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BRUCE MACLENNAN

LOGIC FOR THE NEW AI

The psyche never thinks without an image.

- Aristotle

I. INTRODUCTION

A. The New AI

There is growing recognition that the traditional methods of artificial
intelligence (AI) are inadequate for many tasks requiring machine
intelligence. I Space prevents more than a brief mention of the issues.

Research in connected speech recognition has shown that an incredi
ble amount of computation is required to identify spoken words. This is
because the contemporary approach begins by isolating and classifying
phonemes by means of context-free features of the sound stream. Thus
the stream must be reduced to acoustic atoms before classification can
be accomplished. On the other hand, for people the context determines
the phoneme, much as the melody determines the note.2 This is why a
phoneme can vary so greatly in its absolute (i.e., context-free) features
and still be recognized. People recognize a gestalt, such as a word or
phrase, and identify the phonetic features later if there is some reason
to do so (which there's usually not).

In general, much of the lack of progress in contemporary pattern
recognition can be attributed to the attempt to classify by context-free
features. If the chosen features are coarse-grained, the result is a
"brittleness" in classification and nonrobustness in the face of novelty.3
On the other hand, if the features are fine-grained, then the system is in
danger of being swamped by the computation required for classifica-
tion.a People (and other animals) do not seem to face this dilemma. We
recognize the whole, and focus on the part only when necessary for the
purpose at hand.s The logical atomism of contemporary AI precludes
this approach, since wholes can be identified only in terms of their
constituents. But, as we've seen, the constituents are determined by the
whole. Thus, with contemporary AI technology, pattern recognition
faces a fundamental circularity.
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1.64 BRUCE MACLENNAN

A similar protrlem occurs in robotics. Robotic devices need to
coordinate their actions through kinesthetic, visual and other forms of
feedback. Contemporary systems attempt to accomplish this by building
explicit models of the world in which the system must function'
Coordination and ptanning are accomplished by symbolic manipulation
(basically deduction) on the knowledge base. This is subject to the same

limitations we've already seen. If the model is simple, then the robot
will be unprepared for many exigencies. If the model is extremely
detailed, then the system will be swamped by computation - and still
face the possibility of unforeseen circumstances. How is it that people
and animals avoid this predicament?

Heidegger has shown that much of human behavior exhibits a

ready-to-hand understanding of our world that is not easily expressed

in propositional form. 'TVhen we use a piece of equipment," Heidegger
claims, "we actualize a bodily skill (which cannot be represented in the
mind) in the context of a socially orgarized nexus of equipment,
purposes and human roles (which cannot be represented as a set of
facts)."6 Such skill is acquired through our successful use of our animal
bodies to cope with the physical and social worlds in which we find
ourselves. Our use of this knowledge is unconsciozrs in that we do not
think in terms of propositional rules that are then applied to the

situation at hand. "The peculiarity of what is proximally ready-to-hand
is that, in its readiness to hand, it must, as it were, withdraw in order to
be ready to hand quite authentically."T

In contrast, all computer knowledge, at least with current AI technol-
ogy, is rule based. The knowledge is stored in the form of general rules

and schemata, and the computer's "thfutking" proceeds by the applica-
tion of these general rules to particular situations. Furthermore, since

the computer has no body with which to interact with the world and

since it does not develop in a culture from which it can learn norms of
behavior, its knowledge must be acquired either in the form of decon-

textualized general rules, or by mechanized generalization processes

from decontextualized data.8 As Papert and Minsky have said, "Many
problems arise in experiments on machine inlslligence because things
obvious to any person are not represented in any program."e

Combinatorial explosion threatens many other apptcations of AI
technology. For example, automatic theorem provers proceed by blind
enumeration of possibilities, possibly guided by context-free heuristics.

On the other hand, human theorem provers are guided by a contextual
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sense of relevilnce, and a sense of similarity to previously accomplished
proofs. With current AI technology, automatic deduction camot take
advantage of past experience to guide its search.

The same problem occurs in automatic induction. This is relatively
simple ,/ the system is told in advance the relevant variables. That is,
given measurements of a dozen different variables, it's not so hard to
find which are related and to conjecture a relationship between them.
Unfortunately, scientists face a much harder problem, since the number
of possible variables is unlimited, as is the number of their relationships.
How then are scientific laws ever discovered? First, prior experience
gives scientists a sense of relevance (in the context of their investiga-
tions); this guides their search. In addition, human cognition permits
scientists to first recognize similarities and patterns, and then to
identify the common features (if any) upon which these similarities and
patterns are based.

It has long been recognized that people rarely use language as a

logical calculus. As Wittgenstein says, "in philosophy we often compare
the use of words with games and calculi which have fixed rules, but
cannot say that someone who is using language must be playing such a

game."lo Rather than being fixed by formal definition, the meanings of
words expand and retract as required by context and the particulars of
the speech situation. If computers are to be able to understand natural
language "as she is spoke," then they too must be able to treat meaning
in this context and situation-dependent manner - without a combina-
torial explosion.

There is evidencell that expert behavior is better characterized as

automatized knowledge-how rather than explicit knowledge-that.l2 As
we've seen, even in predominantly symbolic activities such as mathe-
matics, a primary determinant of the skill of the expert is his sense of
relevance and his "nose" for the right attack on a problem. These
automatized responses guide his behavior at each step of the process
and avoid the combinatorial explosion characteristic of rule-based
systems. What is missing from current AI is an explanation of the
vectors of gestalt psychology: "When one grasps a problem situation, its
structural features and requirements set up certain strains, stresses,
tensions in the thinker. What happens in real thinking is that these
strains and stresses are followed up, yield vectors in the direction of
improvement of the situation, and change it accordingly."r3 As the
Dreyfuses note, rule-based behavior with explicit heuristics is more

i.
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characteristic of advanced beginners than of experts. But are there

alternatives to logical atomism and rule-based behavior?
With currerlt computer and AI technology, it seems unlikely that

computers can be made to exhibit the sort of ready-to-hand under-
standing that people do. Thus contemporary AI emphasizes present-at-

handla knowledge that can be expressed in terms of decontextualized
concepts and verbal structures. With our present techniques, for the
computer to know how,it is necessary for it to know thttt.

T'raditional logic, of which modern logic and conventional AI tech-
nologies are developments, is trn idealization of certain cognitive
activities that may be loosely characterized as verbal" On the other
hand, many of the tasks for which we would like to use computers are
nonverbal.rs Seen in this way, it is no surprise that idealized verbal
reasoning is indequate for these tasks - the idealization is ttlo far from
the fact. I suggest that Al is being driven by the needs and limitations of
its current methods into a new phase which confronts directly the issues

of nonverbal reasoning. This new phase, wluch i refer to as the rzew AI,
will broaden AI technology to encompass nonverbal as well as verbal
reasoning.

The preceding suggests that the new AI will require a new logic to
accomplish its goals. This logic will have to be an idealization of
nonverbal thinking in much the same way that conventional logic is an

idealization of verbal thinklng. In this paper I outline the requirements
for such a logic and sketch the design of one possible logic that satisfies

the requirements.
But isn't verbal thinking inherent in the very word /oglc (Aoytrcr1 <

),6yoE)? Can there be such a thing as a nonverbal logic? In the next
section we justify our use of the term logic to refer to an idealization of
nonverbal thinking.

B" Why a lVew Logic?

1. The three roles of logic'

Based on ideas of Peircer5 i distinguish three different roles fullilled by
logic and related subjects (epistemology, mathematics, philosophy of
science).

Empirical logic is a nomological account, in the form of descriptive

laws, of what people actually do when they reason (cf., "epistemology
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naturalized"). Thus it can be considered a specialized discipline within
psychology or sociology. As such it must account for those.patterns of
reasoning that are not formally valid, as well as those that are.

Mathematical logic, which is a subdiscipline of mathematics, pro-
vides, by means of formal laws, an idealized model of the reasoning
process. There is no presumption that people do in fact reason this way
all the time. Indeed, there's ample evidence that they don't.17 Of course,
for it to be an interesting model of reasoning, it must bear some
relationship to actual reasoning. For example, mathematical logic
should explain why the actual reasoning processes used by people
work when they do. Similarly, mathematical theories of induction
should explain why confirmation of unlikely outcomes is more valuable
than the confirmation of likely ones, etc.18 Thus, empirical logic pro-
vides the motivation for mathematical logic, and in turn mathematical
logic suggests theories that guide the descriptive activities of empirical
logicians.

Empirical logic tells us how people in fact reason; mathematical logic
explains the validity of various reasoning processes. Neither tells us
how we ought to reason. This is the role of normative /ogzc, which is a
subdiscipline of ethics.le Whereas empirical logic is formulated in terms
of descriptive laws, and mathematical logic in terms of formal laws,
normative logic is formulated in terms of presciptive laws.

Normative logic must, of course, draw results from mathematical
logic, since the latter explains why some reasoning processes are valid
and others aren't. It must also draw from empirical logic for insights
into the psychology of knowing and the practical limitations of human
reason. Normative logic may thus prescribe rules that are not mathe-
matically necessary, but that are psychologrcally or sociologically desir-
able.

Finally, to the extent to which its norms are followed, normative
logic influences the way people actually reason, and hence future
descriptive logic. And, to the extent to which mathematical logic models
actual reasoning, the normative science also affects the mathematical
science.

Logic is important in all three of its roles, but it is its normative role
that is ultimately relevant to AI: we want to use logic as guide for
programming intelligent machines. On the other hand, the mathematical
role is central, since it forms the core of the normative principles and a
standard for empirical studies. Therefore a mathematical logic of



168 BRUCE MACLENNAN

nonverbal reasoning must be our first goal, and on this I concentrate in
the rest of this paper.

2. Conventional logic inadequatefor the new AI
Conventional logic - by which we mean any of the well-known
idealizations of verbal reasoning - is inadequate as a logic for the new
AI. I summaizethe reasons.

There is now ample evidence2o that conventional logic is inadequate
as an empirical description of the way people actually think. People
apparently use a mixture of verbal and nonverbal reasoning that tends
to combine the advantages of both. For example, Miller describes the
alternation in the uses of imagery and mathematics that led to the
development of quantum mechanics.2l He also describes the nonverbal
processes used by Einstein in creating relativity theory; an alternate
account of this process is given by Wertheimer.22

Gardner summarizes recent empirical studies of the thought pro-
cesses actually used by people in problem solving situations.23 They
show that the conventional logic is much too idealized. For example,
the research of Peter Wason and Philip Johnson-Laird suggests that
people are much more likely to reason correctly when the problem has

relevance to practical action, than when it is merely abstract. Gardner's
work and the references he cites contain additional examples.

Conventional logic is also inadequate as a normative discipline, since
it provides standards for verbal reasoning but not for nonverbal
reasoning. The costs and benefits and therefore the tradeoffs involved
in nonverbal reasoning are different from those of verbal reasoning.
Hence the practical guidance provided by the two logics will differ. The
"old AI" has been following the norms of conventional logic - and has

found their limitations.
Llke any mathematical theory, the conventional logic is an idealiza-

tion. There is nothing wrong with such idealizations, so long as they are
appropriate. Unfortunately, conventional logic's idealization of verbal
reasoning is often inappropriate to nonverbal problems. It often leads

to a discrete, atomistic approach that results in a combinatorial explo-
sion of possibilities.

3. Potential value of a new logic

There are many potential benefits that we may expect from a logic for
the new AI. A mathematical theory would provide idealizations of the

\*
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processes involved in nonverbal thinking. As such it would provide a
basis for structuring empirical investigations of nonverbal thinking, and
a standard upon which to base the norms of nonverbal thinking. The
new AI will benefit direcfly from the normative science, since it is this
science that will supply the guidelines for the design of machines that
"think" nonverbally.2a Thus AI should be helped to pass beyond its
current difficulties and achieve some of the goals that have eluded the
"old" AI.

II. REQUIREMENTS FOR A NEW LOGIC

ln this section I review some of the processes of (human and animal)
thought that, although poorly modeled by conventional logic, are
essential to many present and future applications of AI. The new Al
must provide a logic geared to the description and analysis of these
processes. They are the basis of the criteria by which our own proposal
for a nern, logic should be evaluated.

A. Indefinite Classification

Most, perhaps all, of the concepts that we use in everyday life have
indefinite boundaries. That is, the presence of borderline cases is the
rule rather than the exception. There are several reasons that we should
expect this. First, many of the phenomena of nature that are important
for survival are continuous. Thus it is natural to expect animal life to
have evolved cognitive means for dealing with continuously variable
qualities. Second, perception is subject to noise and error, caused both
by imperfections in the sense organs and by circumstances in the
environment. Survival requires that perception be robust in the face of
a wide variety of disturbances. Third, indefinite boundaries avoid the
"brittleness" associated with definite boundaries. What is ,,brittleness',?

Suppose I have a rule; "Flee from predators bigger than myself.,, It
seems unreasonable - that is, anti-survival - to treat a predator one
millimeter shorter than myself as though this rule is inapplicable.
Animal cognition avoids "brittleness" - a thing doesn't cease being a
threat just because it's one millimeter too short.

It seems that indefinite classification will be as important for intel-
ligent machines as it is for intelligent life. This does not imply that
there is no need for definite boundaries. But for many purposes,

L
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especially the ones normally classified as o'everyday", and hence typical
of the new AI, indefinite classes will be required.

To reiterate, indefinite classes are often preferable to definite classes.
Recall Wittgenstein's game example: "One might say that the concept
'game' is a concept with blurred edges. - 'But is a blurred concept a
concept at al7?'- Is an indistinct photograph a picture at all? Is it even
an advantage to replace an indistinct picture by a sharp one? Isn't the
indistinct one often exactly what we need?"2s

Indefiniteness should not be considered a defect. As Wittgenstein
points out, "one pace" is a perfectly useful measurement, despite the
absence of a formal definition. "But this is not ignorance. We do not
know the boundaries because none have been drawn. To repeat, we can
draw a boundary for a special purpose."26 We expect as much from
our new logic - it should be capable of operating with or without
boundaries, as the situation requires.

The reader will no doubt think of Zadeh's fuzzy set theory.z1
Although this is a step in the right direction, I do not think Zadeh's
proposal goes far enough. Some of its limitations for the present
purpose will become clear below.

B. Context Sensitivity

The indefiniteness of the boundaries of a concept is dependent on the
context in which it is being used. Thus 'pure water' means one thing
when I am thirsty in the woods and another when I'm serving my guests

- or working in a chemistry lab. Many of our rules - heuristic or
otherwise - are couched in context-dependent words and phrases: 'too
near','dangerous','acceptable','untrustworthy', etc. etc.

Human (and animal) use of context-sensitive abstractions gives
flexibility to the rules that use them. Context sensitivity seems a

prerequisite of the intelligent use of rules. Indeed. isn't the blind
following of rules - independent of context - the principal example of
stupidity?

Here we can see the lirnitations of a fuzzy set theory that attaches a

fixed membership distribution to a class. To achieve the flexibility
characteristic of animal behavior, it's necessary to have this distribution
adjust in a manner appropriate to the context.28

Context is not something that can be added onto an otherwise
context-free concept. Rather, all our concepts are context-dependent;

s
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the notion of a decontextualized concept is an idealization formed by

L abstraction from contextual concepts in a wide variety of contexts.
Unfortunately, when it comes to modeling corlmonsenss inlslligence
the idealization is too far from reality, "because everything in this world
presents itself in context and is modulated by that context."2e In
Heideggerian terms, we are "always already in a situation."

The above observations also apply to activities that hold definite-
boundaried, context-free abstractions as an ideal. The prime example is
mathematics; here the abstractions are all defined formally. Obsewe,
however, that many of the concepts - such as rigor - that guide
mathematical behavior have just the indefinite, contextual character that
I've described. Is this not the reason that computers, the paragons of
formal symbol manipulators, are so poor at doing mathematics?

C. Logical Holism

The use of conventional logic drives AI to a kind of logical atomism.
That is, all classification is done on the basis of a number of "atomic"
features that are specified in advance. Whether these features have
definite boundaries or are "fvzzy" is not the issue. Rather, the issue is
whether it is possible to specify in advance (i.e., independent of context)
the essential properties of a universal.

Wittgenstein, in Philosophical Investigations (1958), has criticized
the notion of essential attributes and the basis for logical atomism. He
observes that "these phenomena have no one thing in common which
makes us use the same word for all, - but that they are related to one
another in many different ways."30 Further, he instructs ls to "look and
see whether there is anything common to all. - For if you look at them
you will not see something that is corlmon to all, but similarities,
relationships, and a whole series of them at that."31 This is what gives
flexibility and adaptability to human classification; we are not depend-
ent on a particular set of "essential" attributes. If we come upon a sport
lacking one of the essentials, it will still be recognized, if it's sufficiently
similar. "Is it not the case that I have, so to speak, a whole series of
props in readiness, and am ready to lean on one if another should be
taken from under me and vice versa?"32

What is the alternative to classification by essentials? "How then
is it possible to perform an abstraction without extracting corlmon
elements, identically contained in all particular instances? It can be
done when certain aspects of the particulars are perceived as deviations
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from, or deformations of, an underlying structure that is visible within
them."33 This is in accord with Eleanor Rosch's research, in which she
concludes, "Many experiments have shown that categories appear to be
coded in the mind neither by means of lists of each individual member
of the category, nor by means of a list of formal criteria necessary and
sufficient for category membership, but, rather, in terms of a prototype
of a ffiical category member. The most cognitively economical code
for a category is, in fact, a concrete image of an average category
member."34 Kuhn sees this as the usual pattern of science: "The
practice of normal science depends on the ability, acquired from
exemplars, to group objects and situations into similarity sets which are
primitive in the sense that the grouping is done without an answer to
the question, 'Similar with respect to what?"'3s In contrast to logical
atomism, he emphasizes this is "a manner of knowing which is miscon-
strued if reconstructed in terms of rules that are first abstracted from
exemplars and thereafter function in their stead."36

Classification by family resemblance avoids two problems charac-
teristic of classification by context-free features. First, classification by
context-free features can be inflexible, since the number of features
used is by necessity limited. Classification by family resemblance is
more flexible because of the open-ended set of features upon which the
classification is based. On the other hand, if we attempt to improve the
flexibility of context-free classification by classifying on the basis of
more context-free attributes, the efficiency of the process is much
degraded, since the computer must consider all the attributes. Classifi-
cation by family resemblance naturally focuses on those attributes likely
to be relevant in the life of the person. This improves the efficiency of
human cognitive processing.

Classification by family resemblance may in part account for animals'
ability to adapt to novel situations. An object may be judged as belong-
ing to a certain class in spite of the fact that it lacks certain "essential"
characteristics, provided that it satisfies the overall gestalt. That is, in a
given context certain attributes may be more relevant than others.

D. Intentionality

Another characteristic of human cognition that should be accounted for
by our logic is intentionality, the directedness of consciousness towards
its objects.3T The effect of intentionality is to restrict awareness to just
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those aspects of the environment that are likely to be relevant to the
problem at hand. It shifts some things into the foreground so that the
rest can be left in the background. If we think of the foreground as

having a high probability of being considered and the background as

having a low probability, then the effect of this focusing process is to
decrease the entropy of the probability distribution. Indeed, the func-
tions that Peirce attributes to consciousness are self-control and
improving the efficiency of habit formation.38 This suggests that we can
get the beneficial effect of intentionality by any process that on the
average skews the probability of processing in favor of the more
relevant information.

We see that both classification by family resemblances and inten-
tionality improve cognitive efficiency by focusing cognitive activity on
factors likely to be relevant. Our goal is to program computers to have
a sense of relevance.

E. Mixed-Mode Reasoning

The issues discussed so far suggest that the new logic be based on a
continuous (or analog) versus discrete (or digital) computational meta-
phor. Yet the limitations of analog computation are well known. For
example, errors can accumulate at each stage of an analog computa-
tional process to the extent to which all accuracy is lost.3e This suggests
that analog (continuous) reasoning cannot be as deep - support as long
chains ofinference - as digital (discrete) reasoning.

Introspection suggests a solution to this problem. Based on the
\ current context and the measures of relevance it induces, we "digitize"

\_ much of our mental experience - we verbalize our mental images. Such
verbalization permits longer chains of inference by preventing the
accumulation of error. It is successful so long as the context is relatively
stable. We expect a logic for the new AI to accommodate verbal as well
as nonverbal reasoning, and to permit the optimal mix of the two to be
determined.

Paivio's remarks on visual cognition apply as well to other forms of
nonverbal reasoning: "Images and verbal processes are viewed as

alternative coding systems, or modes of symbolic representation, which
are developmentally linked to experiences with concrete objects and
events as well as with language."aO But, the two systems are not
mutually exclusive: "Many situations likely involve an interaction of
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imaginal and verbal processes, however, and the latter would neces-
sarily be involved at some stage whenever the stimuli or responses, or
both, are verbal

The key point is that verbal thinking is really a special case of
nonverbal, since "language is a set of perceptual shapes - auditory,
kinesthetic, visual."a2 The relative definiteness of linguistic symbols
stabilizes nonverbal thinking. "Purely verbal thinking is the prototype of
thoughtless thinking, the automatic recourse to connections retrieved
from storage. What makes language so valuable for thinking, then,
cannot be thinking in words. It must be the help that words lend to
thinking while it operates in a more appropriate medium, such as visual
imagery."a3

III. PRELIMINARY DEVELOPMENT OF NEW LOGIC

A. Approach

In this section we outline the general framework for our model for
nonverbal reasoning. Recall, however, that it is not our intention to
develop a psychological theory; that is, our goal is not descriptive.
Rather, our goal is to develop an idealized theoretical model of certain
functions of nonverbal mental activity, much as Boolean algebra and
predicate logic are idealized models of verbal cognition. But there is
also a normative goal: the resulting logic should be useful as a tool for
designing and programming computers.

Consider all the neurons that comprise a nervous system.aa We
postulate that there are two distinct ways in which they can encode
information. Semipermanent information is in some way encoded in the
neural structure (e.g., in terms of strength of synaptic connection),
Trtrnsient information is encoded in a way that does not alter the
neural structure (e.g., dynamic electrochemical activity). Transient
information processing is involved in processes such as associative
recall; alteration of semipermanent information is involved in processes
such as learning.r5 We refer to transient information encoded in the
electrochemical state of a neuron as the state of that neuron. Semi-
permanent information will be described in terms of memory troces.

Neurons can be divided into three categories on the basis of their

L
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connections to each other and to nonneural structures. We call'neurons
ffirent if their state is determined solely by nonneural mechanisms,
such as sense organs. We call neurons efferent if they have no effect on
other neurons; that is, their state affects only nonneural mechanisms,
such as motor organs. The remaining neurons we call interneurons; they
both affect and can be affected by other neurons.46

We call the set of all afferent neurons the ffirent system. Analogously
we define the efferent and interneural systems. Since at any given time
each neuron is in a state, at any given time each of these systems is in a
state. Thus we can speak of the state of the afferent system, etc. To
describe the possible states of these systems we define three spaces, ,4.,

1 and E, the set of possible states of the afferent, interneural and
efferent systems.

We will usually not need to distinguish the efferent neurons from
other nonafferent neurons. Therefore we define B : I X .E, the space
of all states of the nonafferent system.

What properties can rve expect of the spaces A and B? Taking the
points in these spaces to represent neural states, it is reasonable to
assume tlat there is some notion of "closeness" between these states.
Therefore, for any two points a, a' e..4 we postulate a distance 6o(a,
a') such that (1) 6o(a, a') V 0, arrd (2) 6"(a, a') : 0 if and only if a -
a'. That is, distance is a nonnegative number such that the distance
between two neural states is zero if and only if the states are identical.
Such a function is commonly called a semimetic on ,4. Similarly we
postulate a semimetric 6r(b, b') for b, b' e. B. Furthermore, we will
drop the subscripts and write 6(a, a') and d(h b') when no confusion
will result.

It seems reasonable that neural states cannot be infinitely different.
Therefore we make an additional assumption, that the semimetrics are
bounded. This means that there is some number Ao such that 6(a, a')
( A, for a17 a, a' e ,4. Similarly there is a bound A, on distances in
B. Without loss of generality take A, : A, : 1 (this only changes the
distance scale). Thus

6o: Az * [0, 1], 6u 82 * [0, 1]

The above assumptions can be summarized by saying that A and B are
bounded semimetric spaces.

The functions d represent the dffirence between neural states. It will

L



176 BRUCE MACLENNAN

generally be more intuitive to work in terms of the similarity between
states. Hence we define

o(x, x'): 1 - 6(x, x')

A and B subscripts will be added as needed to make the space clear.
Note that o inherits from d the following properties:

0 ( o(x, x') ( 1, o(x, x'): 1 if and only if x : x'

Thus o(x, x') ranges from 1, meaning that.r ancl;r'are identical, to 0,
meaning that they're as different as they can be.

A final assumption that we make about the spaces A and B is that
they are dense.That is, for every f < 1 and c € ,4, there is an a'€
A, a' # a, such that o(a, a') > e .That means, for every state of the
afferent system, there is at least one different state that is arbitrarily
similar. The same applies to the space B. These assumptions guarantee
that the afferent and nonafferent systems can respond continuously,
which seems reasonable, at least as an idealization.

We next define a number of functions that will be useful in the
following development. A set of points in a bounded semimetric space
can be characterized in terms of their minimum similaritv:

t(s):min{o(ay)layes}
This can vary from I for a singleton set to 0 for a set containing at least
two dissimilar elements.a6

A useful quantity for the following derivations is or(x), the similarity
of x to the other points in the set S. It is defined

os(x): I o(x,y)
y€.1

Note that 0 ( or(:r) { lS , where ]S is the cardinality of S. Thus
os(x) : 0 if x is completely dissimilar from all the members of S.

Sometimes it is more meaningful to work in terms of the average
similarity of a point to a set of points:

dr(r): o,(x)/ S)

Thus0 ( d'r(x) ( 1.

We will refer to the metrics d, and d, as the physical metrics on the
afferent and nonafferent spaces because they are directly related to the
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neural structure. A major goal of the following theory is to show that
the structure of the mental content does not depend strongly on the
physical metrics. That is, we will attempt to show that the metrics
induced by the mental content are "stronger" than the physical metrics.

Under the reasonable assumption that the neurons are the basis for
cognitive processes, it makes sense to use the physical metrics as the
basis of association. That is, things which cause the same pattern of
neurological stimulation are in fact indistinguishable. Further, we will
make continuity assumptions: things which cause nearly the same
pattern of stimulation should lead to nearly the same response. These
will be introduced when needed, rather than here, so that it is more
apparent which assumptions are necessary for which results.

In the following two sections we investigate logics based on the
preceding postulates. The first logic is based on a finite number of
memory traces formed at discrete instants of time. This is only a partial
step to a logic that satisfies the requirements in Part II, but it is useful to
build intuition. The second logic takes a further step in the required
direction by postulating a single memory trace that evolves continuously
in time. Both theories are very tentative, but they nevertheless should
indicate my expectations for a logic for the new Af.

B. Discrete Time

7. Definitions

The first version of our logic will be based on a discrete time model.
Thus the state transition process is discontinuous. We imagine the
afferent system taking on a series of states (stimuli) s1, J2, J3, . . . under
the control of external events. These stimuli drive the nonafferent
system through a series of states (responses) t1, 12, r3t. . . . That is, the
response r, or new state of the nonafferent system, is a function of (1)
the stimulus s, or current afferent state, and (2) the context c, or
current nonafferent state.aT We write r : .r : c to denote that r is a new
nonafferent state resulting from the afferent state s and the nonafferent
state c. Tl-tus s : c is the response resulting from the stimulus s in the
context c.

An assumption we rnake here is that the semipermanent information
is constant throughout this process (i.e., no learning takes place). We
consider later the case where. in addition to a state transition. we have

(_-
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an alteration of memory traces. So long as the semipermanent informa-
tion is fixed, the responses to the stimuli s1, s), s3, . . . are

s1 : c, s, : (s, : c), s, : [sr: (s, : c)],. . .

That is, the response of each stimulus becomes the context for the next,
ci+r : ri : si: c,. Thus, excluding learning, we have a notation for the
context-dependent interpretation of sensory data.

The new state is obviously dependent on the semipermanent infor-
mation stored in the memory. Therefore we postulate that at any given
time the memory M contains a finite number K of traces, (s, cu rt), for
1 < i < K.48 These traces reflect situations in the past in which
stimulus s, in context c, produced response r,.

We expect that the response to a stimulus s in a context c will be
dependent on the similarity of s and c to the stored s, and c,. Therefore,
for fixed s and c we define ar: o(s, s) and 0i: o(c, c,). Thus a; is the
similarity of the present stimulus to the lth stored stimulus, and B, is
the similarity of the present context to the ith stored context.

We expect the activation of memory traces to be related directly to
the similarity of the present stimulus and context to the stimulus and
context of the trace. On the other hand, we do not wish to make a
commitment to a particular relattonship. Thus we postulate a function
f(s, c,), monotonically increasing in both its arguments, but otherwise
unspecified. For fixed s and c we then define % : f(si, c;). By
monotonically hcreasing we mean that if a, ) a, and B, : Fp or if
Gi : dj md fri ) 8,, then yi 2 Ti.Thus y, measures the similarity of
the current stimulus/context to the ith memory trace. Without loss of
generalitywetakef :1XB * [0,1],thatis,0 ( 7, ( 1.

The monotonicity condition on I tells us that if s is more similar to
s, than to sr, but c is equally similar to c, and cpthen Ti V Ti. Similarly,
if c is more similar to c, than to cr, but s is equal$ similar to s, and sr,

then y, 2 y,. T\rrts the similarity of a current state (s, c) to the stored
states (s,, c,) is a function of both the similarity of the stimuli and the
similarity of the contexts. This will be the basis for context-sensitive
classification.

We will need to be able to compare various responses in terms of
their similarity to the stored responses, weighted by the similarity of the
current stimulus,/context to the corresponding stored stimulus/context.
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For this purpose we define E(/), the weighted similarity of r to the
responses in memory:

K

s(r): I y,o(r, r,)

6 This is a kind of "score" for r, sirce g(r) will tend to be high when r is
close to the reponses of those traces that are most strongly activated by
the current stimulus/context.

2. State transition function
Given the foregoing definitions, it is easy to describe the state transition
function. We are given a memory M consisting of the traces (s,, c,, r,),
with 1 < i < K. Given the stimulus /state panr (s, c) we wani the new
state to be a r that maximally similar to the r,, but weighted according
to the similarity of (s, c) to the corresponding (su c,). That is, we want
S(r) to be a maximum over the space B. Hence, we define the state
transition operation:

,s : c: ulE(r): max \s(r)l , = r)l
Here we have used Russell's indefinite description operation e. The
definition can be read, "s : c is any r such that the weighted similarity of
r is the maximum of the weighted similarities of all the points in B.',

Notice that, as implied by the use of the indefinite description
operator, there may not be a unique point that maximizes q. Thus there
may be bifurcations in the state transition histories. They are in effect
gestalt switches between equally good interpretations of the sensory
tnput.

3. Activation of a single trace

Our first example is to show how a memory trace can be activated by a
stimulus that's sufficiently close. In particular we assume4e that the
stimulus/state pair (s, c) is similar to the stored pair (sr, cr) but different
from all the other pairs, (s,, c,), i * 1. We intend to show that the
induced state r - s : c is similar to r,.

Since (+ c) is close to (s1, c1), take yr: e * 1. Since (+ c) is not
similar to any of the other (s,, c,), take Ti I e = 0, for i # L. Ow
goal is to show that o(r, ,r) = l.

(__

L



180 BRUCE MACLENNAN

Since r maximizes 5:, we know 5(r) < S(r) for all responses 1 in
memory.In particular S(r,) ( 5(r). Now note: L

E(r): I y,o(rr, r,)
K

i:l

K

K

K

K

y, o(rr, rr) * I y,o(r,, r,)

E+ I y,o(rr,r,)

>e
On the other hand,

E(r): I y,o(r, r,)

y, o(r, rr) * I y,o(r, r,)

lo(r, rr)* I y,o(r, r,)

1 lo(r,rr)* e o(r, r,)
K

I 2

The inequality follows from 7, ( e, for i + L. Now, since o(r, r,) 4 1

always, we have E(r) < lo(r, rr) + e (K - 1).

We know that the transition operation s : c maximizes E(r), so we

know 6(rr) < g(r). Hence, combining the three inequalities we have

lo(r, rr) * e(K - 1) > (. Solving for o(r, r,) yields o(r, rr) > 1 -
(e/E)(X - L). Hence o(r, r,) differs from 1 by at most the amount

ie/E)(X - 1). This quantity reflects the extent by which the other
memory traces interfere with perfect recall of rr. Note that as t - 0

'l
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this quantity approaches zero. That is,

lim o(r, rr): I
e-0

Hence, as the interference approaches 0 the recall approaches perfect.

4. Activation of a cluster of traces

We now perform very much the same analysis in the situation in which
(s, c) closely matches a number of traces in memory, all of which
induce a similar response. Thus, suppose that H and H partition the
indices 11,2,...,K).Supposethat7, ) € = lfori e Fl,andthat
yi 1 e - 0 for I € .lll. Assuming all the matching traces induce a
similar state transition implies that p(H): rl = 1. As before compute

K

E(r): I y,o(r,r,)1 I o(r,r,)*e L_oQ,r,1

( or(r)+e Hl

Hence E(r) < or(r) * e ] fl ]. for an arbitrary 1 we derive

e(r): L, T,o(ri, ,,)* L - y,o(r,, r,)

T y,o(r,, rr)
ieH ieFi

>-e I p@)
ieH

Erl ,H ,

Also, since r : s:c maximizes g, We know that g(r) > E(rj), for all 7,

ErylH. Rearranging terms: on(r) ) ery lH - t lE1. Now, since
6r(r): lHl-t onQ),

6r(r)> Ery-ttHl/tHl
Notice that as e * 0, e lHl/lHl * 0. That is, the interference

C

(__
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approaches zero as s approaches zero.50 Considering the limit as € +
0and( * 1,

hm or(r) 2 rl - |

u -l

Hence, the recall is arbitrarily similar to the remembered responses, to

the extent that the remembered responses are similar.

5. Family resemblances

We expect a new logic to be able to describe the way in which

universals are abstracted from concretes without an analysis in terms of
features. Therefore we investigate how, in a fixed context c, a number

of stimulus/response pairs define an abstraction. We assume that hoth
positive 

"rurrpl"t 
E and negative examples E are provided. and that

the response to the positive examples is r+ and to the negative examples

is r-. The entire classification process is meaningless if the responses

are the same, so we assume s(r+, r-) : € = 0. For convenience we let

o+ : o(r, r+) and o- : o(r, r-); our goal is to show that o+ = 1 and

o- = O for positive stimuii, and vice versa f<-tr negative.

We aim to show that the exemplars define an abstraction to which

various stimuli belong or don't belong to the extent that they are similar

to positive or negative examples. Therefore, every stimulus s € A can

be characterized by its similarity to the positive and negative exemplars

(in context). We define a parameter p that measures the similarity to

positive exemplars relative to the similarity to negative exemplars: p :
2,=,. y,/2,er, Ti. We then relate to p the similarity of the response r
to the trained responses r+ and r-.

First we compute the weighted similarity of the response to the

stored responses:

E\.r): I y,o(r,r+)* L,Y,o(r,r1
i€F i.-L

Similarly. E(r*) : 2r Y,l € 2r Yi. Combining via the inequality E(r)
> EQ*) and solving for o+ Yields:

o+ ) I - (o- - t1 L, y,/ L y, 2 1 -(1 - t)/p >- 7 - L/p

L

:o*Ly,+o-Ly,
T:E
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This then is our first result:

o(r,r+)21-O-t
Hence, the correctness of the response improves to the extent that the
stimulus is more similar to the positive than to the negative exemplars.
A symmetric analysis allows us determine the similarity of the response
to /-:

o(r,r-)21-p
Hence, the response approaches r- as the stimulus becomes more

similar to the negative exemplars.
The preceding two results do not complete the analysis. They show

that the response is similar to the appropriate correct response, but not
that it is dissimilar to the appropriate incorrect response. Unfortunately,
our current assumption, that 1 - o(x, y) is a semimetric, does not
guarantee this result. We could have the case that r+ and r- are yery
dissimilar, yet r is very similar to both; this is permitted by a semi-
metric. On the other hand, it certainly seems unintuitive to have a
neural state that is simuitaneously similar to two dissimilar neural states.
Since the issue is unresolved, we introduce the additional assumption
only here, where it is required.

Asemimetric d:S X S - R isa metric if issatisfies the triangle
ineqtrality:

6(x, z) 
" 

d(o y) + d(y, z), for all x, y, z. e S

From this we immediately derive a triangle inequality for similarity
metrics:

c'(x. f,) * o(r,z) ( 1 * o(x, z)

We return to the analysis of family resemblance.
The triangle inequality tells us that

o(r, r+)l o(r, r-) ( 1 * o(r+, r-): 1 * e

Therefore,

o(r, r+) ( 1 * e - o(r,r-) ( i * e -(1 - p): e * p
since o(r, r-) 2 7 - p. Similarly it is easy to show that o(r, r-) ( e *
p-r. Thus, given the triangle inequality, we can derive the other two
inequalities that characterize family resemblance:

o(r, r+) =< e * p, o(r, r-) ( e * p-t

\

L
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Combining these with the previous two inequalities gives bounds on the
similarity of the response to the two possible correct responses: L

o(r, r+) e [e * 
'p,l 

- p-tl, o(r, r-) e [s + p-',1 - pl

Ilence, as expected, the response r reflects the similarity of the stimulus
s to the positive and negative exemplars.

Note that p is defined in terms of the 7,, which in turn depend on
the similarities of the current stimulus s to the stored stimuli s, and on
the similarities of the current context c to the stored contexts c,' Thus p
is a function, p(s, c), of both the current stimulus and the current
context. In effect the positive and negative exemplars induce a potenti.al

ft.eld p(s, c), which defines for each stimulus s in context c the extent
to which it resembles the positive exemplars and is different from the
negative exemplars (in their contexts). Thus p represents an abstraction
from the examples, that is both indefinite boundaried and context-
sensitive. AIso note that the classification is not based on any specific

features of the stimulus. On the contrary, since the state spaces are

dense, we can "teach" an arbitrary abstraction by a suitable presentation
of positive and negative cases.

We will say litfle else about learning at this time, except to note that
present behavior can be habituated by adding each triple (s, c r) to the
memory at the end of the corresponding state transition.sl Such a

model is surely oversimplified; we investigate a slightly more sophisti-
cated one below, in the context of continuous time.

C. Conttnuous Time

1.. Definitiorx
We now turn to the case in which time is taken to be continuous and

the contents of memory are taken to be a single continuous trace. That
is, we take the input stimulus s, to be a continuous function of the time
l, as is the induced response r,. Similarly, the memory trace (S,, Co R*)

is taken to be a continuous function of a continuous index variable 0 (
x ( K (analogous to i, I < i < K, in the discrete logic). We now

must say what we mean by continuity.
Suppose that S and I are bounded metric spaces with similarity

metrics o, and or. Further suppose that / is a function from S to T.

Then we say that / is continuous at a point p e S if and only if for all

6withO < 6 ( lthereisanrywith0 ( 4 < lsuchtharorff(p),
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f @)l > t whenever o,(p, q) ) 11 and q e /[Sl.That is, we can make
f (p) arrd f (q) arbitrary similar by making p and q sufficiently similar.

For the sake of the continuous logic, I postulate that s, and r, are
continuous at all t ) 0, and S,, C, and R, are continuous at all. x 2 0.
Hence, I am assuming that the state of the neural systems cannot
change instantaneously. This is a reasonable assumption for any physi-
cal system.

As before, define a,: o(s,, S*), 0* - o(r,, C,) and /, : f(.S,, q).
We define the total similarity of a response:

rop, t;(r): o(r, R,) dx

Similarly, tlre average is defined 0p,61Q) : oI,, b{r)/(b - a). Finally, the
weighted similarity of a response to the memoiy irace is:

J:
E(r): y,o(r, R,7 dx

These are just the continuous extensions of the previous definitions.s2
The definition of the state transition function is the same: s : c :

erfE(r): max {E(r) r e Bl. Note however that this defines the
slate at the next instant of time. That is, since c, +,tr : r, the new
context is c,*0, s,: c,. This is the differential equation that
defines the behavior of the system over time. Recall that we require r,
(and hence c,) to be continuous.

2. Activation of a single trace interual

We can now derive results analogous to those for the discrete logic. For
example, since the interval [0, K] can be broken down into various size
intervals [0, x,], lxp x2f,. . . ,fx,, Kl the discrete analysis can be applied
to the subintervals. We consider a specific case.

Supposethereare a,b,c anddsuchthat0 ( o I b I c 1 d I
K. Our intent is that the region [b, c'] of the trace is activated, the
regions [0, a] and [d, Klare not activated, and the regions [a, b)and[c,
dlare partially activated. Hence there are € = 0 and ( = 1 such that
6 < y,forb ( x ( c, T, I € for0 ( x ( aord ( x ( K,and
s < Zr ( tfora ( x ( bandc ( r ( d.Weassumetheconcept
issufficientlysharp;thatis,thereis ad = 0suchthatb - a < 61c -
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responses are mutually similar; that is, plb, cl: ry = 1. Proceeding as

in the discrete case,

g(r) < eo[),,1(r) + e ov,r1(r) * oy,, a?) + Eor,.r1(r) * to1a, x1(r)
( ea t E@ - a)* o*,.t(r)* E(d - c)+ t.(K - d)
I ea * edG - b'1* or,.t(r)+ 6d(. - b)+ e(K - d)

Conversely,

E(R,) > 0' qu,,1(R,.; + sor",rt(R,) * lop,.1(R,) + eq.,,4(R')
*0'equ",(R,)

: €op,r1(R,) + (qr,.1(R,) + eq. ,1(&)
> EG - b) plb, cl: E(c - b) rt

Noting that E(r) 2 S(R.,) allows the inequalities to be combined as

before. Simplifying and solving for o1r,.1(r) yields:

orr,.t(r) > ert\ -b)- e(K * a -d)-216(c -b)
Hence, the average similarity is;

d1u,a?) > €ry +e(K * a - b)/(c - q- zea

llence,

lim q,r, r(,') > 4
a - l)

i-i
tlence, as the concept becomes sharp, the interference small and the

similarity of the stimulus/context to their stored counterparts increases,

the response approaches its stored counterparts.

3. Learning

So far we have described the memory trace as a function (5;, C., R..)

defined for 0 ( x ( K. How does the memory trace get extended?

The simplest way is if we let all experiences be recorded with equal

weight. That is, we set K : t, and let the memory trace be precisely the

p."uiout history of the system, (s,, c,, r,), 0 ( x ( r. The required

modifications to the formulas are simple. The result is that the memory

trace wanders through mental space under the influence of its own past

history.
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More realistically, we might assume that experiences are not equally
likely to be recalled. Thus we can postulate a continuous function
n* : n(R,) that reflects the inherent relevance (such as pleasure or
pain) of the mental experience. This is an indirect basis for other
measures of relevance. The required modification is simple: E(r) :
['u n,y-o(r, r,1 dx.

IV. CONCLUSIONS

I have had several goals in this paper. The first was to claim that AI is
moving, and must of necessity move, into a new phase that comes to
grips with nonverbal reasoning. My second goal has been to claim that
traditional AI technology, based as it is on idealized verbal reasoning, is
inadequate to this task, and therefore that the new AI requires a new
logic, a logic that idealizes nonverbal reasoning. My final goal has been
to show, by example, what such a logic might be like. This logic is at
present in a very rudimentary form. My only consolation in this is that
Boole's logic was a similarly rudimentary form of modern symbolic
logic. I would certainly be very gratified if my logic were as near to the
mark as his.

NOTES

1 A critique from a (predominantly Heideggerian) phenomenological viewpoint of
current AI technology can be found in H. Drey{us (L979) and H. Dreyfus and S.
Dreytus (1986). In his (1982, pp. 3-27) Hubert Dreyfus claims that current AI
technology is making the same fundamental error that Husserl made in his approach to
phenomenology, and that it is facing the same "infinite task." Gardner (1985) provides
a good overview of the strengths and limitations of cognitive science; much of this
applies to contemporary AI. Haugeland (1985) likewise shows AI and cognitive science
in their historical context. His (1981) collects important papers pro and con traditional
AI methods.
2 See Kcitrler (1g47),p. 118. Dreyfus (1979) quotes Oettinger (L972):..perhaps... in
perception as well as in conscious scholarly analysis, the phoneme comes after the fact,
namely . . . it is constructed, if at all, as a consequence of perception not as a step in the
process of perception itself."
3 For example, a speech recognition system may have to be trained to a specific voice,
and may work poorly if the speaker's voice changes (e.g., when he,s agitated):
a Peirce, a pioneer of symbolic logic, saw that logic machines would be ,,minutely

analytical, breakirrg op inference into the maximum number of steps" (Goudge, L969, p.
61). For a calculus of reasoning, efficiency is critical, so we should .,seek to reduce the
number of individual steps to a minimum" (Goudge, L969,p.61).

C
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5 As Wittgenstein (1958) says, "The question'Is what you see composite?'makes good

sense if it is already established what kind of complexity - that is, which particular use

of the word - is in question" $47, p. 22).
6 Dreytus (1982),p.2L.
7 Heidegger (L962), p. 99. He continues: "That with which our everyday dealings
proximally dwell is not the tools themselves. On the contrary, that with which we

concem ourselves primarily is the work - that which is to be produced at the time; and

this is accordingly ready-to-hand too. The work bears with it that referential totality
within which the equipment is encountered." The latter observation is especially
important with regard to the issues of context dependence and intentionality, discussed

below.
8 "This context and our everyday ways of coping in it are not something we know bnt,
as part of our socialization, form the way we are" @r eyfix, 1982, p. 2l).
e M.LT. Artificial Intelligence Laboratory Memo No. 299 (September 7973), p. 17;
quoted in Dreyfus (L979),p.34.
10 Wittgenstein (1958), $81, p. 38.
11 See H. Dreyfus and S. Dreyfus (1986).
12 For this distinction, see Ryle (L949), chapter tr (3).
13 Wertheimer (1959), p. 239.
1a Heidegger distinguishes ready-to-hand and present-at-hand as follows: "Origrnal
familiarity with beings hes n dealing with them appropriately. . . . The whatness of the
beings confronting us every day is defined by their equipmental character. The way a
being with this essential character, equipment, is, we call being handy or handiness,

which we distinguish from being extant, [present] at hand" (tleidegger, 1982, p. 30\.
Nature itsel-f can be considered either as ready-to-hand - the characteristic stance of
technology - or as present-at-hand - the characteristic stance of science. "ff its kind of
Being as ready-to-hand is disregarded, this 'Nature'itself can be discovered and defined

simply in its pure presence-at-hand" (tleidegger, 1962, p. 100).
1s There is now ample evidence that nonverbal reasoning is an essential part of human

(and animal) cognitive activity. See for example Arnheim (L97L), Wertheimer (1959),
Kossll,n (1980), Shepard (1971, 1975), and Gardner (1985). On the importance of
nonverbal thinking in scientific creativity, see Miller (1986).
16 In Peirce's scheme, the mathematics of logic is a subclass of mathematics, which is a
science of discovery. Logic is an order within normative science, which is a subclass of
philosophy, which is a science of discovery. History of science is a family within history,
which is a suborder of descriptive psychics, which is an order in the psychical sciences,

which is a subclass of idioscopy, which is a science of discovery. Psychology is also an

order bf the psychical sciences. "Mathematics studies what is and what is not logically
possible, without making itself responsible for its actual existence." One of its branches

is the mathematics of logic. "Nomological psychics [psychology] discovers the general

elements and laws of mental phenomena." One of the divisions of normative science is

logic. "Logic is the theory of self-controlled, or deliberate, thought; and as such, must

appeal to ethics for its principles," since ethics "is the theory of self-controlled, or
deliberate, conduct," (from ,4 syllabus of Certain Topics of Logic, 1.180-192, quoted
in Buchler (1955), p.60-62). All of the above are sciences of discovery. Within the

theoretical sciences of discovery there are three classes: mathematics, philosophy
(including normative science) and idioscopy (a term Peirce borrowed from Bentham).

L
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The latter is divided into physiognosy (the physical sciences) and psychognosy (the
psychical sciences). The differentiae of the latter two are relevant: "Physiognosy sets

forth the workings of efficient causation, psychognosy of final causation;' (1.239-42,
Buchler (1955), p.67) We might say, physiognosy deals with mechanical laws, psy-
chognosy with intentional laws.
r7 See papers by Johnson-Laird (1970), Wason (1966, 1972), Kahneman, Slovic, and
Tversky (1982,1984).
1E See, for example, G. Polya's (1968).
re In Peirce's classification there are also Practical Sciences, which presumably include
a science of practical logic. In his "Minute Logic" (1.239, quoted by Buchler (1955), p.
66), Peirce distinguishes two branches of science, "Theoretical, whose purpose is simply
and solely knowledge of God's truth; and Practical, for the uses of life." (1.239) In
particular, to the three normative sciences, logic, ethics and esthetics, there are three
corresponding practical sciences, or arts: the art of reasoning, the conduct of life and
fine art. The normative sciences, like the practical, "study what ought to be, i.e., ideals,"
but "they are the very most purely theoretical of purely theoretical sciences" (1.2'18-82,
Buchler (1955), p.69-70). For Peirce, esthetics is the primary normative science, for it
is "the science of ideals, or of that which is objectively admirable without any ulterior
reason" (1.191, Goudge (1969), p. a8). I deviate from Peirce's scheme in that I include
the practical sciences under the normative. Thus I do not distinguish between logic as a
normative science and logic as a practical science.
20 See Johnson-Laird (1970), Wason (1966, 1972), and, Kahneman, Slovik and Tversky
(1982,1984).
2r See Miller (1986), pp. 125-183.
22 See Wertheimer (1959), Chapter 10.
23 See Gardner (1985), Chapter 13.
2a It seems likely that the new AI will bring with it a rebirth of interest in analog
computation. Current research on analog, molecular and hybrid optical computers is
perhaps a harbinger.
25 Wittgenstein (1958), $71, p. 34.
26 Wittgenstein (1958), $69, p. 33
27 See for example Zadeh (1965,1975, 1983). Kichert (1978) has a good summary of
the postulates of fuzzy set theory. See also Goguen (1 969).
28 See the 'pure water' example above. Note also that the context itself is indefinite
boundaried. What if I'm serving guests at my campsite?
2e Arnlreim (197 1), p. 37.
30 Wittgenstein (1958), $65, p. 31.
3r Wittgenstein (1958), $66, p. 31.
32 Wittgenstein (1958), $79,p.37.
33 Arnheim (197 1),p. a9.
3a Rosch (1977), p. 30. See also Rosch (1978), and Armstrong, Gleitman and Gleitman
(1 e83).
3s Kuhn(1970),p.200.
36 Kuhn (1970),p.192.
37 We use this term in Brentano's and Husserl's sense, i.e., "the unique peculiarity of
experiences'to be the consciousness o/ something."'(Husserl, 1962, $84, p.223).
38 Goudge (1969), p.235; see also Tiercelin (1984).
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3e I am grateful to R. W. Hamming for alerting me to this limitation of analog
computation.
ro Paivio (1979), p.8.
r1 Paivio (1979), p. 9. See also Miiler (l 986), especially chapter 4. for a discussion of
the interplay of verbal and nonverbal reasoning.
a2 Arnheim (197 1 ), p. 229.
a3 Arnlreim (1971), pp.23l-232.
aa The reader will observe that we use terminology inspired by neuropsychoiogy. This
should not be interpreted as implying that we are offering a theory of brain function. It
is simply the case that we have found considerations of brain organization to be helpfu1

in developing the theory.
15 Although, as will become apparent later, our model permits the possibility thal all
processes have some effect on semipermanent information.
a6 Our definitions are inspired by, but, in the spirit of idealization, not identical with
those common in neuropsychology. Kolb and Whishaw (1985), define afferent as

"[c]onducting toward the central nervous system or toward its higher centers," efferent
as "[c]onducting away from higher centers in the central nervous system and toward a

muscle or gland," and interneuron as "[alny neuron lying between a sensory neuron and

a motor neuron."
a6 Note that the minimum similarity is just 1 minus the radius of the set (i.e., maximum
distance in the set).
+r Actually, as will be explained shortly, it is a multiple-valued function and thus not, in
the technical sense. a function.
a8 The number K is not tlxed. bu1 increases as new traces are made in the memory.

However, for the analysis of state (i.e. transient information) changes, it can be taken as

constant.
ae There is no loss of generality in taking the index of the similar pair to be 1.

s0 Note that H / H is an (inverse) measure ofthe number ofactivated traces.
s1 Thus K increases with each state transition.
52 Note that 6(r) is just the inner product y ' o,ttf 7 and the o,: o(r, R,'1.

REFERENCES

Armstrong. S. L., Gleitman. L. R., and Gleitman, H.; 1983, 'What Some Cloncepts

Might Not Bd , Cognition 13, 263-308.
Arnheim. Rudolf: 197 l, visual Thinking, University of California Press, Berkeley and

Los Angeles.
Buchler, J. (ecl.): 1955, Philo,sophical Writittgs of Peirce, Dover, New York'
Drey-fus, Hubert L.: l9'79, What Computers Can't Dtt: 'l'he Limits of Artificial lntel-

ligence,revised edition, Harper & Row, New York.
Dreyfus, H. (ed.): 1982, Husserl, IntentktnalitT and Cogttitive Science, MIT Press,

Cambridge.
Dreyfus, H., and Dreyfus, S.: 1986. Mintl over Machine. Macmillan, The Free Press,

New York.
Gardner, Howard: 1985, Tlrc Mind's New Science: A History of the Cognitive Revolu-

aion. Basic Books, New York.

L



LOGIC FOR THE NEW AI 191

Goguen, J. A.: 1969,'The Logic of Inexact Concepts', Synthese 19, 325-3i, 3.
Goudge, Thomas A.: 1969, The Thought of C. S. peirce, Dover, New york.
Haugeland, John (ed.): 1981, Mind Design; philosophy, psychology, Artificial Intelli_

ge nc e, MIT P ress, Cambridge.
Haugeland, John: 1986, Artificial Intelligence: The Very Idea,MIT press, Cambridge.
Heidegger, Martin: 1952, Being and Time, seventh edition, transl. J. Macquarrie and E.

Robinson, Harper and Rorv, New York.
Heidegger, Martin: i982, T'he Basic problems of phenomenology, transl. Albert

Hofstadter, Indiana University Press, Bloomington.
Husserl, Edmund: 1962, Ideas: A General Introduction to pure phenomenology. transl.

W. R. Boyce Gibson, Collier, London.
Johnson-Laird, P. N., and Wason, P. C.: 1970,,A Theoretical Analysis of Insight into a

Reasoning Task', Cognitive Psychology 1, 134-1,18.
Kahreman, D. Slovic, P., and Tversky, A. (eits.): 1982, Jutlgement under [Jncertainty:

Heuristic's and Blases, Cambridge University press, New york.
Kahneman, D., and Tversky, A.: 1982.The psychology of preferences,, Scientific

Arnerican 246, 160*1'7 4.
Kahneman, D., and Tversky, A.: 1984, ,Choices, Values and Frames,, American

Psyc ho ktg|st 39, 3,11-350.
Kanerva, Pentti: 1986, 'Parollel Structures in Human and Computer Memory', RIACS

TR 86.2, Research Institute for Advanced Computer Science, NASA Ames Research
Center.

Kichert, Walter J. M.: 1978, lu.zzy 'l'heories on Decision-Making, Martinus Nijhoff,
Leiden.

Kohler, Wolfgang: 1947, Gestalt Psychology,New American Library, New york.
Kohonon, Teuvo: 1977, Assockttive Memory: A System-Theoretical Approacft, Spring-

er-Verlag, Berlin.
Kcrlb, Brian, and Whishaw, Ian e.: 1985, Fundamentals of Human Neuropsychology,

second edition, W. H. Freeman and Company, New york.
Kosslvn, Stephen Michael: 1980, Image and Mind, Harvard University press, Cam_

bridge.
Kuhn. J'homas: 1970, The,gtructure of Scienti c Revolutions, second edition, Univer_

:it1 of Chicago Press. Chicago.
Miller, Arthur I.: 1986, Imagery in Scientific Thought,MIT press, Cambridge.
Oettinger, Anthony: 1972, "L'he Semantic Wail', in E. David and p. Denes (eds.),

Hurnan Commwication: A Llnified View,McGraw-Hill, New york, p. 5.
Paivio, Allan: 1979, Imagery and Verbal processes, Hillsdale: Lawrence Erlbaum

Assoc.. 1979.
Polva, C.: 1986, Patterns of Plausible Inference, second edition, princeton University

Press, Princeton.
R.vle, Gilbert: 1949, The Concept of Mind, University of Chicago press, Chicago.
Rosch, Eleanor:7917, 'Human Categorization,, in N. Warren (ed.), Atlvances in Cross_

cu ltu ra I Psyc ho logy, v o1. I, Academic Press, London.
Rosch, Eleanor: 1978,'Principles of Categorization,, in E. Rosch and B. B. Lloyd

(eds ;;. C ognition and Categorizatio n, Lawt ence Erlbaum Assoc.. Hillsdale.
Shepard, Roger N.: 1975,'Form, Formation, and Transformation of Internal Repre-

sentations', in R. L. Solso (ed.), Information I'rocessing in Cognition: The Loyala
Svmposiu.m, Lawrence Erlbaum Assoc., Hillsdale.

I



192 BRUCE MACLENNAN

Shepard, R. N., and Metzler, l.: 1971, 'Mental Rotation of Three-dimensional Objects',
Science 171,701-703.

Tiercelin, C.: 1984,'Peirce on machines, self control and intentionality', in S. B.

Torrance (ed.), The Mind and the Machine: Philosophical Aspects of Artific'ial
Intelligence, Chichester: Ellis Horwood Ltd. and New York: John Wiley, pp. 99-
113.

Tversky, A., and Kahneman, D.: 1983 'Extensional vs. Intuitive Reasoning: The
Conjunction Fallacy in Probability Judgement', Psychological Review 90,293-315.

Wason, P. C.: i966.'Reasoning', in B. Foss (ed.). New Horizorts in Psychology,vol. T,

Penguin, Harmondsworth.
Wason, P. C., and Johnson-Laird, P. N.: 1972, The Psychology of Reasoning: Structure

in Context, Harvard University Press, Cambridge.
Wertheimer, Max: 1959, Productive Thinking, Eniarged Edition, Harper & Brothers,

NewYork.
Wittgenstein, L.: 1958, Philosophical Investigations, transl. G. E. M. Anscombe, third

edition, Macmillan Company, New York.
Zadeh,L. A.:1965,'Frzzy Sets', Information and Control 8, 338-353.
Zadeh, L. A.: 1975, 'Fuzzy Logic and Approximate Reasoning', Synthese 30, 407-

428.
Zadeh,L. A.: 1983, 'Commonsense Knowledge Representation Based on Fuzzy Logic',

IEEE Computer 16, 70 (October), 61-65.

Computer Science D ep artment
Naval Postgraduate Scho ol
Monterey, CA 93943, U. S.A.

L

t

t

j

t

0


