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Abstract—We present an analog implementation of a dynam-
ical system for solving Boolean satisfiability, an NP-complete
problem. Simulations of modest-sized hardware implementations
in the presence of noise and integrator offset demonstrate that
the algorithm is suitable for implementation in analog electronics.

I. INTRODUCTION

A. Boolean Satisfiability

The Boolean Satisfiability problem (SAT) is to find a set
of 0/1 assignments to the Boolean variables X1, . . . , Xn so
that a specified Boolean expression is true (= 1). The Boolean
expressions are in conjunctive normal form, e.g.:

(X1 +X3 +X4) · (X2 +X3 +X4) · (X2 +X4 +X5).

In this instance, there are N = 5 variables and M = 3 clauses.
Positive or complemented variables (e.g., X2, X2) are called
literals. If every clause contains exactly k literals (as in the
above example, k = 3), then it is an instance of the k-SAT
problem. k-SAT is an NP-complete problem.

The difficulty of a particular instance is related to the
constraint density, α = M/N [1].

B. ACTNN-k-SAT Algorithm

Ercsey-Ravasz and her colleagues present a continuous-time
dynamical system for solving k-SAT [2], [3]. There are N
bounded variables si which evolve to a solution, positive for
Boolean 1, and negative for Boolean 0. In addition, there are
M bounded variables am that measure the “urgency” of sat-
isfying a clause. A particular problem instance is represented
by an M × N constraint matrix c, where cmi ∈ {−1, 0, 1}.
cmi = +1 if Xi is positive in clause m, cmi = −1 if Xi is in
clause m, and cmi = 0 if Xi does not occur in clause m.

The dynamical system is defined by the differential equa-
tions:

ṡi(t) = −si(t) +Af [si(t)] +

M∑
m=1

cmig[am(t)],

ȧm(t) = −am(t) +Bg[am(t)]−
N∑
i=1

cmif [si(t)] + 1− k.

The self-coupling parameters A and B are two real constants
that depend weakly on k. The f and g activation functions
are piece-wise linear squashing functions that map the s and
a values into [−1, 1] and [0, 1], respectively:

f(s) = (|s+ 1| − |s− 1|)/2

=


− 1 if s < −1,
s if −1 ≤ s ≤ 1,
+1 if s > 1.

g(a) = (1 + |a| − |1− a|)/2

=


0 if a < 0,
a if 0 ≤ a ≤ 1,
+1 if a > 1.

Molnár and Ercsey-Ravasz [2] prove that the only stable
fixed points of the system are solutions to the problem, and
they give numerical evidence that there are no limit cycles,
provided that the A and B parameters are in the appropriate
range. Typical good ranges for the constants are 1 < A < 2
and 2 < B < 2bk/2c+ 2. If in fact there are no limit cycles
in these ranges, then unsolvable instances would have chaotic
attractors. This is consistent with the observed transient chaotic
behavior for hard instances [2].

Molnár and Ercsey-Ravasz [2] prove the following bounds
on the variables:

|si(t)| ≤ 1 +A+
∑
m

|cmi|,

−2k ≤ am(t) ≤ 2 +B,

provided that they are initially in the ranges |si(0)| ≤ 1
and 0 ≤ am(0) ≤ 1. This guaranteed bounding of variables
is critical for analog implementations, because variables in
analog computational systems are bounded by their physical
representation. The initial values are otherwise arbitrary.

The progess toward solution can be tracked by the following
“energy function” which depends on the number of unsatisfied
clauses [1], [2]:

E[f(s)] = KTK where Km = 2−k
N∏
i=1

[1− cmif(si)].

Note that E is not a Lyapunov function, and energy does not
decrease monotonically.
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Fig. 1. Analog Implementation of ACTNN-k-SAT.

C. Analog Implementation of ACTNN-k-SAT

Fig. 1 displays an analog algorithm for implementing this
dynamical system. The overall structure is a cross-bar between
the M integrators for the am and the N integrators for the si;
thus M + N integrators are required. A particular instance
is programmed by setting the cmi and −cmi connections to
−1, 0, or +1, as required for the problem. The integrators are
initialized to small values to start the computation; non-zero
offset or noise in the hardware integrators might have the same
effect.

This structure is easily implemented in analog form, as it
comprises a small number of simple components repeated
in a regular pattern. Integrators are a ubiquitous element of
analog signal processing systems, with numerous switched-
capacitor[4][5], continuous-time voltage-mode, and current-
mode implementations [6]. Clamping, scaling, and summation
are likewise easily implemented, particularly using current-
mode signaling. The weights cm,i can easily be implemented
using cross-bar switches.

Analog computation has been demonstrated to provide
outstanding energy efficienty at moderate resolutions, often
yielding energy efficiency improvements of multiple orders
of magnitude over digital implementations [7][8]. However,
with that efficiency comes imperfect computation, as every
element injects error into a calculation. These errors can
be reduced, but at the cost of increased silicon area and
power consumption. In order to ensure that circuit performance
does not degrade algorithmic performance, while avoiding
excessive power and area due to over-engineering, designers
must carefully model the effects of non-ideal computation. In
this paper, we address that modeling task for the ACTNN-k-
SAT solver, focusing primarily on noise and offsets.
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Fig. 2. Evolution of s variables over time for a typical α = 4 4-SAT problem.
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Fig. 3. Evolution of a variables over time for a typical α = 4 4-SAT problem.

II. SIMULATION

Previous simulations have demonstrated that the algorithm
is resilient in the face of significant noise in the interconnection
weight cmi and integrations [3]. In preparation for an eventual
implementation in analog electronics, we developed a simple
simulation program in order to evaluate performance of the
algorithm. For the small instances of k-SAT that we have in
mind (N ≈ 10,M < 50) we use a simple forward-Euler
method. We established that a time step ∆t = 0.02 gives
reliable results, and it was used in the simulations reported
here. We focused on 4-SAT problems and used self-coupling
parameters A = 1.54 and B = 2.18, which are in the
optimal region established by Molnár and Ercsey-Ravasz [2].
Simulations were run for a maximum of tmax = 100 time
units, and were deemed to have failed to find a solution if
unable to do so within this time.

Fig. 2 displays the evolution of the ten s variables over
time for an example 4-SAT problem with a constraint density
α = 4. The graph show how some variables tentatively assume
values early in the simulation, but change them later as the
system is attracted to a solution state. Fig. 3 displays the
evolution of the forty a variables for the same simulation.
Careful comparison with Fig. 2 shows that increase in an a
variable (corresponding to an unsatisfied constraint) leads to a
sign change in an s variable. Finally, Fig. 4 shows the time
evolution of the energy function, which reflects the urgency of
satisfying unsatisfied constraints. A partial solution is found
at t ≈ 8 before a complete solution is discovered at t ≈ 18.
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Fig. 4. Evolution of E “energy” function over time for a typical α = 4
4-SAT problem.
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Fig. 5. Distribution of convergence time versus difficulty measured by α for
100 random 4-SAT instances. (t = 100 represents non-convergence in the
allotted time.)
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Fig. 6. Convergence time versus noise for 100 random 4-SAT instances.

III. RESULTS

Fig. 5 displays the distribution of convergence times versus
constraint density α for 100 randomly chosen constraint matri-
ces for 4-SAT instances with no noise or offset. For α < 3.5,
all instances are solved in the allotted time, but for α ≥ 3.5 a
few remained unsolved when the simulation was terminated.
Therefore, in the following simulations we used α = 4.0 to
provide a baseline against which to compare the effects of
noise and offset.

Fig. 6 displays the time to convergence for the same 100
random 4-SAT problems, but with Gaussian noise σ varying
from 2−15 to 2−7 of full range of the s and a variables.
Noise had little effect on the system up through values of
2−10 (nearly 100% solved). At 2−9, however, only about 40%
of the problems were solved in the time set for the simulation.
Additional noise levels were simulated in range of 2−10−2−9
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Fig. 7. Detail of convergence time versus noise for 100 random 4-SAT
instances, noise σ = 2−10 to 2−9.
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Fig. 8. Effect of noise on evolution of s variables.
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Fig. 9. Effect of noise on evolution of energy.
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Fig. 10. Effect of offset on evolution of s variables.

where the critical transition seems to occur, as illustrated in
Fig. 7

Figs. 8 and 9 show the effect of noise (σ = 2−9 of full range
of s and a variables) on the problem instance depicted in Figs.
2–4. Figs. 10 and 11 show the effect of offset (σ = 2−13) on
this same instance. The combined effects of noise and offset
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Fig. 11. Effect of noise on evolution of energy.
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Fig. 12. Combined effects of noise and offset on evolution of s variables.

0 2 4 6 8 10 12 14 16

Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
(f

(S
))

Energy over time

Fig. 13. Combined effects of noise and offset on evolution of energy.

are shown in Figs. 12 and 13 (σ = 2−10 noise and σ = 2−12

offset). In all of these cases, despite the considerable noise in
the s and a variables, the algorithm found a solution in about
the same time as the error-free version.

The effects of noise and offset on convergence are summa-
rized in Fig. 14, which displays the percentage of this random
selection of α = 4 problems that were solved within the
allotted time for a variety of combinations of noise and offset.

IV. CONCLUSION

We have determined that this analog algorithm for Boolean
satisfiability can solve modest-sized instances (N = 10, α =
4) in the presence of moderate noise and offset error, and is
thus suitable for implementation in analog electronics. Further
study is required to determine whether the noise requirement
can be relaxed further with longer running time. More relaxed
noise budgets could allow faster and more efficient implemen-
tations, reducing the scaling factor relating the arbitrary time
units used in these simulations to real-world time. Therefore

Fig. 14. Percent of α = 4 problems solved for various combinations of noise
and offset. Key: white = 100%, black = 0%.

even though solution times might increase in simulation with
noisier circuits, the real-world solution time could decrease.
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