also given an update file U such that U ↓ n is the number of hours worked this week by
employee number n. For example:

U ≡ {118 : 6, 124 : 40, 207 : 40}

Our task is to generate an updated employee file F ′ in which the hours worked (‘‘H’’) field has
been updated.

-9-

First we define ‘sumhrs’ so that if R is an employee record and h is the hours worked this week,
then sumhrs < R, h > is the new total hours. Clearly,

sumhrs < R, h > ≡ (R ↓ ‘‘H’’) + h

Alternately, we can define this function variable-free style:

sumhrs ≡ [+] ° ([↓ ‘‘H’’] I)

It is easy to see the two are equivalent:

sumhrs < R, h > = ([+] ° ([↓ ‘‘H’’] I)) < R, h >
= [+] (([↓ ‘‘H’’] I) < R, h >)
= [+] < [↓ ‘‘H’’] R, I h >
= (R ↓ ‘‘H’’) + h

Our next task is to replace the old value of ‘‘H’’ field by h′. This can be accomplished by the
ordered union operation ‘;’. For example,

{‘‘H’’ : h′} ; R

will return a record R′ in which R′ ↓ ‘‘H’’ = h′ but all other fields of R′ are the same as in R.
How do we get the relation {‘‘H’’ : h′}? Since this is just a sequence that’s equivalent to the array
< ‘‘H’’, h′ >, we can use as to convert the array to a sequence. We solve for the function f that
computes {‘‘H’’ : h′} from < R, h > as follows:

f < R, h > = {‘‘H’’ : sumhrs < R, h > }
= as < ‘‘H’’, sumhrs < R, h >>
= as ([‘‘H’’ ,] (sumhrs < R, h >))
= (as ° [‘‘H’’ ,] ° sumhrs) < R, h >

Hence,

f ≡ as ° [‘‘H’’ ,] ° sumhrs

It’s necessary to get the corresponding records from the F and U files together so that they can be
processed by f . This is accomplished by the extensional construction operation # defined so that
(F # U) ↓ n = < F ↓ n, U ↓ n >. With the given example files we have:

F # U = { 124 : <{‘‘N’’ : ‘‘John’’, ‘‘R’’ : 10, ‘‘H’’: 100}, 40>,
118 : <{‘‘N’’ : ‘‘Bill’’, ‘‘R’’ : 15, ‘‘H’’ : 120}, 6>,
207 : <{‘‘N’’ : ‘‘Sally’’, ‘‘R’’ : 14, ‘‘H’’ : 115}, 40>}

Notice that the pairs < F ↓ n, U ↓ n > are just the inputs required for f . We combine the
preceding results into a update file ‘upd’ defined so that upd ↓ n is {‘‘H’’ : h′}, representing the
new hours worked for employee number n. In this case,

upd = { 124 : {‘‘H’’ : 140},
118 : {‘‘H’’ : 126},
207 : {‘‘H’’ : 155}}

It’s easy to solve for upd by using the relative product:

upd ↓ n = f ((F # U) ↓ n)
= ((F # U) | f) ↓ n

Hence, upd = (F # U) | f . Substituting for f yields:

-10-

upd ≡ (F # U) | (as ° [‘‘H’’ ,] ° sumhrs)

Now we’re almost done. We want each record in F ′ to be the ordered union of the corresponding
update record in upd and old record in F . Hence we solve:

F ′ ↓ n = (upd ↓ n) ; (F ↓ n)
= [;] < upd ↓ n, F ↓ n >
= [;] ((upd # F) ↓ n)
= ((upd # F) | [;]) ↓ n

Hence,

F ′ = (upd # F) | [;]

The complete session follows:

-- The Files

F ≡ {124 : {‘‘N’’ : ‘‘John’’, ‘‘R’’ : 10, ‘‘H’’ : 100},
118 : {‘‘N’’ : ‘‘Bill’’, ‘‘R’’ : 15, ‘‘H’’ : 120},
207 : {‘‘N’’ : ‘‘Sally’’, ‘‘R’’ : 14, ‘‘H’’ : 115}}

U ≡ {118 : 6, 124 : 40, 207 : 40}

-- Computing the New File

sumhrs ≡ [+] ° ([↓ ‘‘H’’] I)

upd ≡ (F # U) | (as ° [‘‘H’’ ,] ° sumhrs)

F ′ ≡ (upd # F) | [;]

-- The New File

val F ′

{124 : {‘‘H’’ : 140, ‘‘N’’ : ‘‘John’’, ‘‘R’’ : 10},
118 : {‘‘H’’ : 126, ‘‘N’’ : ‘‘Bill’’, ‘‘R’’ : 15},
207 : {‘‘H’’ : 155, ‘‘N’’ : ‘‘Sally’’, ‘‘R’’ : 14} }

This result correctly reflects the fact that John (employee 124) has worked 124 hours, Bill
(employee 118) has worked 15 hours, and Sally (employee 207) has worked 14 hours.

It is simple to modify the program so that it uses the input files OldMaster and Updates, and
defines the output file NewMaster:

F ≡ file ‘‘OldMaster ’’
U ≡ file ‘‘Updates’’

sumhrs ≡ [+] ° ([↓ ‘‘H’’] I)
upd ≡ (F # U) | (as ° [‘‘H’’ ,] ° sumhrs
file ‘‘NewMaster ’’ ≡ (upd # F) | [;]

5. References

-11-

[Brown&Mitton] Brown, J. R., and Mitton, S. J., Relational Programming: Design and
Implementation of a Prototype Interpreter, MS thesis, Naval Postgraduate School, June
1985.

[MacLennan83] MacLennan, B. J., ‘‘Relational Programming,’’ Naval Postgraduate School
Computer Science Department Technical Report NPS52-83-012, September 1983.

-12-

APPENDIX A: EXAMPLE RPL SESSIONS

This appendix contains transcripts of actual RPL sessions with the Brown and Mitton interpreter.
Note that the interpreter follows the Interlisp convention of permitting a bracket ‘]’ to close any
number of open parentheses.

Example 1: Word Frequence

It will be seen that the RPL interpreter computes a relation containing redundant tuples. They do
no harm, but can be eliminated (by a quadratic algorithm) if desired. The transcript follows:

Loading RPL--- DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? <y/n> n

RPL INTERPRETER ON LINE!!

?> S == (list "to" "be" "or" "not" "to" "be"]

?> (S sup -1]

(rel (be 6) (to 5) (not 4)
(or 3) (be 2) (to 1))

?> unimage T == ((dom T) restrict (lsec T unimg]

?> (unimage (S sup -1]

(set (be (set 6 2)) (to (set 5 1))
(not (set 4)) (or (set 3))
(be (set 6 2)) (to (set 5 1)))

?> ((unimage (S sup -1)) rp size]

(rel (be 2) (to 2) (not 1) (or 1)
(be 2) (to 2))

?> freq S == ((unimage (S sup -1)) rp size]

?> (freq (list "to" "be" "or" "not" "to" "be"]

(rel (be 2) (to 2) (not 1) (or 1)
(be 2) (to 2))

?> done

DO YOU WANT TO SAVE ENVIRONMENT FOR FUTURE USE? <y/n> n

-13-

Example 2: Minimizing DFA

For this example we assume that commands for defining the DFA and performing the
minimization are on a file, ‘‘examples/dfa.rpl’’, whose contents are:

(1st == (rsec sel 1))
(2nd == (rsec sel 2))
(r ppd s == (r | (s | (cnv r))))
(sigma f == ((f o (1st (, bar) (epsilon o 2nd))) (, bar) ((op o ((I (, bar) (un o epsilon)) o 2nd))))
(f rho i == (1st o (((sigma f) while ((rsec != empty) o 2nd)) o (lsec i ,))))
(union == ((op cup) rho empty))
(SIGMA == (set 1 2))
(T == (rel (1 : (rel (10 : 10) (20 : 20))) (2 : (rel (10 : 30) (20 : 30)))))
(Q == (set 10 20 30))
(F == (set 30))
(Q_sup_2 == (Q cart Q))
(n == (size Q_sup_2))
(R_sub_0 == (F cart (Q F)))
(psi R == (R cup (union (rng (T rp (rsec ppd R))))))
(R_sub_inf == ((psi sup n) R_sub_0))
(R_sub_= == ((Q_sup_2 R_sub_inf) cap (Q_sup_2 (cnv R_sub_inf))))
(rom_eclass == (lsec R_sub_= unimg))
(rom_equiv == (lsec rom_eclass img))
(Q_sub_= == (rom_equiv Q))
(T_sub_= == (T rp (lsec rom_eclass $)))
(F_sub_= == (rom_equiv F))
EOF

This file is executed by being loaded into RPL. The resulting transition function and states of the
minimal machine are then displayed. They can be seen to be sets of sets, since the states in the
minimal machine are represented by equivalence classes.3 The transcript follows:

DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? <y/n> y
INPUT FILENAME
examples/dfa.r pl
Loading--- Session loaded
?> val Q_sub_=

(set (set 10 20) (set 10 20) (set 30))

?> val T_sub_=

(rel (1 (rel ((set 10 20) (set 10 20)) ((set 10 20) (
set 10 20)))) (2 (rel ((set 10 20) (set 30)) ((set 10
20) (set 30)))))

?> val F_sub_=

3. Note that as usual there is benign redundancy in the sets.

-14-

(set (set 30))

?> done

-15-

Example 3: Gaussian Elimination

The program for performing the Gaussian elimination is in the file ‘‘examples/gauss.rpl’’, whose
contents are:

(con k == (func x k))
(transmap f == ((rsec rp f) o (op #)))
(vecdif == (transmap (op -)))
(scaprod (k v) == (v rp (lsec k times)))
(outer prod (u v) == (u rp (scaprod o (rsec , v))))
(matdif == (transmap vecdif))
(column (M k) == (M rp (rsec sel k)))
(unit (M k) == ((listrange 1 to (size M)) rp (if (rsec = k) -> (con 1) ; (con 0))))
(diag (M k) == ((M sel k) sel k))
(f for S == ((rsec @ S) o (lsec f red)))
(V == (scaprod o (((lsec 1.0 divide) o diag) (, bar) (vecdif o (column (, bar) unit)))))
(elim == (matdif o ((rsec sel 1) (, bar) (outerprod o (V (, bar) (op sel))))))
(Gauss M == ((elim for (listrange 1 to (size M))) M))
(M == (list (list 3 9 33) (list 2 -1 1)))
(a == (diag (list M 1)))
(b == (vecdif (list (column (list M 1)) (unit (list M 1)))))
(v == (scaprod (list 0.33 b)))
EOF

The session shown in the following transcript performs the Gaussian elimination on the matrix
M :

DO YOU WANT TO RESUME A PREVIOUS RPL SESSION? <y/n> y
INPUT FILENAME
examples/gauss.r pl
Loading--- Session loaded
?> (Gauss M]

(rel (1 (rel (1 1.0) (2 -2.38419E-07) (3 2.0)))
(2 (rel (1 0.0) (2 1.0) (3 3.0))))

?> done

Note that the resulting matrix is printed as a relation rather than a list of lists, since it is quite
expensive for the interpreter to determine if a relation is in fact a list.

-16-

Example 4: Data Processing

In this example, the employee file to be updated is small (three records), and so typed in
interactively. More typically, the RPL file facility would be used to load F from disk. The
transcript follows:

RPL INTERPRETER ON LINE!!
?> F == (rel (124 :
(rel ("N" : "John") ("R" : 10) ("H" : 100)))
(118 :
(rel ("N" : "Bill") ("R" : 15) ("H" : 120)))
(207 :
(rel ("N" : "Sally") ("R" : 14) ("H" : 115]

?> U == (rel (118 : 6) (124 : 40) (207 : 40]

?> (F # U]

(rel (124 (rel
(1 (rel (N John) (R 10) (H 100)))
(2 40)))
(118 (rel
(1 (rel (N Bill) (R 15) (H 120)))
(2 6)))
(207 (rel
(1 (rel (N Sally) (R 14) (H 115)))
(2 40))))

?> sumhrs == ((op +) o ((rsec sel "H") || I]

?> upd == ((F # U) rp
(as o ((lsec "H" ,) o sumhrs]

?> F’ == ((upd # F) rp (op ;]

?> val F’

(rel (124
(rel (H 140) (N John) (R 10)))
(118
(rel (H 126) (N Bill) (R 15)))
(207
(rel (H 155) (N Sally) (R 14))))

?> done

-17-

APPENDIX B: RPL GRAMMAR

session = command* done

command =

prefixid [identifier] ≡ expression

display expression

expression =

[expression infix] application

superscription

application =

[application] primary

iter ′[′ primary → primary ′]′

superscription = expression sup

application

+
*

primary =

literal

prefixid

′[′

infix

infix primary

primary infix

primary → primary ; primary

′]′

((expression [. . expression]))

{{ expression [. . expression] }}

< primary , . . . >

file string

infix = infixop [bar]

identifier = letter

letter

digit

*

prime*

prime = ′

literal =

digit+ [.. digit+] [E [+ | −] digit+]

string

tr ue
false

-18-

string = ‘‘ char* ’’

infixop =
sel | , : cup member nomem !subset subset = -> <- restr ; cl cr cap \
@hat ! cat @ . | | $ red + - times divide != < > <= >=
andsign orsign cart

prefixid =

identifier

prefixop

prefixop =
- un cur unc theta size str DELTA inv dom rng mem Lm Rm Mm run lun bun
init term alpha omega ALPHA OMEGA min max mu index select join as sa sa0
rp rpi rsort sort unimg all ssm img curry uncurry PHI Id while upsilon
phi delta PI extend restrict wig not

-19-

APPENDIX C: RPL INPUT FORM SUMMARY

TABLE 1. Primitive Extensional Operations

Name Old Input Form New Input Form Publication Form

selection t sel x t sel x t ↓ x
relative product t | u t | u t | u
construction t , bar u t # u t # u
pair formation x : y x : y x : y
union t cup u t cup u t ∪ u
unit set un x un x un x
currying cur t cur t cur t
uncurrying unc t unc t unc t
unique element selection theta s theta s θ s
element selection (added) epsilon t ε t
cardinality size t size t size t
structure str t (deleted) (deleted)
transitive closure t sup + t sup + t+

empty set empty empty ∅

-20-

TABLE 2. Nonprimitive Extensional Operations: Group 1

Name Old Input Form New Input Form Publication Form

pair list (x, y) (x , y) (x, y)
left pair section (x,) (deleted) (deleted)
right pair section (,y) (deleted) (deleted)
duplication DELTA x DELTA x ∆ x
membership x member t x member t x ∈ t
nonmembership x nomem t x nomem t x ∈/ t
improper subset s !subset t s !subset t s ⊆ t
proper subset s subset t s subset t s ⊂ t
equality s = t s = t s = t
converse inv t, t sup -1 cnv t, t sup -1 cnv t, t−1

domain dom t dom t dom t
range rng t rng t rng t
members mem t mem t mem t
left member Lm (x,t) x Lm t x Lm t
right member Rm (x,t) x Rm t x Rm t
member Mm (x,t) x Mm t x Mm t
right univalent run t run t run t
left univalent lun t lun t lun t
bi-univalent bun t bun t bun t
initial members init t init t init t
terminal members term t term t ter m t
reflexive transitive closure t sup * t sup ** t*

domain restriction p -> t p -> t p → t
range restriction t <- p t <- p t ← p
restriction t restr p t restr p t ↑ p
sequence filtering (added) p xi t p ξ t

-21-

TABLE 3. Nonprimitive Extensional Operations: Group 2

Name Old Input Form New Input Form Publication Form

first member alpha t alpha t α t
last member omega t omega t ω t
initial sequence ALPHA t ALPHA t A t
final sequence OMEGA t OMEGA t Ω t
ordered union t ; u t ; u t ; u
cons left x cl t x cl t x cl t
cons right t cr x t cr x t cr x
minimum min s min s min s
maximum max s max s max s
intersection s cap t s cap t s ∩ t
set difference s \ t s \ t s \ t
apply functional record t @ hat x t @hat x t @̂x
apply functional structure t ! x t ! x t ! x
minimize mu t mu t µ t
database index index x d x index d x index d
database select select x x select d x select d
database join join x x join dblist x join dblist
array to sequence as t as t as t
sequence to array sa t t sa i t sa i
seq. to zero-origin array sa0 t (deleted) (deleted)
relative product rp f t t rp f t | f
relative product inverse rpi f t f rpi t f | t
array concatenation t cat u t cat u t cat u
relation sort rsort s rsort s rsor t s
sort sort s sort s sor t s
unit image unimg t x t unimg x t unimg x
all all t all t all t
sequence to matrix ssm t ssm t ssm t

TABLE 4. Primitive Intensional Operations

Name Old Input Form New Input Form Publication Form

application f @ x f @ x f @ x
image img f s f img s f img s
composition f . g f o g f ° g
infix to prefix (added) (op +), (op times), ... [+], [×], . . .
left section (x+), (x-), ... (lsec x +), (lsec x -), ... [x+], [x−], . . .
right section (+y), (-y), ... (rsec + y), (rsec - y), ... [+y], [−y], . . .
paralleling f | | g f | | g f g
isomorphism f $ t f $ t f $ t
formal application f @ bar g (deleted) (deleted)
functional condition (p -> f; g) (if p -> f ; g) (p → f ; g)
curry curry f curry f curr y f
uncurry uncurry f uncurry f uncurr y f
filtering PHI p (d, r) p PHI S p Φ S
iteration iter [p -> f] (iter p -> f) iter [p → f]
formalization + bar, times bar, ... (+ bar), (times bar), ... +, ×, ...
identity Id I I

-22-

TABLE 5. Nonprimitive Intensional Operations

Name Old Input Form New Input Form Publication Form

while loop while [p, f] (f while p) f while p
array reduction f red i f red x f § x
repeated composition f sup n f sup n f n

value of node upsilon f upsilon f υ f
operate on form phi f phi f φ f
operate on data delta f delta f δ f
image of structure PI f PI f Π f
extension extend (t, f) t extend f t extend f
restriction restrict (s, f) s restrict f s restr ict f
formal negation wig p wig p ∼p

TABLE 6. Miscellaneous Operations

Name Old Input Form New Input Form Publication Form

sum x + y x + y x + y
difference x - y x - y x − y
product x times y x times y x × y
quotient x divide y x divide y x / y
inequality x != y x != y x ≠ y
less x < y x < y x < y
greater x > y x > y x > y
less or equal x <= y x <= y x ≤ y
greater or equal x >= y x >= y x ≥ y
conjunction x andsign y x andsign y x // \\ y
disjunction x orsign y x orsign y x \\ // y
negation not x not x ¬x
cartesian product s cart t s cart t s ×× t

TABLE 7. Data Input Operations and Syntax

Name Input Form Publication Form

identifiers a, b’, total, etc. a, b′, total, etc.
strings ‘‘abcd’’ ‘‘abcd’’
booleans true, false tr ue, false
relation (rel (x : y), ...) ((x y), . . .)
set (set x y ...) {x, y, . . . }
sequence (seq x y ...) (x, y, . . .)
list (list x y ...) < x, y, . . . >
subrange set (setrange m to n) {m, . . . , n}
subrange sequence (seqrange m to n) (m, . . . , n)
subrange list (listrange m to n) <m, . . . , n>

-23-

TABLE 8. RPL Command Types

Name Input Form Publication Form

data definition x == y x ≡ y
prefix function definition f x == y f x ≡ y
infix function definition x f y == z x f y ≡ z
write data to a file file "name" == x file ‘‘name’’ ≡ x
read data from a file x == (file "name") x ≡ file ‘‘name’’
output, form 1 display x display x
output, form 2 dis x display x
output, form 3 d x d x
output, form 4 x x
output value of definition val x val x
output function environment env f env f
output entire environment env env

-24-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943 2

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93943 1

Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 40

Bruce J. MacLennan
Code 52ML
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 12

Ralph Wachter
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217-5000 1

S. Kamal Abdali
Tektronix Laboratories
Computer Research Laboratory
M/S 50-662
P. O. Box 500
Beaverton, OR 97077 1

Drew D. Adams
Centre de Recherches de la C.G.E.
Laboratories de Marcoussis
Division Informatique
Route de Nozay
91460 Marcoussis
France 1

Vinay Apsingikar
CMC Limited
R & D Division
115 Sarojini Devi Road
Secunderabad 500003
India 1

John Backus

-25-

IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099 1

Jospeh H. Fasel
Los Alamos National Laboratory
C-10, MS B296
Los Alamos, NM 87545 1

Robert Floyd
Computer Science Department
Stanford University
Stanford, CA 94305 1

Joseph A. Goguen
SRI International
Computer Science Laboratory
333 Ravenswood Avenue
Menlo Park, CA 94025 1

Peter Henderson
Department of Computer Science
SUNY at Stony Brook
Long Island, NY 11794 1

Paul Hudak
Yale University
Department of Computer Science
Box 2158, Yale Station
New Hav en, CT 06520 1

Bharat Jayaraman
University of North Carolina
Department of Computer Science
New West Hall 035 A
Chapel Hill, NC 27514 1

A. Dain Samples
Computer Science Division - EECS
University of California
Berkeley, CA 94720 1

Mayer Schwartz
Computer Research Laboratory
MS 50-662
Tektronix, Inc.
P. O. Box 500
Beaverton, OR 97077 1

Guy L. Steele
Thinking Machines Corporation
245 First Street
Cambridge, MA 02142 1

Richard Taylor
INMOS Limited
Whitefriars
Lewins Mead
Bristol BS1 2NP

-26-

UK 1

-27-

