
Field Computation in Natural and
Artificial Intelligence

Bruce J. MacLennan

Article Outline

Glossary

I. Introduction
II. Basic Principles

III. Field Computation in the Brain
IV. Examples of Field Computation
V. Field Computers

VI. Future Directions
VII. Bibliography

Glossary

Axon: Nerve fiber adapted to the efficient, reliable, active transmission of
neural impulses between locations in the brain or body.
Dendrite: Nerve fibers adapted to the (primarily passive) sensing and
integration of signals from other neurons, which are transmitted to the
neuron cell body.
Dirac delta function: A distribution or generalized function that is de-
fined to be infinite at the origin, zero everywhere else, and to have unit
area (or volume). More generally, such a function, but with its infinite
point located elsewhere than the origin. Dirac delta functions are ideal-
ized impulses and exist as limit objects in Hilbert spaces.
Eigenfield: An eigenfield of a linear operator has the property of passing
through the operator with its shape unchanged and only its amplitude and

Department of Electrical Engineering & Computer Science, University of Tennessee,

Knoxville, Tennessee, USA e-mail: maclennan@utk.edu

1

2 Bruce J. MacLennan

phase possibly modified. Equivalent to an eigenfunction of the operator,
but stresses the function’s role as a field.
Field: A continuous distribution of continuous quantity. Mathematically,
an element of an appropriate space, such as a Hilbert space, of continuous-
valued functions over a continuum. See also phenomenological field and
structural field.
Field computation: Computation in which data are represented by
fields, or by other representations that can be mathematically modeled
by fields.
Field space: A suitably constrained set of fields. Generally field spaces
are taken to be subspaces of Hilbert spaces.
Field transformation: Functions between field spaces; more generally,
functions whose input and/or outputs are fields. Synonymous with opera-
tor in this article.
Functional: A scalar-valued function of functions, and in particular a
scalar-valued field transformation.
Idempotency: An operation is idempotent when repeating it several
times has the same effect as doing it once.
Impulse response: The response of a system to an input that is an
idealized impulse (a Dirac delta function, q.v.).
Microfeature: Features of a stimulus or representation that are much
smaller and at a lower level than ordinary (macro-)features, which are
the sort of properties for which natural languages have words. Typically
microfeatures have meaning (are interpretable) only in the context of many
other microfeatures. Pixels are examples of microfeatures of images.
Nullcline: In a two-dimensional system of differential equations (u̇k =
fk(u, v), k = 1, 2), the lines along which each of the derivatives is zero
(fk(u, v) = 0).
Operator: A function of functions (i.e., a functions whose inputs and/or
outputs are functions), and in particular a function whose inputs and/or
outputs are fields. Operators may be linear or nonlinear. Synonymous, in
this article, with field transformation.
Orthonormal (ON): A set of vectors, fields, or functions is orthonor-
mal if they are: (1) mutually orthogonal (i.e., inner products of distinct
elements are 0), and (2) individually normalized (i.e., inner products of
elements with themselves are 1).
Phenomenological field: A physical distribution of quantity that for
practical purposes may be treated mathematically as a continuous distri-
bution of continuous quantity, although it is not so in reality (cf. structural
field)
Physical realizability: A field is physically realizable if it can be repre-
sented in some physical medium.
Population coding: Neural representation in which a population of neu-
rons jointly represent a stimulus or other information. Each individual

Field Computation in Natural and Artificial Intelligence 3

neuron is broadly tuned to a range of stimuli, but collectively they can
represent a stimulus accurately.
Post-Moore’s law computing: Refers to computing paradigms that will
be important after the expiration of Moore’s Law (Moore, 1965), which
predicts a doubling of digital logic density every two years.
Projection: A systematic pattern of axonal connections from one region
of a brain to another.
Radial basis function (RBF): One of a set of real-valued functions,
each of whose value decreases with distance from a central point (different
for each function). The set as a whole satisfies some appropriate criteria
of completeness (ability to approximate a class of functions).
Receptive field: The receptive field of a sensory neuron is the set of stim-
uli to which it responds. By extension, the receptive field of a non-sensory
neuron is the set of inputs (from other neurons) to which it responds. Each
neuron has a receptive field profile which describes the extent to which par-
ticular patterns of input stimulate or inhibit activity in the neuron (and
so, in effect, its receptive field is fuzzy-boundaried).
Structural field: A physical field that is in reality a continuous distribu-
tion of continuous quantity (cf. phenomenological field). Examples include
electromagnetic and gravitational fields.
Synapse: A connection between neurons, often from the axon of one to the
dendrite of another. Electrical impulses in the pre-synaptic neuron cause
neurotransmitter molecules to be released into the synapses between the
neurons. These chemicals bind to receptors in the post-synaptic neuron
membrane, and cause fluctuations in the membrane potential.
Transfer function: A function expressing the effect of a linear system on
its input, expressed in terms of its effect on the amplitude and phase of
each component frequency.
Unit doublet: A generalized function that is the derivative of the Dirac
delta function (q.v.). It is zero except infinitesimally to the left of the
origin, where it is +∞, and infinitesimally to the right of the origin, where
it is −∞.

Introduction

A field may be defined as a spatially continuous distribution of continuous
quantity. The term is intended to include physical fields, such as electro-
magnetic and gravitational fields, but also patterns of electrical activity over
macroscopic regions of neural cortex. Fields include two-dimensional repre-
sentations of information, such as optical images and their continuous Fourier
transforms, and one-dimensional images, such as audio signals and their spec-
tra, but, as will be explained below, fields are not limited to two or three
dimensions. A field transformation is a mathematical operation or function

4 Bruce J. MacLennan

that operates on one or more fields in parallel yielding one or more fields as
results. Since, from a mathematical standpoint, fields are defined over a con-
tinuous domain, field transformations operate with continuous parallelism.
Some examples of field transformations are point-wise summation and mul-
tiplication of fields, Fourier and wavelet transforms, and convolutions and
correlations.

Field computation is a model of computation in which information is rep-
resented primarily in fields and in which information processing is primarily
by means of field transformations. Thus it may be described as continuously
parallel analog computing (see article Analog Computation). Field com-
putation may be feed-forward, in which one or more fields progress through
a series of field transformations from input to output, or it may be recurrent,
in which there is feedback from later stages of the field computation back
to earlier stages. Furthermore, field computations can proceed in discrete
sequential steps (similar to digital program execution, but with each step
applying a field transformation), or in continuous time according to partial
differential equations.

A distinction is often made in science between structural fields and phe-
nomenological fields. Structural fields are physically continuous distributions
of continuous quantity, such as gravitational fields, electromagnetic fields,
and the quantum mechanical wave function. Phenomenological fields are dis-
tributions of quantity that can be treated mathematically as though they are
continuous, even if they are not physically continuous. For example, the veloc-
ity field of a macroscopic volume of fluid is a phenomenological field, because
it is not physically continuous (each discrete molecule has its own velocity),
but can be treated as though it is. Similarly, a macroscopic charge distribution
is a phenomenological field because charge is quantized but can be treated
as a continuous quantity for many purposes. Although structural fields are
sometimes used, often field computation is concerned with phenomenological
fields, that is, with information that can be treated as a continuous distribu-
tion of continuous quantity, regardless of whether it is physically continuous.
Practically, this means that quantization in both the distribution and the
quantity must be sufficiently fine that they can be modeled mathematically
by continua.

One of the goals of field computation is to provide a mathematical lan-
guage for describing information processing in the brain and in future large
artificial neural networks intended to exhibit brain-scale intelligence. Neural
computation is qualitatively different from computation on an ordinary dig-
ital computer, which can be characterized as deep but narrow; that is, the
processor operates on relatively few data values at a time, but the opera-
tions are very rapid, and so many millions of operations can be executed
each second. Even on a modern parallel computer, the degree of parallelism
is modest, on the order of thousands, whereas even a square millimeter of
cortex has between 56 000 to 127 000 neurons operating in parallel (Collins
et al, 2010). On the other hand, since neurons are quite slow (responding

Field Computation in Natural and Artificial Intelligence 5

on the order of milliseconds), the “100-Step Rule” says that there can be at
most about 100 sequential processing stages between sensation and response
(Feldman and Ballard, 1982). Therefore, neural computation is shallow but
wide; that is, it uses relatively few sequential stages, but each operates with a
very high degree of parallelism (on the order of many millions). In addition to
its speed, modern electronic digital arithmetic is relatively precise compared
to the analog computation of neurons (at most about one digit of precision)
(McClelland et al, 1986, p. 378). Therefore we can conclude that neuronal
information processing operates according to quite different principles from
ordinary digital computing.

It is not unreasonable to suppose that achieving an artificial intelligence
that is comparable to the natural intelligence of mammals will require a
similar information processing architecture; in any case that seems to be a
promising research direction. Therefore we should be aiming toward compo-
nents with computational capabilities comparable to neurons and densities
of at least ten million per square centimeter. Fortunately, the brain demon-
strates that these components do not have to be high-speed, high-precision
devices, nor do they have to be precisely connected, for the detailed connec-
tions can be established through self-organization and learning. The theory
of field computation can contribute in two ways: first, by providing a mathe-
matical framework for understanding information in massively parallel analog
computation systems, such as the brain, and second, by suggesting ways to
exploit relatively homogeneous masses of computational materials (e.g., thin
films, new nanostructured materials). For the same reasons, field computers
may provide an attractive alternative for “post-Moore’s law computing.”

History

The term “field computation” dates from 1987 (MacLennan, 1987), but ex-
amples of field computation are much older. For example, G Kirchhoff (1824–
87) and others developed the field analogy method in which partial differential
equation (PDE) problems are solved by setting up an analogous physical sys-
tem and measuring it (Kirchhoff, 1845). Thus a two-dimensional boundary
value problem, for example determining a steady-state temperature or mag-
netic field distribution, could be solved by setting up an analogous system
with a conductive sheet or a shallow tank containing an electrolytic solu-
tion (Small, 2001, p. 34). When the boundary conditions were applied, the
system computed the steady-state solution field in parallel and at electronic
speed. The resulting potential field could not be displayed directly at that
time, and so it was necessary to probe the field at discrete points and plot
the equipotential lines; later devices allowed the equipotentials to be traced
more or less automatically (Truitt and Rogers, 1960, p. 2-6). In either case,
setting up the problem and reading out the results were much slower than

6 Bruce J. MacLennan

the field computation itself, which was comparatively instantaneous. Three-
dimensional PDEs were similarly solved with tanks containing electrolytic
solutions (Truitt and Rogers, 1960, pp. 2-5–2-6). (For more on conductive
sheet and electrolytic tanks methods, see Soroka, 1954, ch. 9.)

Non-electronic field computation methods were also developed in the nine-
teenth century, but continued to be used through the first half of the twentieth
century to solve the complex PDEs that arise in practical engineering (Truitt
and Rogers, 1960, pp. 2-8–2-9). For example, so called “rubber-sheet com-
puters” were used to compute the complex electric fields in vacuum tubes. A
thin elastic membrane represented the field, and rods or plates pushing the
sheet down from above or up from below represented constant negative or
positive potential sources. The sheet assumed the shape of the electrical po-
tential field, which could be viewed directly. By altering the rods and plates
and observing the effects on the sheet, the engineer could develop an intu-
itive understanding of the field’s dependence on the potential sources. These
simple mechanical devices used effectively instantaneous field computation
to display the steady-state field’s dependence on the boundary conditions.

Electrolytic tanks and conductive and elastic sheets are all examples of
the use of continuous media in field computation, but other mechanical field
computers used discrete approximations of spatially continuous fields. For ex-
ample, “pin-and-rod systems,” which were developed in the nineteenth cen-
tury, exploited the fact that equipotential lines and flux (or stream) lines
always cross at right angles (Truitt and Rogers, 1960, pp. 2-9–2-11). A (two-
dimensional) field was represented by two arrays of flexible but stiff wires,
representing the flux and equipotential lines. At each crossing point was a pin
with two perpendicular holes drilled through it, through which the crossing
wires passed. The pins were loose enough that they could move on the wires,
while maintaining, of course, their relative position and the perpendicular
crossings of the wires. To solve a PDE problem (for example, determining
the pressure potentials and streamlines of a non-tubulent flow through a noz-
zle), the edges of the pin-and-rod system were bent to to conform to the
boundary conditions; the rest of the system adjusted itself to the steady-
state solution field. Like the rubber-sheet computers, pin-and-rod systems
allowed the solution field to be viewed directly and permitted exploration of
the effects on the solution of changes in the boundary conditions.

Through the first half of the twentieth century, network analyzers were
popular electronic analog computers, which were often used for field compu-
tation (Small, 2001, pp. 35–40) This was similar to the field analogy method,
but a discrete network of resistors or resistive elements replaced such contin-
uous conducting media as the electrolytic tank and conductive sheet. Nev-
ertheless, a sufficiently fine mesh of resistive elements may be treated as
a phenomenological field, and network analyzers were used to solve PDE
problems (Truitt and Rogers, 1960, pp. 2-6–2-8). Boundary conditions were
defined by applying voltages to the appropriate locations in the network, and
the resulting steady-state field values were determined by measuring the cor-

Field Computation in Natural and Artificial Intelligence 7

responding nodes in the network. As usual, it was possible to monitor the
effects of boundary condition changes on particular locations in the field, and
to plot them automatically or display them on an oscilloscope.

The field computers discussed so far were suited to determining the steady-
state solution of a system of PDEs given specified boundary conditions; as a
consequence they were sometimes called field plotters or potential analyzers
(Truitt and Rogers, 1960, p. 2-3). These are essentially static problems, al-
though, as we have seen, it was possible to simulate and monitor changes in
the (relatively) steady-state solution as a consequence of (relatively slowly)
changing boundary conditions. On the other hand, truly dynamic problems,
which simulated the evolution of a field in time, could be addressed by reactive
networks, that is, networks incorporating capacitive and inductive elements
as well as resistors (Truitt and Rogers, 1960, pp. 2-11–2-13). For example
an RC network analyzer, which had capacitance at each of the nodes of the
resistor network, could solve the diffusion equation, for the charge on the
capacitors corresponded to the concentration of the diffusing substance at
corresponding locations in the medium. An RLC network analyzer had in-
ductance, as well as resistance and capacitance, at each node, and so it was
able to address a wider class of PDEs, including wave equations.

Although these twentieth-century field computers were constructed from
discrete resistors, capacitors, and inductors, which limited the size of feasible
networks, analog VLSI and emerging fabrication technologies will permit the
implementation of much denser devices incorporating these and similar field
computation techniques (see the section Field Computers).

The following section will present the mathematical foundations and no-
tation for field computation; Hilbert spaces provide the basic mathematical
framework. Next we discuss examples of field computation in the brain, es-
pecially in its computational maps. Fields appear in a number of contexts,
including activity at the axon hillocks, in patterns of axonal connection be-
tween areas, and in patterns of synaptic connection to dendrites. The follow-
ing section presents examples of field computation in the brain and in other
natural and artificial systems, including fields for sensorimotor processing, ex-
citable media, and diffusion processes. Next we consider special topics in field
computation in cognition, including the separation of information (semantics)
from pragmatics, and the analysis of discrete symbols as field excitations. We
also consider the relevance of universal mutivariate approximation theorems
to general-purpose field computation. Then we discuss hardware specifically
oriented toward field computation, including electronic, optical, and chemi-
cal technologies. Finally, we consider future directions for field computation
research.

8 Bruce J. MacLennan

Basic Principles

Mathematical Definitions

Mathematically, a field is (generally continuous) function φ : Ω → K defined
over some bounded domain Ω (often a compact subset of a Euclidean space)
and taking values in an algebraic field K. Typically K is the real numbers,
but in some applications it is the complex numbers or a vector space

As usual, the value of a field φ at a point u ∈ Ω of its domain can be de-
noted by φ(u), but we more often use the notation φu with the same meaning.
The latter is especially convenient for time-varying fields. For example, the
value of a field φ at point u and time t can be denoted by φu(t) rather than
φ(u, t). The entire field at a particular time t is then written φ(t). As is com-
monly done in mathematics, we may consider φ to be a variable implicitly
defined over all u ∈ Ω. (In this article lower-case Greek letters are usually
used for fields. We occasionally use bold-face numbers, such as 0 and 1, for
constant-valued fields; thus 0u = 0 for all u ∈ Ω. When it is necessary to
make the field’s domain explicit, we write 0Ω , 1Ω , etc.)

For practical field computation (e.g., in natural and artificial intelligence)
we are interested in fields that can be realized in some physical medium,
which places restrictions on the space of allowable fields. These restrictions
vary somewhat for different physical media (e.g., neural cortex or optical
fields), but we can specify a few general conditions for physical realizability.
Generally, fields are defined over a bounded domain, although sometimes we
are interested in fields that are extended in time with no prespecified bound
(e.g., an auditory signal). Furthermore, since most media cannot represent
unbounded field amplitudes, it is reasonable to assume that a field’s range
of variation is also bounded (e.g., |φu| ≤ B for all u ∈ Ω). In addition,
most media will not support unbounded gradients, so the field’s derivatives
are bounded. Indeed, physically realizable fields are band-limited in both the
spatial and temporal domains. Although different assumptions apply in differ-
ent applications, from a mathematical perspective it is generally convenient
to assume that fields are uniformly continuous square-integrable functions
(defined below), and therefore that they belong to a Hilbert function space.
In any case we use the notation ΦK(Ω) for a physically realizable space of
K-valued fields over a domain Ω, and write Φ(Ω) when the fields’ values are
clear from context.

The foregoing considerations suggest that the inner product of fields is an
important concept, and indeed it is fundamental to Hilbert spaces. Therefore,
if φ and ψ are two real-valued fields with the same domain, φ, ψ ∈ Φ(Ω), we
define their inner product in the usual way:

〈φ | ψ〉 =

∫
Ω

φuψudu.

Field Computation in Natural and Artificial Intelligence 9

If the fields are complex-valued, then we take the complex conjugate of one
of the fields (consistently choosing either the first, as here, or the second):

〈φ | ψ〉 =

∫
Ω

φ∗uψudu.

For vector-valued fields φ,ψ ∈ ΦCn(Ω) we may define

〈φ | ψ〉 =

∫
Ω

φ†uψudu,

where φ†u is the conjugate transpose of φu. Finally, the inner-product norm
‖φ‖ is defined in the usual way:

‖φ‖ =
√
〈φ | φ〉.

As previously remarked, the elements of a Hilbert space are required to be
square-integrable (“finite energy”): ‖φ‖ <∞.

Field Transformations

A field transformation or operator is any continuous function that maps one
or more input fields into one or more output fields. In the simplest case a
field transformation F : Φ(Ω)→ Φ(Ω′) maps a field in the input space Φ(Ω)
into a field in the output space Φ(Ω′).

We do not want to exclude degenerate field transformations, which operate
on a field to produce a single real number, for example, or operate on a scalar
value to produce a field. (An example of the former is the norm operation, ‖·‖,
and an example of the latter is the operator that produces a constant-valued
field over a domain.) In these cases we can consider the inputs or outputs
to belong to a space Φ(Ω) in which Ω is a singleton set. For example, the
complex numbers can be treated as fields in

Φ0 = ΦC({0}).

Since C and Φ0 are isomorphic (C ∼= Φ0), we will ignore the difference between
them when no confusion can result.

Another class of simple field transformations are the local transformations,
in which each point of the output field is a function of the corresponding point
in the input field. In the simplest case, the same function is applied at each
point. Suppose that for input field φ ∈ ΦJ(Ω), the output field ψ ∈ ΦK(Ω) is
defined ψu = f(φu), where f : J → K. Then we write f : ΦJ(Ω) → ΦK(Ω)
for the local transformation ψ = f(φ). For example, log(φ) applies the log
function to every element of φ and returns a field of the results. More gener-

10 Bruce J. MacLennan

ally, we may apply a different function (from a continuously parameterized
family) at each point of the input field. Suppose F : Ω×J → K, then we
define F : ΦJ(Ω)→ ΦK(Ω) so that if ψ = F (φ), then ψu = F (u, φu).

Field transformations may be linear or nonlinear. The most common linear
transformations are integral operators of Hilbert-Schmidt type, which are the
field analogs of matrix-vector products. Let φ ∈ Φ(Ω) and L ∈ Φ(Ω′×Ω) be
square-integrable fields; then the product Lφ = ψ ∈ Φ(Ω′) is defined:

ψu =

∫
Ω

Luvφvdv.

L is called the kernel of the operator. Likewise we write the product φK
for φ ∈ Φ(Ω) and K ∈ Φ(Ω×Ω′). It is easy to show that physically re-
alizable linear operators have a Hilbert-Schmidt kernel, because physically
realizable fields and the operators on them are band-limited (MacLennan,
1990). Therefore they can be computed by field products of the form Lφ.

According to the Riesz Representation Theorem (e.g., Brachman and Nar-
ici, 1966, Sec. 12.4), a continuous linear functional (complex-valued opera-
tor) L : Φ(Ω) → C has a representer, which is a field ρ ∈ Φ(Ω) such that
Lφ = 〈ρ | φ〉. However, since linear operators are continuous if and only if
they are bounded, and since practical field transformations are bounded, all
practical linear functionals have representers. Therefore, using Dirac’s bracket
notation, we write L = 〈ρ|, which is the dual of the field |ρ〉 = ρ.

We define multilinear products in the same way. Suppose φk ∈ Φ(Ωk), for
k = 1, . . . , n, and M ∈ Φ(Ω′×Ωn× · · ·Ω2×Ω1). Then Mφ1φ2 · · ·φn = ψ ∈
Φ(Ω′) is defined

ψu =

∫
Ωn

· · ·
∫
Ω2

∫
Ω1

Muvn···v2v1φ1(v1)φ2(v2) · · ·φn(vn)dv1dv2 · · · dvn.

Again, physically realizable multilinear operators are band limited, and so
they can be computed by this kind of multilinear product (MacLennan, 1990).

Like the field analogs of inner products and matrix-vector products, it
is also convenient to define an analog of the outer product. For φ ∈ Φ(Ω)
and ψ ∈ Φ(Ω′) we define the outer product φ ∧ ψ ∈ Φ(Ω×Ω′) so that
(φ ∧ ψ)(u,v) = φuψv, for u ∈ Ω, v ∈ Ω′. Inner, outer, and field products are
related as follows for φ, χ ∈ Φ(Ω) and ψ ∈ Φ(Ω′):

φ(χ ∧ ψ) = 〈φ∗ | χ〉ψ = ψ〈χ∗ | φ〉 = (ψ ∧ χ)φ.

(For fields, the outer product φ∧ψ is equivalent to the tensor product φ⊗ψ,
and is the kernel of the Dirac outer product or dyad |φ〉〈ψ∗|, both of which
are used in quantum mechanics.)

In the simplest kind of field computation (corresponding to a feed-forward
neural network), an input field φ is processed through one or more field
transformations F1, . . . , Fn to yield an output field ψ:

Field Computation in Natural and Artificial Intelligence 11

ψ = Fn(· · ·F1(φ) · · ·).

This includes cases in which the output field is the continuously-varying image
of a time-varying input field,

ψ(t) = Fn(· · ·F1(φ(t)) · · ·).

More complex feed-forward computations may involve additional input, out-
put, and intermediate fields, which might be variable or not.

In an ordinary artificial neural network, the activity yi of neuron i in one
layer is defined by the activities x1, . . . , xn of the neurons in the preceding
layer by an equation such as

yi = s

 N∑
j=1

Wijxj + bi

 , (1)

where Wij is the weight or strength of the connection from neuron j to
neuron i, bi is a bias term, and s : R → R is a sigmoid function, that is
a non-decreasing, bounded continuous function. (The hyperbolic tangent is
a typical example.) The field computation analog is obtained by taking the
number of neurons in each layer to the continuum limit. That is, the activities
ψu in one neural field (u ∈ Ω′) are defined by the values φv in the input field
(v ∈ Ω) by this equation:

ψu = s

(∫
Ω

Luvφvdv + βv

)
,

where L ∈ Φ(Ω′×Ω) is an interconnection field and β ∈ Φ(Ω′) is a bias field.
More compactly,

ψ = s(Lφ+ β). (2)

In a typical neural network, the input is processed through a series of layers,
each with its own weights and biases. Analogously, in field computation we
may have an N -layer neural field computation, φk = s(Lkφk−1 + βk), k =
1, . . . , N , where φ0 ∈ Φ(Ω0) is the input, φN ∈ Φ(ΩN) is the output, Lk ∈
Φ(Ωk×Ωk−1) are the interconnection fields, and βk ∈ Φ(Ωk) are the bias
fields. Other examples of neural-network style field computing are discussed
later (the section Examples of Field Computation).

Many important field computation algorithms are iterative, that is, they
sequentially modify one or more fields at discrete moments of time. They are
analogous to ordinary computer programs, except that the variables contain
fields rather than scalar quantities (integers, floating-point numbers, char-
acters, etc., and arrays of these). Since the current value of a field variable
may depend on its previous values, iterative field computations involve feed-
back. Examples of iterative algorithms include field computation analogs of
neural network algorithms that adapt in discrete steps (e.g., ordinary back-

12 Bruce J. MacLennan

propagation), and recurrent neural networks, which have feedback from later
layers to earlier layers.

Analog field computers, like ordinary analog computers, can operate in
continuous time, defining the continuous evolution of field variable by differ-
ential equations. For instance, φ̇ = F (φ) is a simple first-order field-valued dif-
ferential equation, which can be written more explicitly ∂φu(t)/∂t = Fu[φ(t)].
An example is the familiar diffusion equation φ̇ = k2∇2φ.

Continuously varying fields arise in a number of contexts in natural and
artificial intelligence. For example, sensorimotor control (in both animals and
robots) depends on the processing of continuously varying input fields (e.g.,
visual images or auditory signals) and their transformation into continuously
varying output signals (e.g., to control muscles or mechanical effectors). One
of the advantages of field computing for these applications is that the fields
are processed in parallel, as they are in the brain. Often we find continuous
field computation in optimization problems, in adaptation and learning, and
in the solution of other continuous problems. For example, a field represent-
ing the interpretation of perceptual data (such as stereo disparity) may be
continuously converging to the optimal interpretation or representation of
the data.

Optimization problems are sometimes solved by continuous gradient ascent
or descent on a potential surface defined by a functional F over a field space
(F : Φ(Ω)→ R), where F (φ) defines the “goodness” of solution φ. Gradient
ascent is implemented by φ̇ = r∇F (φ), where r is the rate of ascent. This and
other examples are discussed in the section Gradient Processes, but the
use of the gradient raises the issue of the derivatives of field transformations,
such as F , which we now address.

Derivatives of Field Transformations

Since fields are functions, field spaces are function spaces (generally, Hilbert
spaces), and therefore the derivatives of field transformations are the deriva-
tives of operators over function spaces (Iyanaga and Kawada, 1980, §251G).
There are two common definitions of the differentiation of operators on
Hilbert spaces (more generally, on Banach spaces), the Fréchet and the
Gâteaux derivatives, which turn out to be the same for field transforma-
tions (MacLennan, 1990). Therefore suppose that F : Φ(Ω) → Φ(Ω′)
is a field transformation and that U is an open subset of Φ(Ω). Then
D ∈ L(Φ(Ω), Φ(Ω′)), the space of bounded linear operators from Φ(Ω) to
Φ(Ω′), is called the Fréchet differential of F at φ ∈ U if for all α ∈ Φ(Ω) such
that φ+ α ∈ U there is an E : Φ(Ω)→ Φ(Ω′) such that,

F (φ+ α) = F (φ) +D(α) + E(α)

Field Computation in Natural and Artificial Intelligence 13

and

lim
‖α‖→0

‖E(α)‖
‖α‖

= 0.

The Fréchet derivative F ′ : Φ(Ω)→ L(Φ(Ω), Φ(Ω′)) is defined by F ′(φ) = D,
which is the locally linear approximation to F at φ.

Similarly dF : Φ(Ω)×Φ(Ω)→ Φ(Ω′) is a Gâteaux derivative of F if for all
α ∈ U the following limit exists:

dF (φ, α) = lim
s→0

F (φ+ sα)− F (φ)

s
=

dF (φ+ sα)

ds

∣∣∣∣
s=0

.

If the Fréchet derivative exists, then the two derivatives are identical, dF (φ, α) =
F ′(φ)(α) for all α ∈ Φ(Ω).

Based on the analogy with finite-dimensional spaces, we define∇F (φ), the
gradient of F at φ, to be the kernel K ∈ Φ(Ω′×Ω) satisfying F ′(φ)(α) = Kα
for all α in Φ(Ω). That is, F ′(φ) is an integral operator with kernel K =
∇F (φ); note that F ′(φ) is an operator but∇F (φ) is a field. The field analog
of a directional derivative is then defined:

∇αF (φ) = [∇F (φ)]α = F ′(φ)(α).

Because of their importance, it is worth highlighting the gradients of func-
tionals (complex-valued operators on fields). According to the preceding def-
inition, the gradient of a functional F : Φ(Ω)→ Φ0 will be a two dimensional
field ∇F (φ) ∈ Φ({0}×Ω). (Recall Φ0 = Φ({0}) ∼= C.) However, when confu-
sion is unlikely, it is more convenient to define ∇F (φ) = γ ∈ Φ(Ω), where γ
is the representer of F ′(φ). Then F ′(φ)(α) = 〈γ | α〉 = 〈∇F (φ) | α〉.

Higher order derivatives of field operators are defined in the obvious
way, but it is important to note that each derivative is of “higher type”
than the preceding. That is, we have seen that if F : Φ(Ω) → Φ(Ω′),
then dF : Φ(Ω)2 → Φ(Ω′), where Φ(Ω)2 = Φ(Ω)×Φ(Ω). Similarly, dnF :
Φ(Ω)n+1 → Φ(Ω′). Also, as F ′ : Φ(Ω) → L(Φ(Ω), Φ(Ω′)), so F ′′ : Φ(Ω) →
L(Φ(Ω),L(Φ(Ω), Φ(Ω′))) and, in general,

F (n) : Φ(Ω)→
n︷ ︸︸ ︷

L(Φ(Ω),L(Φ(Ω), · · · ,L(Φ(Ω), Φ(Ω′)) · · ·)).

Corresponding to higher-order derivatives are higher-order gradients:

dFn(φ, α1, . . . , αn) = ∇nF (φ)α1 · · ·αn
= ∇nF (φ)(αn ∧ · · · ∧ α1)

= ∇αn
· · ·∇α1

F (φ).

For reference, we state the chain rules for Fréchet and Gâteaux derivatives:

(F ◦G)′(φ)(α) = F ′[G(φ)][G′(φ)(α)], (3)

14 Bruce J. MacLennan

d(F ◦G)(φ, α) = dF [G(φ),dG(φ, α)]. (4)

Just as a real function can be expanded in a Taylor series around a point
to obtain a polynomial approximation, there is a corresponding theorem in
functional analysis that allows the expansion of an operator around a fixed
field. This suggests an approach to general-purpose computation based on
field polynomials (MacLennan, 1987), but there are also other approaches
suggested by neural networks (see the section Universal Approximation
below). We begin with a formal statement of the theorem.

Theorem 1 (Taylor) Suppose that U is any open subset of Φ(Ω) and that
F : Φ(Ω)→ Φ(Ω′) is a field transformation that is Cn in U (that is, its first
n derivatives exist). Let φ ∈ U and α ∈ Φ(Ω) such that φ + sα ∈ U for all
s ∈ [0, 1]. Then:

F (φ+ α) =

n−1∑
k=0

dkF (φ,

k︷ ︸︸ ︷
α, . . . , α)

k!
+Rn(φ, α),

where

Rn(φ, α) =

∫ 1

0

(1− s)n−1dnF (φ+ sα,

n︷ ︸︸ ︷
α, . . . , α)

(n− 1)!
ds.

Here the “zeroth derivative” is defined in the obvious way: d0F (φ) = F (φ).
If the first n gradients exist (as they will for physically realizable fields

and transformations), then the Taylor approximation can be written:

F (φ+ α) = F (φ) +

n∑
k=1

∇k
αF (φ)

k!
+Rn(φ, α).

However, ∇k
αF (φ) =∇kF (φ)α(k), where α(k) is the k-fold outer product:

α(k) =

k︷ ︸︸ ︷
α ∧ α ∧ · · · ∧ α .

If we define the fields Γk = ∇kF (φ), then we can see this approximation as
a “field polynomial”:

F (φ+ α) ≈ F (φ) +

n∑
k=1

Γkα
(k)

k!
.

Such an approximation may be computed by a field analog of “Horner’s
rule,” which is especially appropriate for computation in a series of layers
similar to a neural network. Thus F (φ+ α) ≈ G0(α), where

Field Computation in Natural and Artificial Intelligence 15

Gk(α) = Γk +
Gk+1(α)

k + 1
α,

for k = 0, . . . , n, Γ0 = F (φ), and Gn+1(α) = 0.

Field Computation in the Brain

There are a number of contexts in mammalian brains in which information
representations are usefully treated as fields, and information processing as
field computation. These include neuronal cell bodies, patterns of axonal
projection, and synapses. Of course, all of these are discrete structures, but
in many cases the numbers are sufficiently large (e.g., 105 neurons / mm2:
Collins et al, 2010) that the representations are usefully treated as fields;
that is, they are phenomenological fields). Indeed, dynamical field theories
have become a useful approach to neurodynamics in cognitive neuroscience
(Spencer and Schöner, 2015).

Neuronal Fields

Computational maps, in which significant information is mapped to cortical
location, are found throughout the brain (Knudsen et al, 1987). For example,
tonotopic maps in auditory cortex have systematic arrangements of neurons
that respond to particular pitches, and retinotopic maps in visual cortex re-
spond systematically to patches of color, edges, and other visual features
projected onto the retina. Other topographic maps in somatosensory cortex
and motor cortex systematically reflect sensations at particular locations in
the body, or control motor activity at those locations, respectively. The num-
ber of identified maps is very large and no doubt there are many that have not
been identified. And while some are quite large and can be investigated by
fMRI and other noninvasive imaging techniques, other are less than a square
millimeter in size (Knudsen et al, 1987). However, even a 0.1mm2 map may
have tens of thousands of neurons, and thus be analyzed reasonably as a field.

In mathematical terms, let X be a space of features represented by a cor-
tical map. These might be microfeatures of a sensory stimulus (e.g., oriented
edges at particular retinal locations) or motor neurons (e.g., controlling mus-
cle fibers in particular locations). These examples are peripheral features, but
X might represent patterns of activity in nonperipheral groups of neurons
(e.g., in other cortical maps). Let Ω be a two-dimensional manifold corre-
sponding to a cortical map representing X . There will a piecewise continuous
function µ : X → Ω so that µ(x) is the cortical location corresponding to
feature x ∈ X . The mapping µ may be only piecewise continuous since X may

16 Bruce J. MacLennan

be of higher dimension than Ω. (This is the reason, for example, that we find
stripes in striate cortex; it is a consequence of mapping a higher dimensional
space into a lower one.)

Typically, the activity φµ(x) at a cortical location µ(x) will reflect the
degree of presence of the feature x in the map’s input. Furthermore, the
responses of neurons are often broadly tuned, therefore the response at a
location µ(x′) will generally be a decreasing function r[d(x, x′)] of the distance
d(x, x′), where d is some appropriate metric on X . Therefore an input feature
x will generate a response field φ = ξ(x) given by

φµ(x′) = r[d(x, x′)].

If a number of features x1, . . . , xn are simultaneously present in the input,
then the activity in the map may be a superposition of the activities due to
the individual features:

ξ(x1) + · · ·+ ξ(xn).

Furthermore, a sensory or other input, represented as a subset X ′ ⊂ X of the
feature space, generates a corresponding field,

ξ(X ′) =

∫
X ′
ξ(x)dx

(with an appropriate definition of integration for X , which usually can be
taken to be a measure space). (See the section Nonlinear Computation via
Topographic Maps for more on computation on superpositions of inputs
via topographic maps.)

The preceding discussion of cortical maps refers somewhat vaguely to the
“activity” of neurons, which requires clarification. In cortical maps the rep-
resented microfeatures are correlated most closely with the location of the
neuronal cell body, which often interacts with nearby neurons. Therefore,
when a cortical map is treated mathematically as a field, there are several
physical quantities that can be interpreted as the field’s value φu at a par-
ticular cortical location u. Although the choice depends somewhat on the
purpose of the analysis, the most common interpretation of φu(t) will be the
instantaneous spiking frequency at time t of the neuron at location u. We
will refer to φ(t) ∈ Φ(Ω) as the neuronal field (at time t) associated with the
neurons u in the map Ω.

The relative phase of neural impulses is sometimes relevant to neural in-
formation processing (Hopfield, 1995). For example, the relative phase with
which action potentials arrive a neuron’s dendrites can determine whether or
not the induced post-synaptic potentials add constructively. In these cases
it may be convenient to treat neural activity as a complex-valued field,
ψ(t) ∈ ΦC(Ω), which can be written in polar form:

ψ(t) = ρ(t)eiφ(t).

Field Computation in Natural and Artificial Intelligence 17

Then the magnitude (or modulus) field ρ(t) may represent the impulse rate
and the phase (or argument) field φ(t) may represent the relative phase of
the impulses. That is, ρu(t) is the rate of neuron u (at time t) and φu(t) is
its phase. For example, in a bursting neuron (which generates impulses in
clusters), ρ(t) can represent the impulse rate within the clusters and φ(t) the
relative phase of the clusters. More generally, in a complex-valued neuronal
field, the phase component may represent microfeatures of the stimulus, while
the magnitude component may represent pragmatic characteristics of the
microfeatures, such as their importance, confidence, or urgency. (Such dual
representations, comprising semantics and pragmatics, are discussed in the
section Information Fields.)

Synaptic and Dendritic Fields

The surface of each neuron’s dendritic tree and soma (cell body) is a com-
plicated two-dimensional manifold Ωm, and so the electrical field across the
neuron’s membrane is naturally treated as a two-dimensional potential field
φ ∈ Φ(Ωm). Synaptic inputs create electrical disturbances in this field, which,
to a first approximation, propagate passively according to the cable equations
(Anderson, 1995a, pp. 25–31). However, there are also nonlinear effects due
to voltage-gated ion channels etc. (Rumelhart et al, 1986, p. 381). Therefore
the membrane field obeys a nonlinear PDE (partial differential equation)
dependent on a synaptic input field ε:

M(ε, φ, φ̇, φ̈, . . .) = 0.

The electrical field φ on the membrane includes the field φa at the axon
hillock a ∈ Ωm. This voltage determines the rate at which the neuron gener-
ates action potentials (APs, nerve impulses), which constitute the neuron’s
contribution to a neuronal field. The dependence of the impulse rate r on
the membrane field, r(t) = Ar[φ(t)], which for moderate values is approxi-
mately linear (that is, the rate is proportional to the depolarization, relative
to the resting potential, at the axon hillock). To a first approximation, the
dendritic tree implements an approximately linear (adaptive) analog filter on
its input field (MacLennan, 1993, 1994a). Some purposes require a more de-
tailed analysis, which looks at the time-varying action potential V (t), rather
than at the instantaneous impulse rate, as a function of the membrane field,
V (t) = AV [φ(t)].

Many neurons have tens of thousands of synaptic inputs (Anderson, 1995a,
p. 304), and so these quantitative properties can be treated as a field over a
domain Ω, which is a subset of the dendritic membrane. The post-synaptic
potential εs at synapse s is a result of the synaptic efficacy σs and the pre-
synaptic axonal impulse rate ζs. The synaptic efficacy is the composite effect

18 Bruce J. MacLennan

of the number of receptors for the neurotransmitter released by the incoming
axon, as well as of other factors, such as the dependence of neurotransmitter
flux on the impulse rate. Some learning processes (e.g., long-term potentia-
tion) alter the synaptic efficacy field σ.

However, because synaptic transmission involves the diffusion of neuro-
transmitter molecules across the synaptic cleft, the subsequent binding and
unbinding of receptors, and the opening and closing of ion channels, the post-
synaptic potential is not a simple product, εs = σsζs. Rather, the synaptic
system filters the input field. To a first approximation we may analyze it as
a linear system S: (

ε

ψ̇

)
= S(σ)

(
ζ
ψ

)
,

where ψ represents the internal state of the synaptic system (concentrations
of neurotransmitter in the clefts, receptor and ion channel states, etc.). The
parameter σ shows the system’s dependence on the synaptic efficacies. The
preceding equation is an abbreviation for the following system (in which we
suppress the σ parameter):

ε = S11ζ + S12ψ,

ψ̇ = S21ζ + S22ψ,

in which the products are Hilbert-Schmidt integral operators (that is, the Sij
are fields operating on the input and state fields).

Axonal Projection Fields

Bundles of axons form projections from one brain region to another; through
the pattern of their connections they may effect certain field transformations
(explained below). The input is typically a neuronal field φ ∈ Φ(Ω) defined
over the source region Ω. At their distal ends the axons branch and form
synapses with the dendritic trees of the neurons in the destination region.
Since each axon may form synapses with many destination neurons, and
each neuron may receive synapses from many axons, it is convenient to treat
all the synapses of the destination neurons as forming one large synaptic
system S, where the synaptic efficacies σu range over all the synapses u in
the destination region, u ∈ Ω′. Correspondingly we can consider the field
ζ ∈ Φ(Ω′) of pre-synaptic inputs ζu to all of these synapses. The axons
and their synapses define an axonal projection system S, which is, to a first
approximation, a linear system:(

ζ
α̇

)
= S

(
φ
α

)
,

Field Computation in Natural and Artificial Intelligence 19

where α represents the internal state of the axonal projection system.
The function of axons is to transmit nerve impulses over relatively long

distances with no change of amplitude or waveform. However, there is a
transmission delay, and different axons in a projection may introduce different
delays. Thus an axonal projection may change the phase relationships of
the input field, in addition to introducing an overall delay. On the basis
of our analysis of the axonal projection as a linear system, we can express
the Laplace transform Z of the pre-synaptic field ζ in terms of the transfer
function HS of the projection and the Laplace transform Φ of the input field
φ:

Z(s) = HP(s)Φ(s)

(where s is the conjugate variable of time). Note that all the variables refer
to fields, and so this equation means

Zu(s) =

∫
Ω

HP
uv(s)Φv(s)dv,

where HP
uv(s) ∈ ΦC(Ω′×Ω) is the (complex-valued) transfer function to

synapse u from input neuron v. Since the effects of the axons are pure delays,
the transfer function is imaginary (pure phase shifts):

HP
uv(s) = exp(−i∆uvs),

where ∆uv is the delay imposed by the axon from neuron v to synapse u.
Thus the delay field ∆ ∈ Φ(Ω′×Ω) defines the effect of the axonal projection
on the input field, Z(s) = exp(−is∆)Φ(s).

The system S comprising all the synapses of the destination neurons is
also characterized by a transfer function HS(s); that is, E(s) = HS(s)Z(s),
where E(s) is the Laplace transform of the post-synaptic field ε(t). Therefore
the combined effect of the axonal projection and the synapses is E(s) =
HSP(s)Φ(s), where the composite transfer function is HSP(s) = HS(s)HP(s).
Note that this a field equation, which abbreviates

HSP
uv (s) =

∫
Ω′
HS
uw(s)HP

wvdw.

The transfer function HSP
uv (s) has a corresponding impulse response ηSPuv (t),

which represents the post-synaptic response at u to a mathematical impulse
(Dirac delta function) injected at v. (For Dirac delta functions, see the Glos-
sary and the section Approximation of Spatial Integral and Differ-
ential Operators below.) The impulse response characterizes the effect of
signal transmission to u from v as follows:

εu(t) =

∫
Ω′
ηSPuv (t)⊗ φv(t)dv,

20 Bruce J. MacLennan

where “⊗” represents convolution in the time domain. This may be abbrevi-
ated as a field equation, ε(t) = ηSP(t)⊗ φ(t).

Since axonal projections largely determine the receptive fields of the desti-
nation neurons, it will be worthwhile to consider the relation of the projection
field to the neuronal field at the destination region. Therefore, let ψw repre-
sent the output signal of a destination neuron w in response to an input field
φ. We may write

ψw(t) = Fw[ηSP(t)⊗ φ(t)],

where Fw represents the (possibly nonlinear) function computed by neuron
w on the subset of the post-synaptic signal ηSP(t)⊗φ(t) in its dendritic tree.
Therefore, the destination neuronal field is given by the field equation ψ =
F [ηSP ⊗ φ]. Many neurons behave as “leaky integrators” (Anderson, 1995a,
pp. 52–4), which are approximately linear, and in these cases the combined
effect of the axonal projection, synaptic field, and destination neurons is a
linear operator applied to the input signal, ψ(t) = Lφ(t).

Examples of Field Computation

Neural-Network-Like Computation

Many neural network approaches to artificial intelligence can be adapted
easily to field computation, effectively by taking the number of neurons in a
layer to the continuum limit. For example, as discussed in the section Field
Transformations, ψ = s(Lφ+β) (Eq. 2) is the field analog of one layer of a
neural net, that is, a continuum neural net, with interconnection field L and
bias field β.

Discrete Basis Function Networks

Radial basis function (RBF) networks are a familiar and useful class of artifi-
cial neural networks, which have similarities to neural networks in the brain
(Light, 1992; Powell, 1985). Indeed, RBF networks are inspired by the obser-
vation that many sensory neurons are tuned to a point in sensory space and
that their response falls off continuously with distance from that central point
(recall the section Neuronal Fields). RBFs are usually defined over finite
dimensional spaces, but the extension to fields is straight-forward. There-
fore we will consider a set of functionals r1, r2, . . ., where rj : Φ(Ω) → [0, 1].
Typically we restrict our attention to finite sets of basis functionals, but we
include the infinite case for generality. The intent is that each rj is tuned
to a different field input ηj , its “focal field,” and that rj(φ) represents the
closeness of φ to the focal field ηj .

Field Computation in Natural and Artificial Intelligence 21

If all the RBFs have the same receptive field profile, that is, the same
fall-off of response with increasing distance from the focal field, then we can
write rj(φ) = r(‖φ − ηj‖), where the receptive field profile is defined by
a r : [0,∞) → [0, 1] that is monotonically decreasing with r(0) = 1 and
r(x) −→ 0 as x −→∞.

As is well known, the inner product can be used as a measure of similarity.
Expanding the difference in terms of the inner product yields:

‖φ− ηj‖2 = ‖φ‖2 − 〈φ | ηj〉 − 〈ηj | φ〉+ ‖ηj‖2.

The inverse relation between the inner product and distance is especially
obvious if, as is often the case (see the section Information Fields), the
input and focal fields are real-valued and normalized (‖φ‖ = 1 = ‖ηj‖); then:

‖φ− ηj‖2 = 2− 2〈φ | ηj〉.

Therefore, RBFs with identical receptive field profiles can be defined in terms
of a fixed function s : [−1, 1] → [0, 1] applied to the inner product, rj(φ) =
s(〈φ | ηj〉), where the monotonically increasing function s equals 1 when
φ = ηj and equals 0 when the fields are maximally different (φ = −ηj). That
is, for normalized fields 〈φ | ηj〉 ∈ [−1, 1], and so s(−1) = 0, s(1) = 1.

Such RBFs are closely related to familiar artificial neurons (Eq. 1). Indeed,
we may define rj(φ) = s(〈ηj | φ〉 + bj), where s : R → [0, 1] is a sigmoidal
activation function and bj is the bias term. Here the input φ to the neuron
is a field, as is its receptive field profile ηj , which is the focal field defined by
the neuron’s interconnection field.

Generally, neurons are quite broadly tuned, and so individual RBFs do not
characterize the input very precisely, but with an appropriate distribution of
focal fields the collection of RBFs can characterize the input accurately, a
process known as coarse coding (e.g., Rumelhart et al, 1986, pp. 91–6; Sanger,
1996). Therefore the discrete ensemble of RBFs compute a representation p
of the input given by pj = rj(φ).

When information is represented in some way we must consider the ade-
quacy of the representation for our information processing goals. In general,
it is not necessary that a representation p preserve all characteristics and dis-
tinctions of the input space; indeed often the function of representation is to
extract the relevant features of the input for subsequent processing. Neverthe-
less it will be worthwhile to consider briefly RBF-like representations that do
not lose any information. A Hilbert function space is isomorphic (indeed, iso-
metric) to the space `2 of square-summable sequences; that is, there is a one-
to-one correspondence between fields and the infinite sequences of their gen-
eralized Fourier coefficients. Therefore let β1, β2, . . . be any orthonormal (ON)
basis of Φ(Ω) and define pj(φ) = 〈βj | φ〉. Define p : Φ(Ω)→ `2 so that p(φ)
is the infinite sequence of generalized Fourier coefficients, (p1(φ), p2(φ), . . .).
Mathematically, we can always find an m such that the first m coefficients
approximate the fields as closely as we like; practically, physically realizable

22 Bruce J. MacLennan

fields are band-limited, and so they have only a finite number of nonzero
Fourier coefficients. Therefore, we may use pm : Φ(Ω)→ Cm to compute the
m-dimensional representations (relative to an understood ON basis):

pm(φ) = (p1(φ), p2(φ), . . . , pm(φ))T.

Continua of Basis Functions

In the preceding section we looked at the field computation of a discrete,
typically finite, set of basis functionals. This is appropriate when the basis
elements are relatively few in number and there is no significant topological
relation among them. In the brain, however, large masses of neurons typically
have a significant topological relation (e.g., they may form a topographic
map), and so we are interested in cases in which each point in an output field
ψ is a result of applying a different basis function to the input field. Suppose
φ ∈ Φ(Ω) and ψ ∈ Φ(Ω′). For all u ∈ Ω′ we want ψu = R(u, φ), where
R : Ω′×Φ(Ω) → Φ(Ω′). That is, R defines a family of functionals in which,
for each u, R(u,—) has a different focal field, which varies continuously with
u.

For example, suppose we want ψu to be an inner-product comparison
of φ with the focal field ηu, that is, ψu = s(〈ηu | φ〉). Since 〈ηu | φ〉 =∫
Ω

(ηuv)∗φvdv, define the field H ∈ Φ(Ω′×Ω) by Huv = (ηuv)∗. Then a point
in the output field is given by ψu = s[(Hφ)u], and the entire field is computed
by:

ψ = s(Hφ). (5)

This is, of course, the field analog of one layer of a neural net (cf. Eq. 2),
but with no bias field. In a similar way we can define a continuum of RBFs:
ψu = r(‖φ− ηu‖).

By using sets of nonlinear basis functions, such as RBFs, it is often pos-
sible to transform a nonlinear problem in one space into a linear problem in
another space (generally of higher dimension). In particular, nonlinear simi-
larity measures S(φ, ψ) in the first space become inner products 〈p(φ) | p(ψ)〉
in the second, which enables many linear methods. In these cases, it is not
necessary to do the basis function mapping at all, but the similarity can be
computed directly by a Mercer kernel K ∈ Φ(Ω×Ω) such that:

φKψ = S(φ, ψ) = 〈p(φ) | p(ψ)〉. (6)

This is the basis of kernel methods in machine learning, such as support
vector machines. The converse is also true, for Mercer’s theorem shows that
for any symmetric positive semidefinite kernel K ∈ Φ(Ω×Ω), there is a
mapping p : Φ(Ω) → `2 into a Hilbert space satisfying Eq. 6. Let L be
the linear operator defined 〈L(φ) | ψ〉 = φKψ, then the kernel is defined
K =

∑
j ejηj ∧ ηj , where the ηj are the eigenfields of L chosen so that all

Field Computation in Natural and Artificial Intelligence 23

the eigenvalues ej are nonnegative; the vector space projection is defined
pj(φ) = 〈ηj | φ〉. Practically, many similarity measures (which are naturally
symmetric and positive semidefinite) can be used as Mercer kernels.

Spatial Cross-correlation and Convolution

A special case of Eq. 5 rises when all the focal fields ηu are the same shape but
centered on different points u ∈ Ω. That is, ηuv = %(v − u), where % ∈ Φ(Ω)
is the common shape of the focal fields (their receptive field profile). In this
case,

〈ηu | φ〉 =

∫
Ω

%∗(v − u)φ(v)dv.

This is simply the cross-correlation of % and φ, which we may write % ? φ. In
general,

(ψ ? φ)u =

∫
Ω

ψ∗(v − u)φ(v)dv, (7)

which gives the correlation of ψ and φ at a relative displacement u. Therefore
in this case the RBF field is given by ψ = s(% ? φ). If the receptive field % is
symmetric, %(−x) = %(x), then

〈ηu | φ〉 =

∫
Ω

%∗(u− v)φ(v)dv,

which is %∗ ⊗ φ, the convolution of %∗ and φ. In general,

(ψ ⊗ φ)u =

∫
Ω

ψ(u− v)φ(v)dv. (8)

Hence ψ = s(% ⊗ φ) when % is symmetric. Computation of these fields by
means of convolution or correlation rather than by the integral operator (Eq.
5) may be more convenient on field computers that implement convolution or
correlation directly. Convolutional neural networks have proved to be useful
in many applications.

Approximation of Spatial Integral and Differential Operators

Correlation and convolution (Eqs. 7, 8) can be used to implement many useful
linear operators, in particular spatial integral and differential operators. Of
course these linear operations can be implemented by a field product with
the appropriate Hilbert-Schmidt kernel, but convolution and correlation make
use of lower dimensional fields than the kernel.

For example, suppose we want to compute the indefinite spatial integral
of a field φ ∈ Φ(R). That is, we want to compute ψ =

∫
φ defined by ψx =

24 Bruce J. MacLennan∫ x
−∞ φydy. This can be computed by the convolution ψ = υ ⊗ φ where υ is

the Heaviside or unit step field on R:

υx =

{
1 if x ≥ 0
0 if x < 0

.

The Heaviside field is discontinuous, and therefore it may not be physically
realizable, but obviously it may be approximated arbitrarily closely by a
continuous field.

Spatial differentiation is important in image processing in nervous systems
and artificial intelligence systems. In the one-dimensional case, for φ ∈ Φ(R)
we want φ′ ∈ Φ(R), where φ′u = dφu/du. To express this as a convolution we
may begin by considering the Dirac delta function or unit impulse function
δ, which is the derivative of the unit step function, δ(x) = υ′(x). This is a
generalized function or distribution with the following properties:

δ(0) = +∞,
δ(x) = 0, x 6= 0,∫ +∞

−∞
δ(x)dx = 1.

Obviously such a function is not physically realizable (more on that shortly),
but such functions exist as limit objects in Hilbert spaces. The Dirac delta
satisfies the following “sifting property”:

φx =

∫ +∞

−∞
δ(x− y)φ(y)dy;

that is, the Dirac delta is an identity for convolution, φ = δ⊗φ. Now observe:

φ′x = Dx

∫ +∞

−∞
δ(x− y)φ(y)dy

=

∫ +∞

−∞
δ′(x− y)φ(y)dy,

where δ′ is the derivative of the Dirac delta. It is called the unit doublet and
has the property of being zero everywhere except infinitesimally to the left
of the origin, where it is +∞, and infinitesimally to the right of the origin,
where it is −∞. Thus the spatial derivative of a field can be computed by
convolution with the unit doublet: φ′ = δ′ ⊗ φ.

Obviously, neither the unit impulse (Dirac delta) nor the unit doublet is
physically realizable, but both may be approximated arbitrarily closely by
physically realizable fields. For example, the delta function can be approx-
imated by a sufficiently sharp Gaussian field γ (i.e., γx =

√
r/π exp(−rx2)

for sufficiently large r). Corresponding to the sifting property φ = δ ⊗ φ we

Field Computation in Natural and Artificial Intelligence 25

have Gaussian smoothing φ ≈ γ ⊗ φ, which is a typical effect of the limited
bandwidth of physically realizable fields in cortex and other physical media.
Similarly, the unit doublet can be approximated by a derivative of Gaus-
sian (DoG) field γ′, where γ′x = dγx/dx. Thus, the spatial derivative can be
approximated by the convolution φ′ ≈ γ′ ⊗ φ. Indeed, in the nervous sys-
tem we find neurons with approximately DoG receptive field profiles. (These
derivative formulas are perhaps more intuitively expressed in terms of cross-
correlation, φ′ = (−δ′) ?φ ≈ (−γ′) ?φ, since this is more easily related to the
difference, φx+ε − φx−ε.)

If ψ is a two-dimensional field, ψ ∈ Φ(R2), it is easy to show that the
partial derivative along the first dimension can be computed by convolution
with δ′ ∧ δ, and along the second by convolution with δ ∧ δ′. The partial
derivatives may be approximated by convolutions with γ′∧γ and γ ∧γ′. The
divergence of a field can be computed by a two-dimensional convolution with
the sum of these fields:

∇ · ψ = (δ′ ∧ δ + δ ∧ δ′)⊗ ψ ≈ (γ′ ∧ γ + γ ∧ γ′)⊗ ψ.

Similarly the gradient is

∇ψ = [(δ′ ∧ δ)⊗ ψ]i + [(δ ∧ δ′)⊗ ψ]j,

where i ∈ ΦR2(R2) is a constant vector field of unit vectors in the x direction,
i(x,y) = (1, 0), and j is a similar field in the y direction. The gradient is
approximated by

∇ψ ≈ [(γ′ ∧ γ)⊗ ψ]i + [(γ ∧ γ′)⊗ ψ]j. (9)

To compute the Laplacian we need the second partial derivatives, but note
that for a one-dimensional field φ′′ = δ′ ⊗ (δ′ ⊗ φ) = (δ′ ⊗ δ′) ⊗ φ = δ′′ ⊗ φ,
where δ′′ is the second derivative of the Dirac function (a “unit triplet”).
Hence, for two-dimensional ψ

∇2ψ = (δ′′ ∧ δ + δ ∧ δ′′)⊗ ψ ≈ (γ′′ ∧ γ + γ ∧ γ′′)⊗ ψ, (10)

where γ′′ is the second derivative of the Gaussian, a typical (inverted) “Mexi-
can hat function” with the center-surround receptive-field profile often found
in the nervous system. These formulas extend in the obvious way to higher-
dimensional fields.

Change of Field Domain

We have seen that physically realizable linear operators are integral oper-
ators, and therefore can be computed by field products of the form Kφ.

26 Bruce J. MacLennan

However, the kernel K might not be physically realizable if its dimension
is too high. For example, suppose L : Φ(Ω) → Φ(Ω) is a linear operator
on two dimensional visual images; that is, Ω is a bounded subset of two-
dimensional Euclidean space. Its kernel K, satisfying Kφ = L(φ), will be a
four-dimensional field K ∈ Φ(Ω×Ω), and therefore physically unrealizable.
Therefore we need means for realizing or approximating high-dimensional
fields in three or fewer spatial dimensions.

The simplest way to accomplish this is to represent fields of higher di-
mensional spaces by corresponding fields over lower dimensional spaces. For
example, to represent φ ∈ Φ(Ω) by ψ ∈ Φ(Ω′), suppose β1, β2, . . . is an ON
basis for Φ(Ω), and η1, η2, . . . is an ON basis for Φ(Ω′). Then, let the gen-
eralized Fourier coefficients of φ be used as the coefficients to compute a
corresponding ψ. Observe:

ψ =
∑
k

ηk〈βk | φ〉 =
∑
k

(ηk ∧ β∗k)φ.

(Of course, a finite sum is sufficient for physically realizable fields.) Therefore
the change of basis can be implemented by the kernel K =

∑
k ηk ∧ β∗k . By

this means, any Hilbert-Schmidt operator on two-dimensional fields can be
implemented by a physically realizable field product: (1) represent the input
by a one-dimensional field, (2) generate the one-dimensional representation of
the output by a product with a two-dimensional kernel, and (3) convert this
representation to the output field. Specifically, suppose φ ∈ Φ(Ω), ψ ∈ Φ(Ω′),
and L : Φ(Ω) → Φ(Ω′) is a Hilbert-Schmidt linear operator. The three-
dimensional kernel H =

∑
k ηk ∧ β∗k ∈ Φ([0, 1]×Ω) will be used to generate a

one-dimensional representation of the two-dimensional input, Hφ ∈ Φ([0, 1]).
Similarly, the two-dimensional output will be generated by Θ =

∑
j ζj ∧ η∗j ∈

Φ(Ω′×[0, 1]), where ζ1, ζ2, . . . is an ON basis for Φ(Ω′). It is easy to show
that the required two-dimensional kernel K ∈ Φ([0, 1]2) such that L = ΘKH
is just

K =
∑
jk

〈ζj | Lβk〉(ηj ∧ η∗k).

We have seen (in the section Neural-Network-Like Computation) that
field computation can often be implemented by neural-network-style compu-
tation on finite-dimensional spaces. For example, a linear field transformation
(of Hilbert-Schmidt type) can be factored through the eigenfield basis. Let
η1, η2, . . . be the eigenfields of L with corresponding eigenvalues e1, e2, . . .:
Lηk = ekηk. The eigenfields can be chosen to be orthonormal (ON), and,
since Φ(Ω) is a Hilbert space, only a finite number of the eigenvalues are
greater than any fixed bound, so φ can be approximated arbitrarily closely
by a finite sum φ ≈

∑m
k=1 ckηk, where ck = 〈ηk | φ〉; that is, φ is represented

by the finite dimensional vector c. The discrete set of coefficients c1, . . . , cm
is not a field because there is no significant topological relationship among
them; also, typically, m is relatively small.

Field Computation in Natural and Artificial Intelligence 27

The output ψ is computed by a finite sum, ψ ≈
∑m
k=1 ηkekck. In terms

of neural computation, we have a finite set of neurons k = 1, . . . ,m whose
receptive field profiles are the eigenfields, so that they compute ekck = ek〈ηk |
φ〉. The outputs of these neurons amplitude-modulate the generation of the
individual eigenfields ηk, whose superposition yields the output ψ.

It is not necessary to factor the operator through the eigenfield basis. To
see this, suppose L : Φ(Ω)→ Φ(Ω′) and that the fields βk are an ON basis for
Φ(Ω) and that the fields ζj are an ON basis for Φ(Ω′). Represent the input
by a finite-dimensional vector c, where ck = 〈βk | φ〉. Then the output ψ can
be represented by the finite dimensional vector d, where dj = 〈ζj | ψ〉. (Since
the input and output spaces are both Hilbert spaces, only a finite number
of these coefficients are greater than any fixed bound.) The Hilbert-Schmidt
theorem shows d = Mc, where Mjk = 〈ζj | Lβk〉, the matrix elements of the
operator. In neural terms, a first layer of neurons with receptive field profiles
β∗k computes the discrete representation ck = 〈βk | φ〉. Next, a layer of linear
neurons computes the linear combinations dj =

∑m
k=1Mjkck in order to

control the amplitudes of the output basis fields in the output superposition
ψ ≈

∑n
j=1 djζj . In this way, an arbitrary linear field transformation may be

computed through a neural representation of relatively low dimension.
If a kernel has too high dimension to be physically realizable, it is not

necessary to completely factor the product through a discrete space; rather,
one or more dimensions can be replaced by a discrete set of basis functions and
the others performed by field computation. To see the procedure, suppose we
have a linear operator L : Φ(Ω) → Φ(Ω′) with kernel K ∈ Φ(Ω′×Ω), where
Ω = Ω1×Ω2 is of too high dimension. Let ψ = Kφ and observe

ψu =

∫
Ω

Kuvφvdv =

∫
Ω1

∫
Ω2

Kuxyφx(y)dydx,

where we consider φv = φxy as a function of y, φx(y). Expand φx in terms of
an ON basis of Φ(Ω2), β1, β2, . . .:

φx =
∑
k

〈βk | φx〉βk.

Note that

〈βk | φx〉 =

∫
Ω2

φxyβ
∗
k(y)dy = (φβ∗k)x,

where φβ∗k ∈ Φ(Ω1). Rearranging the order of summation and integration,

ψu =
∑
k

∫
Ω1

∫
Ω2

Kuxyβk(y)(φβ∗k)xdydx =
∑
k

[Kβk(φβ∗k)]u.

Hence, ψ =
∑
kKβk(φβ∗k). Let Jk = Kβk to obtain a lower-dimensional field

computation:

28 Bruce J. MacLennan

L(φ) =
∑
k

Jk(φβ∗k).

Note that Jk ∈ Φ(Ω′×Ω1) and all the other fields are of lower dimension than
K ∈ Φ(Ω′×Ω). As usual, for physically realizable fields, a finite summation
is sufficient.

We can discretize Φ(Ω1) by a similar process, which also can be extended
straightforwardly to cases where several dimensions must be discretized. Nor-
mally we will discretize the dimension that will have the fewest generalized
Fourier coefficients, given the bandwidth of the input fields.

The foregoing example discretized one dimension of the input space, but
it is also possible to discretize dimensions of the output space. Therefore
suppose L : Φ(Ω)→ Φ(Ω′) with kernel K ∈ Φ(Ω′×Ω), where Ω′ = Ω1×Ω2 is
of too high dimension. Suppose ζ1, ζ2, . . . are an ON basis for Φ(Ω1). Consider
ψu = ψxy as a function of x, expand, and rearrange:

ψxy =
∑
k

ζk(x)

∫
Ω1

ζ∗k(x′)ψx′ydx′

=
∑
k

ζk(x)

∫
Ω

∫
Ω1

ζ∗k(x′)Kx′yvdx
′φvdv

=
∑
k

ζk(x)[(ζ∗kK)φ]y.

Hence ψ =
∑
k ζk ∧ [(ζ∗kK)φ]. Let Jk = ζ∗kK ∈ Φ(Ω2×Ω) and we can express

the computation with lower dimensional fields:

L(φ) =
∑
k

ζk ∧ Jkφ.

Other approaches to reducing the dimension of fields are described elsewhere
(MacLennan, 1990).

The converse procedure, using field computation to implement a matrix-
vector product, is also useful, since a field computer may have better facilities
for field computation than for computing with vectors. Therefore suppose M
is an m×n matrix, c ∈ Rn, and that we want to compute d = Mc by a field
product ψ = Kφ. The input vector will be represented by φ ∈ Φ(Ω), where we
choose a field space Φ(Ω) for which the first n ON basis elements β1, . . . , βn
are physically realizable. The field representation is given by φ =

∑n
k=1 ckβk.

Analogously, the output is represented by a field ψ ∈ Φ(Ω′) given by ψ =∑m
j=1 dkζk, for ON basis fields ζ1, . . . , ζm. The required kernel K ∈ Φ(Ω′×Ω)

is given by its matrix elements:

K =

m∑
j=1

n∑
k=1

Mjk(ζj ∧ β∗k).

Field Computation in Natural and Artificial Intelligence 29

To see this, observe:

Kφ =
∑
jk

Mjk(ζj ∧ β∗k)φ

=
∑
jk

Mjkζj〈βk | φ〉

=
∑
j

ζj
∑
k

Mjkck

=
∑
j

ζjdj .

Diffusion Processes

Diffusion processes are useful in both natural and artificial intelligence. For
example, diffusion has been applied to path planning through a maze (Stein-
beck et al, 1995) and to optimization and constraint-satisfaction problems,
such as occur in image processing and motion estimation (Miller et al, 1991;
Ting and Iltis, 1994). Natural systems, such as developing embryos and
colonies of organisms, use diffusion as a means of massively parallel search
and communication.

A simple diffusion equation has the form φ̇ = d∇2φ with d > 0. On
a continuous-time field computer that provides the Laplacian operator (∇2)
diffusion can be implemented directly by this equation. With sequential com-
putation, the field will be iteratively updated in discrete steps:

φ := φ+ d∇2φ ∆t.

If the Laplacian is not provided as a primitive operation, then its effect can
be approximated by a spatial convolution with a suitable field %. In sequential
computation we may use φ := (1 − d)φ + d% ⊗ φ, where % is an appropriate
Gaussian or similarly shaped field. In continuous time, we may use φ̇ = d%⊗φ,
where for two dimensions % = γ′′ ∧ γ + γ ∧ γ′′ (cf. Eq. 10), where γ is an
appropriate one-dimensional Gaussian and γ′′ is its second derivative (or
similarly shaped fields).

Reaction-diffusion systems combine diffusion in two or more fields with
local nonlinear reactions among the fields. A typical reaction-diffusion system
over fields φ1, . . . , φn ∈ Φ(Ω) has the form:

φ̇1 = F1(φ1, . . . , φn) + d1∇2φ1,

φ̇2 = F2(φ1, . . . , φn) + d2∇2φ2,

...

30 Bruce J. MacLennan

φ̇n = Fn(φ1, . . . , φn) + dn∇2φn,

where the dk > 0, and the local reactions Fk apply at each point u ∈ Ω of
the fields: Fk(φ1u, . . . , φ

n
u). With obvious extension of the notation, this can

be written as a differential equation on a vector field:

φ̇ = F(φ) + D∇2φ,

where D = diag(d1, . . . , dn) is a diagonal matrix of diffusion rates.
Embryological development and many other biological processes of self-

organization are controlled by local reaction to multiple diffusing chemicals
(e.g., Bar-Yam, 1997, ch. 7; Solé and Goodwin, 2000, ch. 3); these are ex-
amples of natural field computation, a subject pioneered by Turing (1952).
For example, simple activator-inhibitor systems can generate Turing patterns,
which are reminiscent of animal skin and hair-coat pigmentation patterns
(e.g., Bar-Yam, 1997, ch. 7). In the simplest case, these involve an activator
(α) and an inhibitor (β), which diffuse at different rates, and a nonlinear
interaction which increases both when α > β, and decreases them otherwise.
For example (Bar-Yam, 1997, p. 668):

α̇ = k1α
2/β − k2α+ dα∇2α,

β̇ = k3α
2 − k4β + dβ∇2β.

Reaction-diffusion systems have been applied experimentally in several
image-processing applications, where they have been used to restore broken
contours, detect edges, and improve contrast (Adamatzky, 2001, pp. 26–31).
In general, diffusion accomplishes (high-frequency) noise filtering and the
reaction is used for contrast enhancement.

A Adamatzky and his colleagues have used chemical implementation of
reaction-diffusion systems to construct Voronoi diagrams around points and
other two-dimensional objects (Adamatzky et al, 2005, ch. 2). Voronoi di-
agrams have been applied to collision-free path planning, nearest-neighbor
pattern classification, and many other problems (Adamatzky et al, 2005, pp.
32–3). They also demonstrated a chemical field computer on a mobile robot
to implement a reaction-diffusion path planning system (Adamatzky et al,
2005, ch. 4).

Excitable media are an important class of reaction-diffusion system, which
are found, for example, in the brain, cardiac tissue, slime mold aggregation,
and many other natural systems. In the simplest cases these comprise an
excitation field ε and a recovery field ρ coupled by local nonlinear reactions:

ε̇ = F (ε, ρ) + dε∇2ε,

ρ̇ = G(ε, ρ) + dρ∇2ρ.

TypicallyG(e, r) is positive for large e and negative for large r, while along the
nullcline F (e, r) = 0, r has a roughly cubic dependence on e, with F (e, r) < 0

Field Computation in Natural and Artificial Intelligence 31

for large values of r and > 0 for small ones. The intersection of the nullclines
defines the system’s stable state, and small perturbations return to the sta-
ble state. However excitation above a threshold will cause the excitation to
increase to a maximum, after which the system becomes first refractory (un-
excitable), then partially excitable with an elevated threshold, and finally
back to its excitable, resting state. Excitation spreads to adjacent regions,
but the refractory property assures that propagation takes the form of a
unidirectional wave of constant amplitude. Characteristic circular and spi-
ral waves appear in two-dimensional media. Excitable media are useful for
rapid, efficient communication. For example, masses of slime mold amoebas
(Dictyostelium discoideum) act as an excitable medium in which the propa-
gating waves accelerate aggregation of the amoebas into a mound (Solé and
Goodwin, 2000, pp. 21–4).

Many self-organizing systems and structures in biological systems involve
reaction-diffusion processes, chemical gradients, excitable media, and other
instances of field computation.

For example, Deneubourg (1977) has described the construction of equally-
spaced pillars in termite nests in terms of three interrelated two-dimensional
fields: φ, the concentration of cement pheromone in the air, σ, the amount
of deposited cement with active pheromone, and τ the density of termites
carrying cement (see also Bonabeau et al, 1999, pp. 188–93; Camazine et al,
2001, pp. 399–400; and Solé and Goodwin, 2000, pp. 151–7). The amount of
deposited cement with pheromone increases as it is deposited by the termites
and decreases as the pheromone evaporates into the air: σ̇ = k1τ − k2σ. The
pheromone in the air is increased by this evaporation, but also decays and
diffuses at specified rates: φ̇ = k2σ − k4φ + dφ∇2φ. Laden termites enter
the system at a uniform rate r, deposit their cement (k1), wander a certain
amount (modeled by diffusion at rate dτ), but also exhibit chemotaxis, that
is, motion up the gradient of pheromone concentration:

τ̇ = r − k1τ + dτ∇2τ − k5∇ · (τ×∇φ),

where × represents the point-wise (local) product, (φ×ψ)u = φuψu. See
Figure 1 for this model expressed as a field computation.

fieldcomputation fig1.TIF

Fig. 1 art/Deneubourg

Field computation of Deneubourg’s model of pillar construction by ter-
mites

In addition to reaction-diffusion systems, chemical gradients, chemotaxis,
and other field processes are essential to self-organization in morphogenesis,
which can be understood in terms of field computation (Davies, 2005).

32 Bruce J. MacLennan

Motion in Direction Fields

For an example of field computation in motor control, we may consider Geor-
gopoulos (1995) model of the population coding of direction. In this case the
feature space D represents directions in three-dimensional space, which we
may identify with normalized three-dimensional vectors d ∈ D. Each neuron
u ∈ Ω has a preferred direction ηu ∈ D to which it responds most strongly,
and it is natural to define u as the location in the map corresponding to this
direction, u = µ(ηu). However, Georgopoulos has shown that the direction is
represented (more accurately and robustly) by a population code, in which
the direction is represented by a neuronal field. Specifically, the activity φu
of a neuron (above a base level) is proportional to the cosine of the angle
between its preferred direction ηu and the direction d to be encoded. In par-
ticular, since the cosine of the angle between normalized vectors is equal to
their scalar product, let φu ∝ d · ηu. A neurally plausible way of generating
such a field is with a layer of radial basis functions, φu = r(‖d−ηu‖), where
r(x) = 1− x2/2; then φu = d · ηu (MacLennan, 1997).

Field computation is also used to update direction fields in the brain.
For example, a remembered two-dimensional location, relative to the retina,
must be updated when the eye moves (Droulez and Berthoz, 1991a,b). In
particular, if the direction field φ has a peak representing the remembered
direction, and the eye moves in the direction v, then this peak has to move in
the direction −v in compensation. More specifically, if v is a two-dimensional
vector defining the direction of eye motion, then the change in the direction
field is given by the differential field equation, φ̇ = v·∇φ, where the gradient is
a two-dimensional vector field (retinal coordinates). (That is, ∂φ(d, t)/∂t =
v · ∇dφ(d, t).) To see this, note that behind the moving peak ∇φ and −v
point in the same direction, and therefore (−v) · ∇φ is positive; hence φ̇ is
negative. Conversely, φ̇ is positive in front of the peak. Each component of the
gradient may be approximated by convolution with a derivative-of-Gaussian
(DoG) field, in accord with Eq. 9, which can be computed by neurons with
DoG receptive field profiles. (Additional detail can be found in MacLennan,
1997.)

Anderson (1995b) describes how transformations between retinal coordi-
nates and head- or body-centered coordinates can be understood as trans-
formations between field representations in area 7a of the posterior parietal
cortex. For example, a minimum in a field may represent the destination of
a motion (such as a saccade) in head-centered space, and then the gradient
represents paths from other locations to that destination (MacLennan, 1997).
Further, the effects of motor neurons often correspond to vector fields (Bizzi
and Mussa-Ivaldi, 1995; Goodman and Anderson, 1989).

Field Computation in Natural and Artificial Intelligence 33

Nonlinear Computation via Topographic Maps

As discussed previously, the brain often represents scalar or vector quantities
by topographic or computational maps, in which fields are defined over the
range of possible values and a particular value is represented by a field with
a peak of activity at the corresponding location. That is, a value x ∈ Ω
is represented by a field φx ∈ Φ(Ω) that is distinctly peaked at a location
representing x. For mathematical convenience we can idealize φx as a Dirac
delta function (unit impulse) centered at x: δx, where δx(u) = δ(u−x). That
is, δx is an idealized topographic representation of x.

For every function f : Ω → Ω′, with y = f(x), there is a corresponding
linear transformation of a topographic representation of its input, δx ∈ Φ(Ω),
into a topographic representation of its output, δy ∈ Φ(Ω′). It is easy to show
that the kernel K ∈ Φ(Ω′×Ω) of this operation is

K =

∫
Ω

δf(x) ∧ δxdx,

which is essentially a graph of the function f . That is, we can compute an
arbitrary, possibly nonlinear function y = f(x) by a linear operation on the
corresponding computational maps: δy = Kδx.

To avoid the use of Dirac delta functions, we can expand them into gener-
alized Fourier series; for example, δx =

∑
k βk〈βk | δx〉 =

∑
k βkβ

∗
k(x). This

expansion yields

K =

∫
Ω

∑
j

ζjζ
∗
j [f(x)]

 ∧(∑
k

βkβ
∗
k(x)

)
dx

=
∑
j,k

ζj ∧ βk
∫
Ω

ζ∗j [f(x)]β∗k(x)dx

=
∑
j,k

ζj ∧ βk〈ζj ◦ f | β∗k〉,

where ζj ◦ f is the composition of ζj and f : (ζj ◦ f)(x) = ζj [f(x)]. A physi-
cally realizable approximation to K is obtained by limiting the summations
to finite sets of physically realizable basis functions. (This has the effect of
blurring the graph of f .)

Computation on topographic maps has a number attractive advantages.
These are simple mathematical consequences of the linearity of topographic
computation, but it will be informative to look at their applications in neural
information processing. For example, transformation of input superpositions
compute superpositions of the corresponding outputs in parallel: K(δx +
δx′) = δf(x) + δf(x′).

34 Bruce J. MacLennan

Since an input value is encoded by the position of the peak of a field rather
than by its amplitude, the amplitude can be used for pragmatic characteristics
of the input, such as its importance or certainty (see the section Information
Fields below). These pragmatic characteristics are preserved by topographic
computation, K(pδx) = pδf(x). Therefore if we have two (or more) inputs
x, x′ ∈ Ω with corresponding pragmatic scale factors p, p′ ∈ R, then the
corresponding outputs carry the same factors, K(pδx + p′δx′) = pδf(x) +
p′δf(x′). For example, if the inputs are weighted by confidence or importance,
then the corresponding outputs will be similarly weighted. Further, if several
inputs generate the same output, then their pragmatic scale factors will sum;
for example if f(x) = f(x′), then K(pδx + p′δx′) = (p + p′)δf(x). Thus, a
number of inputs that are individually relatively unimportant (or uncertain)
could contribute to a single output that is relatively important (or certain).

Finite superpositions of inputs are easily extended to the continuum case.
For example, suppose that φx is the pragmatic scale factor associated with
x, for all x ∈ Ω (for example, φx might be the probability of input x).
We can think of the field φ as a continuum of weighted delta functions, φ =∫
Ω
φxδxdx. Applying the kernel to this field yields a corresponding continuum

of weighted outputs, Kφ =
∫
Ω
φxδf(x)dx ∈ Φ(Ω′), where each point of the

output field gives the total of the pragmatic scale factors (e.g., probabilities)
of the inputs leading to the corresponding output value:

(Kφ)y =

∫
{x|y=f(x)}

φxdx =

∫
f−1(y)

φxdx.

Therefore, by topographic computation, a transformation of an input proba-
bility distribution yields the corresponding output probability distribution.

We have remarked that the brain often uses coarse coding, in which a
population of broadly-tuned neurons collectively represent a value with high
precision. If φ is the coarse coding of input x, then its maximum will be
at x and its amplitude will decrease with distance from x, φu = r(‖u− x‖).
Similarly, Kφ will be a coarse coding of the output f(x) induced by the coarse
coding of the input. As discussed in the section Spatial Cross-correlation
and Convolution, if all the neurons have the same receptive field profile %,
then the effect of coarse coding is a convolution or correlation of % with the
input map.

Gabor Wavelets and Coherent States

In 1946 D Gabor presented a theory of information in which he applied the
Heisenberg-Weyl derivation of the quantum mechanical Uncertainty Princi-
ple to arbitrary signals (Gabor, 1946). Although he derived it for functions of
time, it is easily generalizable to fields (square-integrable functions) over any

Field Computation in Natural and Artificial Intelligence 35

finite-dimensional Euclidean space (reviewed in MacLennan, 1991). There-
fore, for Ω ⊂ Rn, let ψ ∈ Φ(Ω) be an arbitrary (possibly complex-valued) field
(assumed, as usual, to have a finite norm, that is, to be square-integrable).
To characterize this field’s locality in space, we can measure its spread (or
uncertainty) along each of the n spatial dimensions xk by the root mean
square deviation of xk (assumed to have 0 mean):

∆xk = ‖xkψ(x)‖ =

√∫
Ω

ψ∗xx
2
kψxdx,

where x = (x1, . . . , xn)T ∈ Rn. Consider also the Fourier transform Ψ(u) of
ψ(x), the spread or uncertainty of which, in the frequency domain, can be
quantified in a similar way:

∆uk = ‖(uk − ū)Ψ(u)‖ =

√∫
Ω

Ψ∗uu
2
kΨudu.

It is straight-forward to show that the joint localization in any two conjugate
variables (i.e., xk in the space domain and uk in the spatial-frequency domain)
is limited by the Gabor Uncertainty Principle: ∆xk∆uk ≥ 1/4π.

This principle limits the information carrying capacity of any physically-
realizable signal, so it is natural to ask if any function achieves the theoretical
minimum, ∆xk∆uk = 1/4π. Gabor showed that this minimum is achieved
by what we may call the Gabor elementary fields, which have the form:

Γpu(x) = exp
[
−π‖A(x− p)‖2

]
exp[2πiu · (x− p)].

The second, imaginary exponential defines a plane wave originating at p with
a frequency and direction determined by the wave vector u. The first expo-
nential defines a Gaussian envelope centered at p with a shape determined
by the diagonal aspect matrix A = diag(α1, . . . , αn), which determines the
spread of the function along each of the space and frequency axes:

∆xk =
αk

2
√
π
, ∆uk =

α−1k
2
√
π
.

Gaussian-modulated complex exponentials of this form correspond to the
coherent states of quantum mechanics.

Each Gabor elementary field defines a cell in 2n-dimensional “Gabor
space” with volume (4π)−n. He explained that these correspond to elemen-
tary units of information, which he called logons, since a field of finite spatial
extent and bandwidth occupies a finite region in Gabor space, which deter-
mines its logon content. It may be computed by

36 Bruce J. MacLennan

N =

n∏
k=1

Xk

∆xk

Uk
∆uk

= (4π)n
n∏
k=1

XkUk,

where Xk is the width of the field along the kth axis, and Uk its bandwidth
on that axis, that is, a field’s logon content is (4π)n times its Gabor-space
volume (a dimensionless number).

The set of Gabor elementary functions are complete, and so any finite-
energy function can be expanded into a series (Heil and Walnut, 1989, pp.

656–7): ψ =
∑N
k=1 ckΓk, where Γ1, . . . , ΓN are the Gabor fields corresponding

to the cells occupied by ψ, and the ck are complex coefficients. These N
complex coefficients are the information conveyed by ψ, each corresponding
to a logon or degree of freedom in the signal.

The Gabor elementary functions are not orthogonal, and so the coefficients
cannot be computed by the inner product, 〈Γk | ψ〉. They do form a tight
frame, a very useful but weaker condition, under some conditions (Daubechies
et al, 1986, p. 1275); see MacLennan (1991) for additional discussion of the
non-orthogonality issue. On the other hand, it is easy to find the coefficients
by minimization of the approximation error (Daugman, 1993). Let ψ̂(c) =∑N
k=1 ckΓk and define the error E = ‖ψ̂(c) − ψ‖2. This is a standard least-

squares problem (cf. the section Universal Approximation), which can be
solved by matrix calculation or by gradient descent on the error. It is easy
to show that ∂E/∂ck = 2〈Γk | ψ̂(c) − ψ〉, and therefore gradient descent is

given by ċk = r〈Γk | ψ − ψ̂(c)〉 for any rate r > 0.
There is considerable evidence (reviewed in MacLennan, 1991) that ap-

proximate Gabor representations are used in primary visual cortex, and there
is also evidence that Gabor representations are used for generating motor sig-
nals (Pribram, 1991, pp. 139–44; Pribram et al, 1984).

Information Fields

Hopfield (1995) observed that in some cases a neural impulse train can be
understood as transmitting two signals: (1) the information content, encoded
in the phase of the impulses relative to some global or local “clock,” and (2)
some other pragmatic characteristic of the information (such as importance,
urgency, or confidence), encoded in the rate of the impulses. Such a combina-
tion of phase-encoded semantics and rate-encoded pragmatics may be com-
mon in the nervous system. Already in his Laws of Thought (1854), George
Boole recognized idempotency as characteristic of information: repeating a
message does not change its meaning, but it may affect its pragmatic import.
The distinction is implicit in our typographic conventions; consider:

Field Computation in Natural and Artificial Intelligence 37

Yes No

Yes No
The horizontal distinction is semantic, but the vertical is pragmatic. More
generally, following a distinction that has been made in quantum mechanics
(Bohm and Hiley, 1993, pp. 35–6), we may say that the form of the signal
guides the resulting action, but the magnitude of the signal determines the
amount of action.

Similarly in field computation it may be useful to represent information by
a field’s shape and pragmatics by its magnitude; that is, pragmatics depends
on the total amount of “stuff,” semantics depends on its disposition (also a
holistic property). The magnitude of such an information field is given by its
norm ‖ψ‖, where we normally mean the inner-product norm of the Hilbert
space, ‖ψ‖ =

√
〈ψ | ψ〉 (which we can think of as “energy”), but other norms

may be appropriate, depending on the relevant sense of the “amount” of
action. The semantics of such fields is determined by their form, which we
may identify with the normalization of the field, N(ψ) = ψ/‖ψ‖ (for nonzero
fields). Idempotency is expressed by the identity N(zψ) = N(ψ) for all z 6= 0.

Therefore, it is reasonable that the entropy of a field depends on its form,
but not its magnitude:

S(ψ) =

∫
Ω

ψu
‖ψ‖

log
ψu
‖ψ‖

du =

∫
Ω

N(ψ)u logN(ψ)udu = 〈N(ψ) | logN(ψ)〉.

It is perhaps unsurprising that similar issues arise in quantum mechan-
ics and field computation, for they are both formulated in the language of
Hilbert spaces. For example, a quantum mechanical state ψ is taken to be
undetermined with respect to magnitude, so that zψ is the same state as ψ
for any nonzero complex number z (Dirac, 1958, p. 17). Therefore, the state
is conventionally taken to the normalized, ‖ψ‖ = 1, so that its square is a
probability density function, ρx = |ψx|2.

Independence of magnitude is also characteristic of the quantum potential,
which led Bohm and Hiley (1993) to characterize this field as active informa-
tion. For example, if we write the wave function in polar form, ψx = Rxe

iSx/h,
then the motion of a single particle is given by (Bohm and Hiley, 1993, pp.
28–9):

∂Sx
∂t

+
(∇Sx)2

2m
+ Vx +Qx = 0,

where the quantum potential is defined:

Qx = − ~2

2m

∇2Rx
Rx

.

Since the Laplacian ∇2Rx is scaled by Rx, the quantum potential depends
only on the local form of the wavefunction ψ, not on its magnitude. From

38 Bruce J. MacLennan

this perspective, the particle moves under its own energy, but the quantum
potential controls the energy.

Field Representations of Discrete Symbols

Quantum field theory treats discrete particles as quantized excitations of a
field. This observation suggests analogous means by which field computation
can represent and manipulate discrete symbols and structures, such as those
employed in symbolic AI. It also provides possible models for neural represen-
tation of words and categories, especially in computational maps, which may
illuminate how discrete symbol processing interacts with continuous image
processing. From this perspective, discrete symbol manipulation is an emer-
gent property of continuous field computation, which may help to explain the
flexibility of human symbolic processes, such as language use and reasoning
(MacLennan, 1994a,b, 1995). Pothos and Busemeyer (2013) have argued that
quantum probability is a more suitable model than classical probability for
human cognition and decision making. The underlying reason may be that
both quantum probability and the neurodynamics of cognitive spaces are
modeled best as Hilbert spaces (MacLennan, 2013).

Mathematically, discrete symbols have the discrete topology, which is de-
fined by the discrete metric, for which the distance between any two distinct
objects is 1: d(x, x) = 0 and d(x, y) = 1 for x 6= y. Therefore we will consider
various field representations of symbols that have this property. For example,
discrete symbols could be represented by localized, non-overlapping patterns
of activity in a computational map. In particular, symbols could be repre-
sented by Dirac delta functions, for which 〈δx | δx〉 = 1 and 〈δx | δy〉 = 0 for
x 6= y. Here we may let d(x, y) = 1 − 〈δx | δy〉. More realistically, symbols
could be represented by physically realizable normalized fields φx with little
or no overlap between the representations of different symbols: 〈φx | φy〉 ≈ 0
for x 6= y. Indeed, any sufficiently large set of (approximately) orthonormal
fields may be used to represent discrete symbols. Fields may seem like an in-
efficient way to represent discrete symbols, and so it is worth observing that
with at least 105 neurons per square millimeter, a one hundred thousand-word
vocabulary could be represented in a few square millimeters of cortex.

Since the meaning of these fields is conveyed by the location of activity
peak in the map, that is, by the shape of the field rather than its amplitude,
the field’s amplitude can be used for pragmatic scale factors, as previously dis-
cussed (in the section Nonlinear Computation via Topographic Maps).
This could represent, for example, the confidence or probability of a word or
verbal category, or another pragmatic factor, such as loudness (cf. the section
Information Fields).

Wave packets (coherent states, Gabor elementary functions) are localized
patterns of oscillation resulting from the superposition of a number of nonlo-

Field Computation in Natural and Artificial Intelligence 39

cal oscillators with a Gaussian distribution of frequencies (MacLennan, 1991).
The relative phase of these oscillators determines the position of the wave
packet within its field of activity. Therefore different phase relationships may
determine field representations for different discrete symbols. The amplitude
of the wave packet could represent pragmatic information, and frequency
could be used for other purposes, for example for symbol binding, with bound
symbols having the same frequency. Continuous phase control could be used
to control the motion of wave packets in other representations, such as direc-
tion fields (discussed in the section Motion in Direction Fields).

Gradient Processes

Many optimization algorithms and adaptive processes are implemented by
gradient ascent or gradient descent. Because of its physical analogies, it is
more convenient to think of optimization as decreasing a cost function rather
than increasing some figure of merit. For example, the function might repre-
sent the difficulty of a motor plan or the incoherence in an interpretation of
sensory data (such as stereo disparity).

Therefore suppose that U : Φ(Ω) → R is a functional that defines the
undesirability of a field; the goal is to vary φ so that U(φ) decreases down a
path of “steepest descent.” (By analogy with physical systems, we may call
U a potential function and think of gradient descent as a relaxation process
that decreases the potential.) The change in the potential U is given by the
chain rule for field transformations (Eq. 3):

U̇(t) = (U ◦ φ)′(t, 1)

= U ′[φ(t)][φ′(t)(1)]

= 〈∇U [φ(t)] | φ̇(t)〉.

More briefly, suppressing the dependence on time, U̇ = 〈∇U(φ) | φ̇〉. To
guarantee U̇ ≤ 0 we let φ̇ = −r∇U(φ) with a rate r > 0 for gradient descent.
Then,

U̇ = 〈∇U(φ) | φ̇〉 = 〈∇U(φ) | −r∇U(φ)〉 = −r‖∇U(φ)‖2 ≤ 0.

Therefore, gradient descent decreases U so long as the gradient is nonzero.
(More generally, of course, so long as the trajectory satisfies 〈∇U(φ) | φ̇〉 < 0
the potential will decrease.)

Often the potential takes the form of a quadratic functional:

U(φ) = φKφ+ Lφ+ c,

40 Bruce J. MacLennan

where K ∈ Φ(Ω×Ω), φKφ =
∫
Ω

∫
Ω
φuKuvφvdudv, L is a linear functional,

and c ∈ R. We require the coupling field K to be symmetric:Kuv = Kvu for all
u, v ∈ Ω; typically it reflects the importance of correlated activity between
any two locations u and v in φ. (Typically, it is a Mercer kernel; see the
section Continua of Basis Functions above.) By the Riesz Representation
Theorem (see the section Field Transformations above) this quadratic
functional may be written

U(φ) = φKφ+ 〈ρ | φ〉+ c,

where ρ ∈ Φ(Ω). The field gradient of such a functional is especially simple:

∇U(φ) = 2Kφ+ ρ.

In many cases ρ = 0 and then gradient descent is a linear process: φ̇ = −rKφ.
This process can be understood as follows. Notice that −Kuv decreases

with the coupling between locations u and v in a field and reflects the inverse
variation of the potential with the coherence of the activity at those sites
(i.e., the potential measures lack of coherence). That is, if Kuv > 0 then the
potential will be lower to the extent that activity at u covaries with activity
at v (since then −φuKuvφv ≤ 0), and if Kuv < 0, the potential will be
lower to the extent they contravary. Therefore, the gradient descent process
φ̇ = −rKφ changes φu to maximally decrease the potential in accord with
the covariances and contravariances with other areas as defined by K, that
is, φ̇u = −r

∫
Ω
Kuvφvdv. The gradient descent will stop when it produces a

field φ̂ for which −rKφ̂ = 0, that is, a field in the null space of K (the set of
all φ ∈ Φ(Ω) such that Kφ = 0).

Universal Approximation

A system of universal computation provides a limited range of facilities that
can be programmed or otherwise set up to implement any computation in
a large and interesting class. The most familiar example is the Universal
Turing Machine (UTM), which can be programmed to emulate any Turing
machine, and therefore can implement any (Church-Turing) computable func-
tion. While this model of universal computation has been important in the
theory of digital computation, other models may be more relevant for other
computing paradigms (MacLennan, 2003, 2004, 2007, 2015a). Models of uni-
versal computation are important for both theory and practice. First, they
allow the theoretical power of a computing paradigm to be established. For
example, what cannot be computed by a UTM cannot be computed by any
Turing machine or by any computer equivalent to a Turing machine. Con-
versely, if a function is Church-Turing computable, then it can be computed

Field Computation in Natural and Artificial Intelligence 41

on a UTM or any equivalent machine (such as a programmable, general-
purpose digital computer). Second, a model of universal computation for a
computing paradigm provides a starting point for designing a general-purpose
computer for that paradigm. Of course, there are many engineering problems
that must be solved to design a practical general-purpose computer, but a
model of universal computation establishes a theoretical foundation.

In the context of field computing there are several approaches to univer-
sal computation. One approach to universal field computation is based on a
kind of field polynomial approximation based on the Taylor series for field
transformations (see the section Derivatives of Field Transformations)
(MacLennan, 1987, 1990). Another approach relies on a variety of “universal
approximation theorems” for real functions, which are themselves generaliza-
tions of Fourier-series approximation (Haykin, 2008, pp. 166–168, 219–220,
236–239, 323–326). To explain this approach we will begin with the problem
of interpolating a field transformation F : Φ(Ω) → Φ(Ω′) specified by the
samples F (φk) = ψk, k = 1, . . . , P . Further, we require the interpolating
function to have the form

ψ̂ =

H∑
j=1

rj(φ)αj ,

for some H, where the rj : Φ(Ω) → R are fixed nonlinear functionals
(real-valued field transformation), and the αj ∈ Φ(Ω′) are determined by
the samples so as to minimize the sum-of-squares error defined by E =∑P
k=1 ‖ψ̂k − ψk‖2, where ψ̂k =

∑H
j=1 rj(φ

k)αj . (A regularization term can
be added if desired; see Haykin, 2008, ch. 7.)

A field, as an element of a Hilbert space, has the same norm as the (infinite)
sequence of its generalized Fourier coefficiants (with respect to some ON
basis). Let ζ1, ζ2, . . . be a basis for Φ(Ω′), and we can compute the Fourier

coefficients of ψ̂k − ψk as follows:

〈ζi | ψ̂k − ψk〉 =

〈
ζi

∣∣∣∣∣∣
H∑
j=1

rj(φ
k)αj − ψk

〉

=

 H∑
j=1

rj(φ
k)〈ζi | αj〉

− 〈ζi | ψk〉
Now define three matrices:

Rkj = rj(φ
k), (11)

Aji = 〈ζi | αj〉, (12)

Yki = 〈ζi | ψk〉. (13)

42 Bruce J. MacLennan

Then, 〈ζi | ψ̂k − ψk〉 =
∑H
j=1RkjAji − Yki. The fields may approximated

arbitrarily closely by the firstN Fourier coefficients, in which case R, A, and Y
are ordinary finite-dimensional matrices. Then ‖ψ̂k−ψk‖2 ≈

∑N
i=1E

2
ki, where

E = RA − Y. Therefore the approximate total error is Ê =
∑P
k=1

∑N
i=1E

2
ki,

or Ê = ‖E‖2F (the squared Frobenius norm).
This is a standard least-squares minimization problem, and, as is well

known (Leon, 1986, pp. 371–3), the error is minimized by A = R+Y, where
R+ is the Moore-Penrose pseudoinverse of the interpolation matrix R; that
is, R+ = (RTR)−1RT. From A we can compute the required fields to approx-

imate F , namely, αj =
∑N
i=1Ajiζi.

For universality, we require that the approximation error can be made ar-
bitrarily small, which depends on the choice of the basis functionals rj , as
can be learned from multivariable interpolation theory. Therefore, we rep-
resent the input fields by their first M generalized Fourier coefficients, an
approximation that can be made as accurate as we like. Let β1, β2, . . . be an
ON basis for Φ(Ω) and let pM : Φ(Ω)→ RM compute this finite-dimensional
representation: pMj (φ) = 〈βj | φ〉. We will approximate rj(φ) ≈ sj [p

M (φ)],

for appropriate functions sj : RM → R, j = 1, . . . ,H. That is, we are ap-
proximating the field transformation F by

F (φ) ≈
H∑
j=1

sj [p
M (φ)]αj .

Now let Skj = sj [p
M (φk)], and we have corresponding finite-dimensional

interpolation conditions Y = SA with the best least-square solution A =
S+Y.

Various universal approximation theorems tell us that, given an appropri-
ate choice of basis functions s1, . . . , sH , any continuous function f : RM → RN
can be approximated arbitrarily closely by a linear combination of these func-
tions (Haykin, 2008, pp. 166–8). That is, the error Ê = ‖SA − Y‖2F can be
made as small as we like. Therefore, appropriate choices for the sj imply
corresponding choices for the basis functionals rj .

For example, one universal class of basis functions has the form sj(x) =
s(wT

j · x + bj), for any nonconstant, bounded, monotone-increasing contin-
uous function s (Haykin, 2008, p. 167). This form is common in artificial
neural networks, where wj is a vector of neuron j’s input weights (connec-
tion strengths) and bj is its bias. To find the corresponding basis functional,
rj(φ) = sj [p

M (φ)], observe

wj · pM (φ) + bj =

M∑
k=1

wjkp
M
k (φ) + bj

=

M∑
k=1

wjk〈βk | φ〉+ bj

Field Computation in Natural and Artificial Intelligence 43

=

〈
M∑
k=1

wjkβk

∣∣∣∣∣φ
〉

+ bj .

Therefore, let $j =
∑M
k=1 wjkβk, and we see that a universal class of func-

tionals has the form:
rj(φ) = s(〈$j | φ〉+ bj). (14)

Thus, in this field analog of an artificial neuron, the input field φ is matched
to the neuron’s interconnection field $j .

Another universal class is the radial basis functions, sj(x) = r(‖x− cj‖),
where the radial function r is monotonically decreasing, and the centers cj

are either fixed or dependent on the function to be approximated. A corre-
sponding universal class of field functions has the form:

rj(φ) = r(‖φ− ηj‖), (15)

where each field ηj =
∑
i c
j
i ζi causes the maximal response of the correspond-

ing basis function rj . Furthermore, if we set H = P and ηj = φj , then the
matrix R (Eq. 11) is invertible for a wide variety of radial functions r (Haykin,
2008, pp. 238–239).

Furthermore, if S is a similarity measure with a Mercer kernel K so that
S(φ, ψ) = φKψ, then field transformations can be approximated by

F (φ) ≈
∑
j

S(φj , φ)αj =
∑
j

(φjKφ)αj ,

where the coefficients are found by standard kernel machine regression tech-
niques.

Thus familiar methods of universal approximation can be transferred to
field computation, which reveals simple classes of field transformations that
are universal. This implies that universal field computers can be designed
around a small number of simple functions (e.g., field summation, inner prod-
uct, monotonic real functions).

Field Computers

Structure

As explained in the section Introduction, fields do not have to be physically
continuous in either value or spatial extension (that is, in range or domain),
provided that the discretization is sufficiently fine that a continuum is a prac-
tical approximation. Therefore, field computation can be implemented with
ordinary serial or parallel digital computing systems (as it has been in the

44 Bruce J. MacLennan

past). However, field computation has a distinctively different approach to
information representation and processing; computation tends to be shal-
low (in terms of operations applied), but very wide, “massively parallel” in
the literal sense of computing with an effectively continuous mass of proces-
sors. Therefore field computation provides opportunities for the exploitation
of novel computing media that may not be suitable for digital computa-
tion. For example, as the brain illustrates how relatively slow, low precision
analog computing devices can be used to implement intelligent information
processing and control via field computation, so electronic field computers
may exploit massive assemblages of low-precision analog devices, which may
be imprecisely fabricated, located, and interconnected. Other possibilities
are optical computing in which fields are represented by optical wavefronts,
molecular computation based on films of bacteriorhodopsin or similar ma-
terials, chemical computers based on reaction-diffusion systems, and “free
space computing” based on the interactions of charge carriers and electrical
fields in homogeneous semiconductors (see the section Field Computing
Hardware below).

Field computation is a kind of analog computation, and so there are two
principal time domains in which field computation can take place, sequential
time and continuous time (see article Analog Computation). In sequential
computation, operations take place in discrete steps in an order prescribed
by a program. Therefore, sequential field computation is similar to ordinary
digital computation, except that the individual program steps may perform
massively parallel analog field operations. For example, a field assignment
statement, such as:

ψ := φ+ ψ;

updates the field variable ψ to contain the sum of φ and the previous value
of ψ.

In continuous-time computation the fields vary continuously in time, gen-
erally according to differential equations in which time is the independent
variable; this has been the mode of operation of most analog computers in
the past. In this case, a simple dependence, such as ψ = φ+χ, is assumed to
have an implicit time parameter, ψ(t) = φ(t)+χ(t), which represents the real
time of computation. Since continuous-time programs are often expressed by
differential equations, these computers usually provide hardware for definite
integration of functions with respect to time:

ψ(t) = ψ0 +

∫ t

0

F [φ(τ)]dτ. (16)

Continuous-time programs may be expressed by circuit diagrams (variable-
dependency diagrams) rather than by textual programs such as used in digital
computer programming (see Figure 1 for an example).

Although special-purpose analog and digital computers are appropriate for
many purposes, already in the first half of the twentieth century the value of

Field Computation in Natural and Artificial Intelligence 45

general-purpose (programmable) digital and analog computers had been rec-
ognized (see article Analog Computation). Therefore it will be worthwhile
to consider briefly the sort of facilities we may expect to find in a general-
purpose field computer (whether operating in sequential or continuous time).

We have seen that the following facilities are sufficient for universal com-
putation (see the section Universal Approximation above): multiplica-
tion of fields by scalars, local (point-wise) addition of fields (ψu = φu + χu),
and some means of computing appropriate basis functionals. Neural-net style
functionals (Eq. 14) require inner product and any non-constant, bounded,
monotone-increasing scalar function (i.e., a sigmoid function). Radial basis
functionals (Eq. 15) require the norm (which can be computed with the in-
ner product) and any non-constant, bounded, monotone-decreasing scalar
function. (Point-wise subtraction can be implemented, of course, by scalar
multiplication and point-wise addition.) These are modest requirements, and
we can expect practical field computers to have additional facilities.

In addition, continuous-time field computers will implement definite in-
tegration with respect to time (Eq. 16), which is used to implement field
processes defined by differential equations. The equations are implemented
in terms of the operations required for universal computation or in terms of
others, discussed next.

Additional useful operations for general-purpose field computing include
matrix-vector style field products (Hilbert-Schmidt integral operators), outer
product, convolution, cross-correlation, normalization, local (point-wise) prod-
uct and quotient (ψu = φuχu, ψu = φu/χu), and various other local oper-
ations (log, exp, etc.). Operations on vector fields can be implemented by
scalar field operations on the vector components (Cartesian or polar); in this
manner, vector fields of any finite dimension can be processed. If vector fields
and operations on them are provided by the hardware, then it is useful if these
operations include conversions between scalar and vector fields (e.g., between
vector fields and their Cartesian or polar coordinate fields). Other useful vec-
tor field operations include point-wise scalar products between vector fields
(ψu = φ†uχu), gradient (∇), Laplacian (∇2), divergence (∇·), and point-
wise scalar-vector multiplication (ψu = φuχu). Scalar analog computation
is a degenerate case of field computation (since scalars correspond to fields
in Φ({0})), and so practical general-purpose field computers will include the
facilities typical of analog computers (see article Analog Computation).

The Extended Analog Computer

One interesting proposal for a general-purpose field computer is the Extended
Analog Computer (EAC) of LA Rubel, which was a consequence of his convic-
tion that the brain is an analog computer (Rubel, 1985). However, Rubel and
others had shown that the existing model of a general-purpose analog com-

46 Bruce J. MacLennan

puter (GPAC), the abstract differential analyzer defined by CE Shannon, had
relatively severe theoretical limitations, and so it did not seem adequate as a
model of the brain (see article Analog Computation)(Lipshitz and Rubel,
1987; Pour-El, 1974; Rubel, 1988; Shannon, 1941, 1993). Like Shannon’s dif-
ferential analyzer, the EAC is an abstract machine intended for theoretical
investigation of the power of analog computation, not a proposal for a prac-
tical computer (Rubel, 1993); nevertheless, some actual computing devices
have been based on it.

The EAC is structured in a series of levels, each building on those below
it, taking outputs from the lower layers and applying analog operations to
them to produce its own outputs. The inputs to the lowest layer are a finite
number of “settings,” which can be thought of real-numbers (e.g., set by a
continuously adjustable knob). This layer is able to combine the inputs with
real constants to compute polynomials over which it can integrate to gen-
erate differentially algebraic functions; this layer is effectively equivalent to
Shannon’s GPAC. Each layer provides a number of analog devices, including
“boundary-value-problem boxes,” which can solve systems of PDEs subject
to boundary conditions and other constraints. That is, these conceptual de-
vices solve field computation problems. Although for his purposes Rubel was
not interested in implementation, he did remark that PDE solvers might be
implemented by physical processes that obeyed the same class of PDEs as
the problem (e.g., using physical diffusion to solve diffusion problems). This
of course is precisely the old field analogy method, which was also used in
network analyzers (recall the section Introduction). Rubel was able to show
that the EAC is able to solve an extremely large class of problems, but the
extent of its power has not been determined (see article Analog Computa-
tion).

Field Computing Hardware

Research in field computing hardware is ongoing and a comprehensive survey
is beyond the scope of this article; a few examples must suffice.

Although the EAC was intended as a conceptual machine (for investi-
gating the limits of analog computing), JW Mills has demonstrated several
hardware devices inspired by it (Mills, 1996; Mills et al, 2006). In these the
diffusion of electrons in bulk silicon or conductive gels is used to solve diffu-
sion equations subject to given boundary conditions, a technique he describes
as “computing with empty space.” This approach, in which a physical system
satisfying certain PDEs is used to solve problems involving similar PDEs, is a
contemporary version of the “field analogy method” developed by Kirchhoff
and others (discussed in the section Introduction).

Adamatzky and his colleagues have investigated chemical field computers
for implementing reaction-diffusion equations (Adamatzky, 2001; Adamatzky

Field Computation in Natural and Artificial Intelligence 47

et al, 2005); see the section Diffusion Processes. These employ variants of
the Belousov-Zhabotinsky Reaction and similar chemical reactions. Although
the chemical reactions proceed relatively slowly, they are massively parallel:
at the molecular level (“molar parallelism”). Also, Adamatzky et al (2005,
chs. 6–8) have designed both analog and digital electronic reaction-diffusion
computers.

Of course, Hilbert spaces are the mathematical framework of quantum the-
ory, which suggests quantum implementations of field computation. A prin-
cipal limitation is that quantum processes are unitary, which complicates
the straight-forward implementation of nonlinear field computations. Never-
theless, we have seen (in the section Nonlinear Computation via Topo-
graphic Maps) how topographic representation permits nonlinear compu-
tation in superposition by linear field transformations, which can be imple-
mented by quantum operations on the wave function. There is also work on
continuous-value quantum computation, which may be more suitable to field
computation than the more common gate-based quantum computing (Lloyd
and Braunstein, 1999). Also, M Peruš and his colleagues have investigated
the use of quantum holography to implement field analogs of neural-network
algorithms (Loo et al, 2004; Peruš, 1998). Field computation also facilitates
quantum-inspired computation, which implements quantum computation on
classical hardware (albeit less efficiently) (MacLennan, 2017).

Several investigators have explored optical implementations of field com-
puters. For example, Skinner et al, 1995 used self-lensing media, which re-
spond nonlinearly to applied irradience, to implement feed-forward neural
networks trained by back-propagation. Tõkés et al. (Tõkés et al, 2003, 2001)
have investigated an optical field computer using bacteriorhodopsin as a
medium.

Future Directions

In the future field computation can be expected to provide an increasingly
important analytical and intuitive framework for understanding massively
parallel analog computation in natural and artificial intelligence.

First, field computation will provide a theoretical framework for under-
standing information processing in the brain in terms of cortical maps and,
more generally, at a level between anatomical structures and individual neu-
rons or small neural circuits. This will require improved understanding of
information processing in terms of field computation, which will benefit from
cognitive neuroscience research, but also contribute new computational con-
cepts to it. Increased understanding of neural field computation will improve
our ability to design very large artificial neural networks, which are becoming
more attractive as massively parallel neurocomputing hardware is developed.

48 Bruce J. MacLennan

Traditionally, artificial intelligence has approached knowledge represen-
tation from the perspective of discrete, language-like structures, which are
difficult to reconcile with the massively parallel analog representations found
in the cortex. Therefore field computation will provide an alternative frame-
work for understanding knowledge representation and inference, which will be
more compatible with neuroscience but also provide a basis for understand-
ing cognitive phenomena such as context sensitivity, perception, sensorimotor
coordination, image-based cognition, analogical and metaphorical thinking,
and nonverbal intelligences (kinesthetic, emotional, aesthetic, etc.).

As we have seen, concepts from field computation may be applied to un-
derstanding the collective intelligence of large groups of organisms. This ap-
proach permits separating the abstract computational principles from the
specifics of their realization by particular organisms, and therefore permits
their application to other organisms or artificial systems. For example, prin-
ciples of field computation governing the self organization of groups of organ-
isms are applicable to distributed robotics; in particular, they will provide a
foundation for controlling very large population of microrobots or nanobots.

Embryological morphogenesis is naturally expressed in terms of field com-
putation, since the differentiation and self-organization of an (initially ho-
mogeneous) cell mass is governed by continuous distributions of continuous
quantity (Forgacs and Newman, 2005). Therefore, field computation provides
a vehicle for rising above the specifics of particular signaling molecules, mech-
anisms of cell migration, etc. in order to understand development in abstract
or formal terms. Understanding morphogenesis in terms of field computa-
tion will facilitate applying its principles to other systems in which matter
self-organizes into complex structures. In particular, field computation will
suggest means for programming the reorganization of matter for nanotech-
nological applications and for describing the behavior of adaptive “smart”
materials (MacLennan, 2015b).

As we approach the end of Moore’s Law (Moore, 1965), future improve-
ments in computing performance will depend on developing new comput-
ing paradigms not based in sequential digital computation (see also Analog
Computation). Improvements in both speed and density can be achieved by
matching data representations and computational operations to the physical
processes that realize them, which are primarily continuous and parallel in
operation. Indeed, many of these processes are described in terms of fields or
involve physical fields (i.e., either phenomenological or physical fields). There-
fore field computation points toward many physical processes that might be
used for computation and provides a framework for understanding how best
to use them. Thus we anticipate that field computation will play an important
role in post-Moore’s Law computing.

Field Computation in Natural and Artificial Intelligence 49

References

Adamatzky A (2001) Computing in Nonlinear Media and Automata Collec-
tives. Institute of Physics Publishing, Bristol

Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction-Diffusion Com-
puters. Elsevier, Amsterdam

Anderson J (1995a) An Introduction to Neural Networks. MIT Press, Cam-
bridge, MA

Anderson RA (1995b) Coordinate transformations and motor planning in
posterior parietal cortex. In: Gazzaniga MS (ed) The Cognitive Neuro-
sciences, MIT Press, pp 519–32

Bar-Yam Y (1997) Dynamics of Complex Systems. Perseus Books, Reading,
MA

Bizzi E, Mussa-Ivaldi FA (1995) Toward a neurobiology of coordinate trans-
formation. In: Gazzaniga M (ed) The Cognitive Neurosciences, MIT Press,
pp 495–506

Bohm D, Hiley BJ (1993) The Undivided Universe: An Ontological Interpre-
tation of Quantum Theory. Routledge

Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From Nat-
ural to Artificial Systems. Santa Fe Institute Studies in the Sciences of
Complexity, Oxford University Press, New York

Brachman G, Narici L (1966) Functional Analysis. Academic Press, New York
Camazine S, Deneubourg J, Franks NR, Sneyd G J Theraulaz, Bonabeau E

(2001) Self-organization in Biological Systems. Princeton
Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH (2010) Neuron

densities vary across and within cortical areas in primates. Proceed-
ings of the National Academy of Sciences 107(36):15,927–15,932, DOI
10.1073/pnas.1010356107

Daubechies I, Grossman A, Meyer Y (1986) Painless non-orthogonal expan-
sions. Journal of Mathematical Physics 27:1271–83

Daugman JG (1993) An information-theoretic view of analog representation
in striate cortex. In: Schwartz E (ed) Computational Neuroscience, MIT
Press, Cambridge, pp 403–423

Davies JA (2005) Mechanisms of Morphogensis. Elsevier, Amsterdam
Deneubourg JL (1977) Application de l’ordre par fluctuation à la description

de certaines étapes de la construction du nid chez les termites. Insectes
Sociaux 24:117–30

Dirac PAM (1958) The Principles of Quantum Mechanics, 4th edn. Oxford
University Press, Oxford

Droulez J, Berthoz A (1991a) The concept of dynamic memory in sensorimo-
tor control. In: Humphrey DR, Freund HJ (eds) Motor Control: Concepts
and Issues, Wiley, pp 137–161

Droulez J, Berthoz A (1991b) A neural network model of sensoritopic maps
with predictive short-term memory properties. Proc National Acad Science
USA 88:9653–9657

50 Bruce J. MacLennan

Feldman JA, Ballard DH (1982) Connectionist models and their properties.
Cognitive Science 6(3):205–54

Forgacs G, Newman SA (2005) Biological Physics of the Developing Embryo.
Cambridge University Press, Cambridge, UK

Gabor D (1946) Theory of communication. Journal of the Institution of Elec-
trical Engineers 93, Part III:429–57

Georgopoulos AP (1995) Motor cortex and cognitive processing. In: The Cog-
nitive Neurosciences, MIT Press, pp 507–517

Goodman SJ, Anderson RA (1989) Microstimulation of a neural-network
model for visually guided saccades. Journal of Cognitive Neuroscience
1:317–26

Haykin S (2008) Neural Networks and Learning Machines, 3rd edn. Pearson
Education, New York

Heil CE, Walnut DF (1989) Continuous and discrete wavelet transforms.
SIAM Review 31(4):628–66

Hopfield JJ (1995) Pattern recognition computation using action potential
timing for stimulus response. Nature 376:33–6

Iyanaga S, Kawada Y (eds) (1980) Encyclopedic Dictionary of Mathematics.
Mathematical Society of Japan, MIT Press, Cambridge

Kirchhoff G (1845) Ueber den durchgang eines elektrischen stromes durch
eine ebene, insbesondere durch eine kreisförmige. Annalen der Physik und
Chemie 140/64(4):497–514

Knudsen EJ, du Lac S, Esterly SD (1987) Computational maps in the brain.
Ann Rev of Neuroscience 10:41–65

Leon SJ (1986) Linear Algebra with Applications, 2nd edn. Macmillan, New
York

Light WA (1992) Ridge functions, sigmoidal functions and neural networks.
In: Cheney E, Chui C, Schumaker L (eds) Approximation Theory VII,
Academic Press, Boston, pp 163–206

Lipshitz L, Rubel LA (1987) A differentially algebraic replacment theorem.
Proceedings of the American Mathematical Society 99(2):367–72

Lloyd S, Braunstein SL (1999) Quantum computation over continuous vari-
ables. Phys Rev Lett 82:1784–1787, DOI 10.1103/PhysRevLett.82.1784,
URL http://link.aps.org/doi/10.1103/PhysRevLett.82.1784

Loo CK, Peruš M, Bischof H (2004) Associative memory based image and
object recognition by quantum holography. Open Systems & Information
Dynamics 11(3):277–89

MacLennan BJ (1987) Technology-independent design of neurocomputers:
The universal field computer. In: Caudill M, Butler C (eds) Proceedings of
the IEEE First International Conference on Neural Networks, IEEE Press,
vol 3, pp 39–49

MacLennan BJ (1990) Field computation: A theoretical framework for mas-
sively parallel analog computation, parts I–IV. Tech. Rep. CS-90-100, De-
partment of Computer Science, University of Tennessee, Knoxville

Field Computation in Natural and Artificial Intelligence 51

MacLennan BJ (1991) Gabor representations of spatiotemporal visual im-
ages. Tech. Rep. CS-91-144, Department of Computer Science, University
of Tennessee, Knoxville, also available from web.eecs.utk.edu/~mclennan

MacLennan BJ (1993) Information processing in the dendritic net. In: Pri-
bram KH (ed) Rethinking Neural Networks: Quantum Fields and Biological
Data, Lawrence Erlbaum, Hillsdale, NJ, pp 161–197

MacLennan BJ (1994a) Continuous computation and the emergence of
the discrete. In: Pribram KH (ed) Origins: Brain & Self-Organization,
Lawrence Erlbaum, Hillsdale, NJ, pp 121–151

MacLennan BJ (1994b) Image and symbol: Continuous computation and the
emergence of the discrete. In: Honavar V, Uhr L (eds) Artificial Intelli-
gence and Neural Networks: Steps Toward Principled Integration, Aca-
demic Press, New York, pp 207–24

MacLennan BJ (1995) Continuous formal systems: A unifying model in lan-
guage and cognition. In: Proceedings of the IEEE Workshop on Archi-
tectures for Semiotic Modeling and Situation Analysis in Large Complex
Systems, Monterey, CA, pp 161–172

MacLennan BJ (1997) Field computation in motor control. In: Morasso PG,
Sanguineti V (eds) Self-Organization, Computational Maps and Motor
Control, Elsevier, pp 37–73

MacLennan BJ (2003) Transcending Turing computability. Minds and Ma-
chines 13:3–22

MacLennan BJ (2004) Natural computation and non-Turing models of com-
putation. Theoretical Computer Science 317:115–145

MacLennan BJ (2007) A review of analog computing. Tech. Rep. UT-CS-07-
601, Department of Electrical Engineering and Computer Science, Univer-
sity of Tennessee, Knoxville

MacLennan BJ (2013) Cognition in Hilbert space. Behavioral and Brain Sci-
ences 36(3):296–7, DOI 10.1017/S0140525X1200283X

MacLennan BJ (2015a) Analog computation. In: Encyclopedia of Complexity
and System Science, Springer

MacLennan BJ (2015b) The morphogenetic path to programmable
matter. Proceedings of the IEEE 103(7):1226–1232, DOI
10.1109/JPROC.2015.2425394

MacLennan BJ (2017) Field computation: A framework for quantum-inspired
computing. In: Bhattacharyya S, Maulik U, Dutta P (eds) Quantum
Inspired Computational Intelligence: Research and Applications, Mor-
gan Kaufmann / Elsevier, Cambridge MA, chap 3, pp 85–110, DOI
10.1016/B978-0-12-804409-4.00003-6

McClelland J, Rumelhart D, the PDP Research Group (1986) Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Vol-
ume 2: Psychological and Biological Models. MIT Press, Cambridge, MA

Miller MI, Roysam B, Smith KR, O’Sullivan JA (1991) Representing and
computing regular languages on massively parallel networks. IEEE Trans-
actions on Neural Networks 2:56–72

52 Bruce J. MacLennan

Mills JW (1996) The continuous retina: Image processing with a single-sensor
artificial neural field network. In: Proceedings IEEE Conference on Neural
Networks, IEEE Press

Mills JW, Himebaugh B, Kopecky B, Parker M, Shue C, Weilemann C (2006)
“Empty space” computes: The evolution of an unconventional supercom-
puter. In: Proceedings of the 3rd Conference on Computing Frontiers, ACM
Press, New York, pp 115–26

Moore GE (1965) Cramming more components onto integrated circuits. Elec-
tronics 38(8):114–117

Peruš M (1998) A quantum information-processing “algorithm” based on
neural nets. In: Wang P, Georgiou G, Janikow C, Yao Y (eds) Joint Con-
nference on Information Sciences, Association for Intelligent Machinery,
vol II, pp 197–200

Pothos EM, Busemeyer JR (2013) Can quantum probability provide a new
direction for cognitive modeling? Behavioral and Brain Sciences 36:255–
327, DOI 10.1017/S0140525X12001525

Pour-El M (1974) Abstract computability and its relation to the general pur-
pose analog computer (some connections between logic, differential equa-
tions and analog computers). Transactions of the American Mathematical
Society 199:1–29

Powell MJD (1985) Radial basis functions for multivariable interpolation:
A review. In: IMA Conference on Algorithms for the Approximation of
Functions and Data, RMCS, Shrivenham, UK, pp 143–67

Pribram KH (1991) Brain and Perception: Holonomy and Structural in Fig-
ural Processing. Lawrence Erlbaum, Hillsdale, NJ

Pribram KH, Sharafat A, Beekman GJ (1984) Frequency encoding in motor
systems. In: Whiting H (ed) Human Motor Actions: Bernstein Reassessed,
Elsevier, pp 121–56

Rubel LA (1985) The brain as an analog computer. Journal of Theoretical
Neurobiology 4:73–81

Rubel LA (1988) Some mathematical limitations of the general-purpose ana-
log computer. Advances in Applied Mathematics 9:22–34

Rubel LA (1993) The extended analog computer. Advances in Applied Math-
ematics 14:39–50

Rumelhart D, McClelland J, the PDP Research Group (1986) Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition, Vol-
ume 1: Foundations. MIT Press, Cambridge, MA

Sanger TD (1996) Probability density estimation for the interpretation of
neural population codes. Journal of Neurophysiology 76:2790–3

Shannon CE (1941) Mathematical theory of the differential analyzer. Journal
of Mathematics and Physics of the Massachusetts Institute Technology
20:337–354

Shannon CE (1993) Mathematical theory of the differential analyzer. In:
Sloane NJA, Wyner AD (eds) Claude Elwood Shannon: Collected Papers,
IEEE Press, New York, pp 496–513

Field Computation in Natural and Artificial Intelligence 53

Skinner SR, Behrman EC, Cruz-Cabrera AA, Steck JE (1995) Neural network
implementation using self-lensing media. Applied Optics 34:4129–35

Small JS (2001) The Analogue Alternative. Routledge, London & New York
Solé R, Goodwin B (2000) Signs of Life: How Complexity Pervades Biology.

Basic Books, New York
Soroka W (1954) Analog Methods in Computation and Simulation. McGraw-

Hill, New York
Spencer JP, Schöner G (eds) (2015) Dynamic Thinking: A Primer on Dynamic

Field Theory. Oxford University Press, New York, NY
Steinbeck O, Tóth A, Showalter K (1995) Navigating complex labyrinths:

Optimal paths from chemical waves. Science 267:868–71
Ting P, Iltis RA (1994) Diffusion network architectures for implementation

of Gibbs samplers with applications to assignment problems. IEEE Trans-
actions on Neural Networks 5:622–38

Tõkés S, Orzó L, Váró G, Dér A, Ormos P, Roska T (2001) Programmable
analogic cellular optical computer using bacteriorhodopsin as analog
rewritable image memory. In: Dér A, Keszthelyi L (eds) Bioelectronic Ap-
plications of Photochromic Pigments, IOS Press, Amsterdam, The Nether-
lands, pp 54–73

Tõkés S, Orzó L, Ayoub A (2003) Two-wavelength POAC (programmable
opto-electronic analogic computer) using bacteriorhodopsin as dynamic
holographic material. In: Proceedings of ECCTD ‘03 Conference, Krakow,
vol 3, pp 97–100

Truitt TD, Rogers AE (1960) Basics of Analog Computers. John F. Rider,
New York

Turing AM (1952) The chemical basis of morphogenesis. Philosophical Trans-
actions of the Royal Society B 237:37–72

Books and Reviews

1. Bachman, G, Narici L (1966) Functional analysis. Academic Press, New
York.

2. Berberian, SK (1961) Introduction to Hilbert space. Oxford, New York.
3. MacLennan, BJ (2017) Foundations of Field Computation. Available from

//http:web.eecs.utk.edu/~mclennan.

