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Abstract

This report describes synthetic ethology, a scientific methodology in which
we construct synthetic worlds in which synthetic agents evolve and be-
come coupled to their environment. First we review the motivations for
synthetic ethology as an experimental methodology and explain how it can
be used to investigate intentionality and meaning, and the mechanisms
from which they emerge, with an especial emphasis on communication
and language. Second, we present several examples of such experiments,
in which genuine (i.e., not simulated) meaningful communication evolved
in a population of simple agents. Finally we discuss the extension of the
synthetic ethology paradigm to the problems of structured communica-
tions and mental states, complex environments, and embodied intelli-
gence, and suggest one way in which this extension could be accom-
plished. Indeed, synthetic ethology offers a new tool in a comprehensive
research program investigating the neuro-evolutionary basis of cognitive
processes.
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" This report is an unedited preprint of a chapter appearing in Artificial Cognition Systems, ed. by
Angelo Loula, Ricardo Gudwin and Joao Queiroz, Idea Group, 2006, ch. 9 (pp. 252-83).
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1 Introduction

Synthetic ethology was developed as a methodology for constructing experiments in
which artificial agents could exhibit real (i.e., not simulated) intentionality and other
mental phenomena. Our first experiments using this methodology demonstrated the evo-
lution of communication in a population of simple machines and illustrated ways of relat-
ing the emergence of meaning to underlying mechanisms (MacLennan, 1990, 1992, 2001,
2002; MacLennan and Burghardt, 1993). In these experiments, as I will explain, the com-
munications were meaningful to the artificial agents themselves, but they were only sec-
ondarily and partly meaningful to the experimenters.

This chapter has two purposes. The first is to review the motivations for synthetic
ethology as an experimental methodology and to explain how it can be used to investigate
intentionality and meaning, and the mechanisms from which they emerge, with an espe-
cial emphasis on communication and language. The second purpose is to reconsider these
issues with the hindsight of fifteen years, and discuss new approaches to the use of syn-
thetic worlds in the scientific investigation of problems in epistemology and cognitive
science.

2 Background
2.1 Definition of Synthetic Ethology

Synthetic ethology can be defined as an experimental methodology in which the mecha-
nisms underlying cognitive and intentional phenomena are investigated by constructing
synthetic agents and observing them in their environment of evolutionary adaptedness
(EEA, the environment in which they have evolved), which is also synthetic. These syn-
thetic worlds are commonly constructed inside a computer. I will briefly summarize the
most important considerations motivating the synthetic ethology paradigm (a fuller dis-
cussion can be found in MacLennan, 1992).

In discussing his research program in synthetic psychology, which was a direct inspi-
ration for synthetic ethology, Braitenberg (1984, p. 20) distinguished “uphill analysis and
downhill invention.” By this he meant to distinguish the enormous difficulty of analyzing
natural systems, as opposed to the comparative simplicity of synthesizing systems ex-
hibiting a behavior of interest. His intention was to advocate the synthesis of neural net-
works and robots exhibiting intelligent behavior as an important adjunct to the analysis of
intelligent agents in nature. Synthetic ethology extends this approach to phenomena for
which populations and their evolution are relevant, such as communication.

The synthetic approach is especially valuable for investigating phenomena that de-
pend essentially on the evolutionary history of the agents. Our ability to test evolutionary
hypotheses about natural species is limited; we cannot go back into the past and restart
the evolution of a species with different initial or boundary conditions, but we can do this
with synthetic populations. That is, in synthetic ethology we can make systematic investi-
gations of the effects of various parameters on the evolutionary outcome. Synthetic-ethol-
ogy experiments are also facilitated by the rapid pace of evolution in synthetic worlds.



The ability to rerun evolution is just one example of the greater experimental control
afforded by synthetic ethology over ordinary ethology. Because synthetic ethology con-
structs the world in which the experiments take place, every variable is under control, and
we can intervene in the experiment whenever it is advantageous to do so. Some examples
of useful control include the abilities to determine the genotypes in the population, to al-
low genetically identical initial populations to evolve under different conditions, and to
inspect, control, or alter the behavioral mechanism (e.g. neural network) of an agent. Fur-
thermore, since the entire synthetic world is contained in the computer, any mechanism
underlying intentional or meaningful behavior is potentially open for inspection. This
characteristic is critical, because it allows connecting the behavioral mechanisms (corre-
sponding in natural organisms to neuron-level structures and processes) to the social-evo-
lutionary level (that is, the evolution of a population over many generations). When
meaningful behavior is observed in the population, there need be no “ghost in the ma-
chine”; the underlying mechanism is completely accessible.

2.2 Intrinsic Intentionality and Meaning

Even in a philosophical context, intentionality has several (interrelated) meanings. For in-
stance, Searle (1983, p. 1) says, “Intentionality is that property of many mental states and
events by which they are directed at or about or of objects and states of affairs in the
world.” For my purposes intentionality may be defined informally as the property of a
physical state or process when it is about something else (e.g., Blackburn, 1994, p. 196;
Gregory, 1987, p. 383; Gutenplan, 1994, p. 379). For example, states in our brains may
instantiate propositional attitudes about real or imaginary objects, such as beliefs, doubts,
desires, hopes, fears, memories, anticipations, and so forth. However, our linguistic ex-
pressions are also generally about something (their semantics), and therefore potentially
meaningful to us (if we understand the expression). Thus we are led to another ambigu-
ous term: “meaning.” One of its senses, and the one that I will use in this paper, is to re-
fer to the intentional aspect of signals, linguistic expressions, and similar meaning-bear-
ing physical states and processes (e.g., Gutenplan, 1994, p. 386; Searle, 1983, pp. 26-9).
Thus we may refer to the meanings of a vervet’s alarm call, a peacock’s mating display,
or a human utterance or gesture.

Many physical states and processes are meaningful, and therefore intentional, in this
broad sense. For example, the states of a computer memory are almost always about
something — for example, a student’s academic record is about that student — but no
one claims that the information is meaningful to the computer in the same sense that it is
meaningful to us. Therefore philosophers (e.g., Dennett, 1987, p. 288-9; Haugeland,
1997, pp. 7-8) distinguish derived intentionality from intrinsic (or original, authentic,
etc.) intentionality. Our intentional states and processes (e.g., brain states, communicative
activities) normally have intrinsic intentionality, because they are meaningful to us (the
bearers, producers, or consumers of the states and processes). In contrast, information in
a computer memory or database has derived intentionality, because it is not intrinsically
meaningful to the computer, and derives its intentionality only from its meaningfulness to
us, the users of the computer.

Intrinsic intentionality is a fundamental (even defining) property of mental states,
cognition, communication, and many related phenomena and processes. We can judge the
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intrinsic intentionality of our own internal states by introspection (the basis of the Chi-
nese Room Argument), but this approach cannot be applied to artificial agents or even to
most animals; this complicates the scientific investigation of intrinsic intentionality’s
physical basis. One of the principal motivations of synthetic ethology is the creation of
systems that exhibit intrinsic intentionality, but are simple enough to permit complete ex-
plication of the underlying mechanisms. To accomplish this, we must identify non-intro-
spective criteria of intrinsic intentionality.

How can we determine if physical states are intrinsically meaningful to agents, natu-
ral or artificial? For the purposes of this article, the argument must be abbreviated and re-
stricted to a particular manifestation of intentionality, namely communication (see
MacLennan, 1992, for a fuller discussion). We may begin with Grice’s (1957) analysis of
the meaning of a communication act as the speaker’s intention to affect the audience by
means of the audience’s understanding of that intention. More generally we may say that
in a communication act one agent behaves with the intention (purpose) of eliciting a re-
sponse (external or internal) in other agents that perceive the behavior or its result. Here,
of course, “intention” refers to a certain goal-directed or purposeful behavioral disposi-
tion or state of mind (e.g., Blackburn, 1994, p. 196; Gutenplan, 1994, pp. 375-9).
(Therefore, an intention is an instance of intentionality by virtue of its being about its
goal or purpose. Thus an internal state may be “intentional” both in the narrower sense of
being an intention and in the wider sense of having intentionality.)

Determination of intention or purpose is problematic, of course, especially in the con-
text of non-human agents, such as the artificial agents used in synthetic ethology, but we
can learn from the ways that ethologists make these determinations about non-human ani-
mals. In general, ethologists explain the purpose of an innate behavior in terms of its se-
lective advantage in the species’ EEA. In particular, questions of whether genuine com-
munication is taking place are answered by looking at its effect on the inclusive fitness of
a group of animals in their EEA (Burghardt, 1970). In broad terms, we may say that an
animal’s behavior is purposeful if it has, or has had, the probability of being relevant to
the survival of that animal or its group. We can apply a similar criterion in synthetic
ethology, indeed more rigorously than it is applied in natural ethology; for we can test di-
rectly whether particular behaviors or internal states of the agents contribute to their sur-
vival in the environments in which they have evolved. Such experiments can also reveal
the meaning of these states or behaviors to the agents, that is, their specific relevance to
the agents’ inclusive fitness. Certainly, this is not the only approach to determining pur-
pose, but it has the advantage of being applicable to very simple artificial agents.

2.3 Ecological Validity and Pragmatic Context

Ecological validity refers to the fact that many behaviors are adaptively meaningful only
in a species’ EEA, that is, only in the environment that has conditioned the species’ adap-
tations. When agents are placed in conditions that are too different from their EEA, they
behave in abnormal ways, from which it may be difficult to draw valid conclusions about
normal behavior (Neisser, 1976, pp. 2, 7-8). Indeed, this is the motivation for ordinary
(natural) ethological methods, which relate behavior to its EEA, as opposed to behaviorist
methods, which typically study behavior in unnatural laboratory settings. Internal (“men-
tal””) states and external signals acquire meaning through their functional role in the life
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of the agents, and so they can be understood best in relation to their EEA. Therefore syn-
thetic ethology strives for ecological validity by studying behaviors and cognitive phe-
nomena in their synthetic EEA.

A related issue is the pragmatic context of a behavior. In particular, when we are deal-
ing with communication, and especially when we are concerned with non-human com-
munication, we must recognize that communication is rarely purely semantic, that is,
serving the purpose of transmitting a proposition (truth-bearing signal). Indeed, commu-
nication may be deceptive, among humans as well as other animals, and often serves non-
propositional purposes. This is well known from studies of animal communication as
well as from philosophical investigations of ordinary language use (e.g., Austin 1975;
Wittgenstein, 1958, sec. 19). Now, pragmatics refers to the purpose served by a commu-
nication or other behavior, and, as for intentionality, this purpose can be derived or intrin-
sic, that is, derived from the designer of an artificial agent, or intrinsic to the agent itself.
Therefore, in order to investigate behaviors with an intrinsic pragmatic context, those be-
haviors must be fulfilling some purpose intrinsic to the agents, considered either individ-
ually or as a population. Synthetic ethology addresses these issues by investigating agents
in an environment in which their behaviors matter fo them. This is so because an agent’s
behaviors affect its inclusive fitness, that is, the reproductive fitness of itself or related
agents. (It is not necessary, of course, that the agents be aware that the behavior matters
to them.)

In summary, we may say that a communication act is meaningful to an agent if within
a pragmatic context it serves a purpose, which is understood as the likelihood of increas-
ing the selective advantage of the agent or its group in its EEA (thus maintaining ecologi-
cal validity). In broad terms, the meaning of the communication act may be identified
with this purpose. (This is the sense with which “meaning” and “meaningfulness” are
used in this chapter.)

2.4 Synthetic Worlds are Physically Real

Since most synthetic ethology experiments take place on general-purpose digital comput-
ers, there 1s a danger of confusing them with simulations. The distinction is important be-
cause, as has been remarked often, no one gets wet when a meteorologist simulates a hur-
ricane on a computer. If we are using simulated agents to investigate intentional phenom-
ena, then the objection may be made that although the agents may simulate understanding
(for example), they do not really understand anything, since nothing real is taking place
in the computer; it is all simulated. For example, it may be claimed, there is no true
meaningful communication, only simulated communication; any apparent intentionality
is either derived or simulated (i.e., illusory).

Putting aside, for a moment, the topic of simulation, it is important to stress that syn-
thetic ethology depends crucially on the fact that a computer is a physical device (made
of silicon etc.), and therefore that the states and program-controlled state-changes within
the computer are (real) physical states and state-changes (involving the movement of



electrons etc.)' In effect, the program determines the way in which physical law operates
within the confines of the computer. Of course, in contrast to simulated physical process-
es, the real physical processes in a computer cannot disobey physical law, but these (real)
physical processes can be controlled by the program (itself a physical configuration in the
computer). In particular, a computer is a non-equilibrium thermodynamic system, and so
a program controlling the computer can deploy physical law in such a way that synthetic
agents are also (literal, physical) non-equilibrium structures, which must behave (physi-
cally) in a specified manner in order to maintain their structure. Thus the behavioral and
cognitive processes in the synthetic agents have real relevance to their continued exis-
tence (“survival”) as real, physical non-equilibrium systems.

It is on this basis that we can claim that agents in synthetic ethology experiments ex-
hibit intrinsic and not just derived intentionality. That is, within the synthetic world con-
structed in the computer (which is physically real, despite being synthetic), the internal
states and behaviors of the agents will have a real influence on their persistence as defi-
nite physical structures (particular arrangements of matter and energy in the computer).
Therefore these states and behaviors are meaningful to them. By observing the relevance
of these states and behaviors to the agents, we, as outside observers, may infer (more or
less correctly and more or less precisely) the meaning of the states and behaviors for the
agents, much as if we were observing another animal species. The meaning we attribute
to the states and behaviors will be derived from their meaning to the agents. For us the
states and behaviors have only derived intentionality, but for the agents they have intrin-
sic intentionality.

2.5 Synthetic Ethology Experiments vs. Ethological Simulations

I must say a little more about the difference between synthetic ethology and ordinary
ethological simulations, since the two are easy to confuse. First, recall that a scientific
model is a representation of some system of interest, such a representation being chosen
because it is easier to investigate in some way than the system being modeled (e.g.
Bynum, Brown, & Porter, 1981, pp. 272—4). Thus a model always has reference to some
other subject system (which is the primary system of interest and justifies the existence of
the model), and so we are concerned with the relation of the model to this subject system,
such as its accuracy, range of applicability, etc. There are of course many kinds of mod-
els: mathematical models, mechanical models, computer models, and so on. A (comput-
er) simulation is a particular kind of model in which a computer is programmed to be a
model of some other subject system of interest. It is worth noting that in a running simu-
lation we have one physical system (the programmed computer) being used as a model of
another (the simulated subject system). In this way a computer model is like a mechani-
cal model, in which one physical system serves as a model for another.

To understand the difference between experiments in synthetic ethology and ordinary
ethological simulations, we can look at an analogous distinction in the physical sciences.
First consider a scientific investigation using an ordinary computer simulation of a hurri-
cane. Here one physical system (the programmed computer) is used as a model of anoth-

'T hope I may be excused for belaboring the obvious fact that a computer is a physical object and
that its computation is a physical process. It is a common source of confusion due, no doubt, to
our habit of treating programs and computers as abstractions (e.g., Turing machines).
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er (the earth’s atmosphere), and the usefulness of the model (in a particular context of
questions) will depend on the relation between the two systems. Next consider a different
scientific investigation, in which we attempt to discover and validate gas laws (e.g.,
Boyle’s, Charles’) by placing various gases in a cylinder in which their pressure, volume,
and temperature may be controlled and measured. In this case we have created a special-
ized physical system designed in such a way that we can control the relevant variables
and investigate their interaction. However, this physical system is not a model of any-
thing else; its purpose is not to facilitate the investigation of some other system, but to fa-
cilitate the investigation of its own properties in order to discover or validate general
laws. Certainly an improved understanding of the gas laws will help us to understand at-
mospheric hydrodynamics, but our gas cylinder is not intended as a model of anything in
the atmosphere.

Similarly, although synthetic ethology makes no attempt to simulate specific natural
systems, it may produce scientific results that are relevant to a wide variety of natural
systems. This is because it is directed toward basic science, for synthetic ethology is
based on the observation that fundamental, general scientific laws have usually been dis-
covered and confirmed by means of experiments in which there are relatively few vari-
ables, which can be controlled precisely. Behaviorist experiments have the control but
lack ecological validity. Ethological field studies have ecological validity, but the number
of variables is enormous and difficult to control. Synthetic ethology maintains both con-
trol and ecological validity by having the agents evolve in a complete but simple synthet-
ic world. Furthermore, because the mechanisms of behavior are transparent, synthetic
ethology may facilitate the discovery of causal laws, whereas the nervous-system com-
plexity of animals defeats a detailed causal account of behavior (at least with current
technology). The goal of synthetic ethology, therefore, is to discover fundamental scien-
tific laws of great generality underlying intentional phenomena in natural and synthetic
systems. Once discovered, their applicability to particular natural systems could be con-
firmed through ordinary ethological investigations and simulations.

It remains to consider one more issue concerning the difference between synthetic
ethology and ordinary ethological simulations, for it is relevant in assessing the relevance
to synthetic ethology of simulation studies of language evolution, animal behavior, and
related topics. A system that is designed as a model of some other subject system may be
found to exemplify properties of much wider interest. For example, Lorenz’s computer
simulation of weather patterns turned out to be more interesting as an example of chaotic
dynamics (Gleick, 1987, ch. 1). That is, we may shift attention from the simulating sys-
tem as a model of something else to a system interesting in its own right; this is a change
in the goal of the scientist using the system, not in the nature of the system. Therefore it
is quite possible that an ethological simulation of some interesting natural process (e.g.,
the evolution of vervet alarm calls) might turn out to be interesting in its own right as a
physical system exemplifying general scientific principles, and thus be usable in synthetic
ethology. As in the case of Lorenz’s simulations, we might use the system to investigate
principles that are much more widely applicable than just to vervet alarm calls. Thus we
may find particular ethological simulations that can be reinterpreted and used as synthetic
ethology experiments.



3 Review of Early Results

In this section I will review, very briefly, our experiments demonstrating the evolution of
intrinsically meaningful communication in a population of simple machines (MacLennan,
1990, 1992, 2001, 2002; MacLennan and Burghardt, 1993). I will also mention some re-
lated experiments by other investigators, but I will not attempt a comprehensive literature
review.

3.1 One-symbol Communication
3.1.1 Method

In our first experiments we wanted to determine if it was even possible for genuine com-
munication to evolve in an artificial system (for additional detail, see MacLennan, 1990,
1992, 2001, 2002; MacLennan and Burghardt, 1993). Therefore, in order to put selective
pressure on the evolution of communication we decided to select for behavior that would
be aided by communication, but could be accomplished less effectively without it. That
is, there should be something relevant to the agents for them to communicate about.
Therefore we decided to select for a simple kind of cooperation that would be more likely
if one agent had information about another agent that was not directly accessible to the
first agent.

This requirement was satisfied by placing each agent in a local environment, the state
of which was directly accessible only to that agent. In accord with our goal of keeping the
experiments as simple as possible, each local environment was defined to be in one of a
small number L of discrete states; in this first series of experiments, L = 8. Each agent
could sense the state of its local environment, but not alter it. The states of the local envi-
ronments were randomized periodically so that there would be no way to predict them.

In addition to the local environments associated with each agent, there was a single
global environment to which all the agents had access. It could be sensed by all the agents
but also modified by them. Thus the global environment provided a potential medium for
communication, but of course there was no built in requirement that the agents use it for
this or any other purpose. For simplicity, the global environment was restricted to a small
number G of discrete states; in these experiments, G = 8. See Fig. 1 for a schematic dia-
gram of the relation of the agents and environments.

Our agents were capable of only two kinds of behavior: they could emit (that is,
change the global environment) or they could act (attempt cooperation). In these experi-
ments cooperation took a very simple form, namely, an agent 4 attempted to cooperate by
trying to match the local-environment state of a specific other agent B. Since there were
L possible local-state values, in any given situation there were L different possible actions
A might take, denoted act (m), for each local-state value m; such an action was an attempt
to match m against B’s local environment. If B’s local environment was indeed in state
m, then a match occurred, and the agents were deemed to have cooperated; if they did not
match, the attempted cooperation failed.
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Figure 1: Schematic of environment structure: outer ovals are local environments, central
circle is global environment, and spheres are agents. This diagram shows only eight
agents and their local environments.

Since B’s local-environment state was unpredictable, in the absence of some form of
communication the chances of a successful match were 1/L. The target of the attempted
match B was required to be the last emitter, that is, the last agent to have changed the
global environment. Restricting the attempted match to pertain to a specific agent made
random actions less likely to succeed than if a match to any other agent were allowed.

Although this matching process was simple, it was genuine cooperation, for it con-
tributed to the continued existence of the cooperating agents. Specifically, when an agent
succeeded in matching the local environment of the last emitter, both agents received a
point of credit. If it failed, then neither agent was credited. (We also investigated vari-
ants in which there was penalty for failed matching attempts, differential rewards, etc.)
As will be explained in more detail later, these credits were used to determine which
agents were more likely to “survive” (persist as organized structures in the population)
and to reproduce. Therefore, successful cooperations (by chance or any other means) en-
hanced the fitness (probability of survival and reproduction) of the cooperating agents.

These rules for cooperation may seem somewhat abstract and arbitrary. They were
chosen for their simplicity, since synthetic ethology does not require us to simulate any
particular natural system. Nevertheless, there is a sort of story we can tell that may make
them more comprehensible. When an agent 4 emits, it can be thought of as a call that it
needs help in dealing with something in its local environment. Another agent B may re-
spond by acting, but it will succeed in cooperating only if it acts in a way appropriate to



the agent 4’s local environment (i.e., if its action matches 4’s local environment). Be that
as it may, in synthetic ethology we are free to define the “laws of nature” in our synthetic
world in whatever way required for our experiments.

Our agents require some behavioral control mechanism, which allows them to sense
the state of the global environment and of their own local environment, and then to be-
have in either of two ways: change the global environment to a particular value or act in a
particular way. We use the notation emit (g) to denote the action of changing the global
environment to state g, and act (/) for the action of attempting match state / in the last
emitter’s local environment. In addition, it is useful if an agent’s actions depend on its
own internal state, which can be thought of as the contents of its short-term memory. (In
this first series of experiments the agents did not have any memory, however.)

We have used two behavioral control mechanisms in our experiments, finite-state ma-
chines (FSMs) and artificial neural networks (ANNSs). In this first series of experiments
we used FSMs. They get their name from the fact that they have a finite number 7 of in-
ternal or memory states. Therefore, a FSM can be defined by a table, called a state tran-
sition table, that describes the machine’s behavior for each possible combination of in-
puts and internal state. For our machines, the inputs are the shared global state and the
machine’s own local-environment state. Thus there are /xGxL possible conditions to
which the machine must respond, and therefore /xGxL entries in its state transition table.
Such a FSM’s transition stable can be visualized as follows:

old int. lobal state loc. env. new int. reSPOmnSe
state & state state p

3 7 2 5 emit (1)
4 0 1 4 act (4)

To the right of the double line, the table lists a new internal state and a response for
each possible combination of old internal state, global-environment state, and local-envi-
ronment state, as enumerated to the left of the double line. For example, this table says
that if the machine is in internal (memory) state 3, and the shared global state is 7, and the
machine’s own local-environment state is 2, then the machine will change its internal
state to 5 and respond with emit (1), which changes the global-environment state to 1.
Similarly, if its internal state is 4, the global state is 0, and its local-environment state is 1,
then it will stay in internal state 4 and respond with act (4), which attempts to match 4
against the local-environment state of the last emitter.

In each of these conditions the table must determine a new internal state (/ possibili-
ties) and either emit (G possibilities) or act (L possibilities). So there are /(G + L) differ-
ent ways the machines can respond to each condition. Since in this first series of experi-
ments / = 1 (no memory), there are GL table entries and G + L possible responses. In par-
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ticular, since G = 8 = L, there are 64 entries, each defining one of 16 responses. (Hence-
forth we will assume /= 1 unless otherwise stated.)

It is worth observing that although the FSM is a simple behavioral control mecha-
nism, it has some subtlety in this application. This is because the behavior of an agent is
always determined by the combination of global, local, and internal state. Therefore, for
example, the signal emitted for a particular local-environment state depends also on the
global state and the internal state; that is, the signal emission is context-dependent. So
also, the way an agent responds to a signal in the global environment depends on its own
internal state (as we would expect), but also on its own local environment, another kind
of context-dependence. An agent’s response to each particular combination of circum-
stances is potentially unique; there is no built in ability to generalize over similar situa-
tions. Therefore if agents have evolved that are able to signal their local-environment
state in a context-free way, that is, independently of the global environment and their in-
ternal state, it is because they have adapted to do this in every combination of global and
internal state with this local state. Likewise, to respond to a signal independent of con-
text, the agents must have this response for every combination of local and internal state.
So the evolutionary problem that the population has to solve is actually quite difficult.
(As will be discussed later, we have also investigated behavioral control mechanisms,
such as ANNs, which do have some ability to generalize.)

We also experimented with a simple form of single-case learning, which could be en-
abled or disabled as an experimental control. When learning was enabled, it operated in
the following way. Suppose in global-environment state g and local-environment state /
the table for an agent B defined the response act (m), that is, attempt to cooperate with
action m. Further suppose that this was the incorrect action, because local-environment
state of the last emitter (4) was n. In this case the table for agent B will be changed to act
(n) under conditions (g, /). In other words, it is changed to what would have been the cor-
rect action in the current conditions. This is actually a very weak form of learning, since
there is no guarantee that action n will be correct the next time the global environment is
g and this agent’s local-environment state is /.

Our goal was to investigate communication in its environment of evolutionary adapt-
edness, and therefore it was necessary for our population of agents to evolve. The behav-
ioral table of a FSM is represented simply by a “genetic string” of GL genes (representing
the possible conditions), each of which has G + L alleles (representing possible responses
to those conditions). This was coded simply as a string of GL numbers in the range 0 to G
+ L — 1. This string defines the genotype of an agent, which is used to initialize its behav-
ioral table when it is “born” (see below). The behavioral table, representing the agent’s
phenotype is constant throughout the agent’s “life” if learning is disabled, but if learning
is enabled, the behavioral table (phenotype) may change according to the learning rule.

Our goal was to select for cooperative activity, therefore we counted the number of
successful cooperations for each agent over a specified interval of time. Specifically, each
agent was given several opportunities (5, in these experiments) to respond to a given con-
figuration of (randomly determined) local-environment states. Then the local environ-
ments were re-randomized and the agents were tested again; this was repeated several
times (10, in these experiments). The fitness of an agent was defined to be the number of
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successful cooperations in this interval of simulated time, and thus reflects the rate of co-
operation.

The preceding events are called a breeding cycle because at the end of them two
agents are chosen to “breed,” producing a single “offspring,” and one agent is chosen to
“die” and be replaced by that offspring. Thus the population size is constant (100 in these
experiments). The probability of choosing an agent to breed was made proportional to its
fitness (rate of cooperation), and the probability of dying was inversely related to its fit-
ness. (Preliminary experiments showed that always choosing the most fit to breed and the
least fit to die led to premature convergence in the population.) After replacement of the
“dead” agent by the parents’ offspring, a new breeding cycle began, and the run contin-
ued for a specified number of breeding cycles (5000, in most experiments). The initial
populations had randomized genomes.

Genetic algorithms (GAs) typically replace the entire population after breeding, thus
defining non-overlapping generations (e.g., Goldberg, 1989). We decided to use incre-
mental replacement — one individual at a time — to allow a simple form of “cultural
transmission” of learning, which we thought might be important when learning was en-
abled.

It remains to say how the genotype of the offspring was determined. The genetic op-
erators were similar to those used in GAs, but with minor differences. First, a genetic
string for the offspring was determined by two-point crossover of the parents’ genotypes.
That is, two uniformly random numbers £, / were chosen in the range 1 to GL. The off-
spring’s genes in the range k& to / were taken from one parent, and those in the range 1 to &
—1and /+ 1 to GL from the other. Finally, with low probability (typically 0.01) a random
gene was mutated by replacing it with a randomly chosen allele in the range 0 to G + L —
1. The resulting genetic string became the genome of the offspring and determined its
phenotype (initial behavioral table).

During these experiments we gathered several kinds of data in order to assess whether
communication had evolved in the population. According to Burghardt’s (1970) defini-
tion of communication, if genuine communication is taking place then it ought to have a
demonstrable positive effect on the inclusive fitness of the population. Therefore the most
fundamental information we gathered was degree of coordination, defined as the average
number of cooperations per breeding cycle. We computed both the maximum and average
for the population. The time series of these quantities (smoothed by a moving average) al-
lowed us to track any progressive changes in the rate of cooperation in the population and
its best representative.

In order to be able to investigate any communication that might evolve, we also com-
piled a co-occurrence table during each experiment. This was a G x L matrix in which
the (g, /) entry reflected the frequency with which global-environment state g and local-
environment state / co-occurred in a successful cooperation (that is, the correct action /
was performed). If no communication were taking place, then one would expect all (g, /)
pairs to be equally likely. On the other hand, if systematic communication were taking
place, in which certain global states g (“symbols™) are used to denote certain local-envi-
ronment states / (“situations”), then one would expect a non-uniform distribution.
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Furthermore, if communication were evolving in the population, then one would ex-
pect to see a change in the co-occurrence matrix over time, from a uniform distribution at
the beginning of the experiment and becoming progressively more structured as commu-
nication emerged. Therefore, we computed the co-occurrence table over the recent history
of the simulation (50 breeding cycles), so that it would reflect the behavior of the popula-
tion at a particular time. To quantify the degree of structure in the matrix we used several
measures, including entropy, coefficient of variation, and chi-squared. By plotting these
quantities as a function of time we were able to see changes in degree of structure as evo-
lution progressed.

3.1.2  Symbols and Communication

In anticipation of discussing the results of these experiments, it is worth observing that al-
though the preceding use of “symbols” to refer to global-environment states might be
considered metaphorical, it is in fact consistent with the technical use of this term in
semiotics (e.g., Colapietro, 1993, p. 190), deriving from Peirce (1955, 102-3 = CP’
2.243-52). To explain this, it is necessary for me to reiterate several characteristics of
these synthetic ethology experiments. The global and local states are both physical states
in the synthetic world external to the agents; they correspond to physical conditions in the
vicinity of an animal. (Global-environment states are analogous to physical sound waves
in the air; local-environment states are analogous to conditions nearby an animal, such as
the physical presence of a food source, but these are just analogies.) Global-state values
and local-state values come from conceptually distinct alphabets, although for program-
ming convenience in these experiments they were both represented by nonnegative inte-
gers (i.e., the global-state values are in {0, ..., G—1} and the local-states are in {0, ..., L—
1}). As will be seen when we discuss the results of these experiments, statistical regulari-
ties in the co-occurrence tables (e.g., Tables 2 and 3) show that global-state values are
used systematically by the agents to denote local-state values. Therefore, certain physical
conditions (global states) are used to denote other physical conditions (local states). Thus
the global states are referential, which qualifies them as signs in the usage of semiotics
(Colapietro, 1993, pp. 179-80).

Furthermore, the relationship between the global-state values and local-states values
(between the signs and their referents) is arbitrary and conventional. In different experi-
ments (i.e., with different random initial populations) we get different correspondences
between the signs and their referents. Indeed, the correspondence must be arbitrary, for
the global- and local-state values are drawn from different alphabets and the machines
have no mechanisms for comparing the elements of these different spaces. (They can, in
effect, compare local states to local states and global states to global states, but not local
states to global states; this is implicit in the structure of the FSMs. Also, the agents have
no access to the fact that in the computer both global-state values and local-state values
are represented by nonnegative integers, that is, by bit strings.) Therefore, the correlation
between the sign vehicle (global-state value) and its object (local-state value) is not based
on any similarity or physical connection, and so, in Peirce’s terms, these signs are neither
icons nor indices, but symbols (Colapietro, 1993, p. 190; Peirce, 1955, pp. 1024 = CP
2.243-52, 2.304). The initially random correspondences are amplified by evolution and
(in some experiments) learning; that is, they are conventional.

2“CP” refers to Peirce’s Collected Papers (1931-5).
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While on the topic of semiotic issues, it will be worthwhile to mention several other
characteristics of these symbols and the agents’ use of them. First, these symbols are
context sensitive, for an agent’s behavior is always determined by a combination of the
global-environment state and its local-environment state. As it turns out, this context de-
pendence is of no use to the agents in these experiments (and indeed interferes with the
straight-forward use of the global environment for communication), and so the agents
have to adapt (through evolution and perhaps learning) to ignore their local-environment
state when attempting to respond to signals in the global environment. (Conversely, they
need to adapt to ignore the global environment when attempting to signal the state of
their local environment.)

Second, we normally expect an external sign to correspond to some internal represen-
tation, its sense (Sinn), which is distinct from its referent (Bedeutung). As 1 have re-
marked elsewhere, the agents in these experiments are so simple that they can hardly be
said to have psychological states. Nevertheless, if we look closely we can see a rudimen-
tary internal representation of external conditions. For when an agent responds to its en-
vironment, the computer implementing the FSM must copy the global- and local-environ-
ment states from their physical locations in the computer’s memory, and use them to
compute an index into the FSM’s transition table. Thus these two physical conditions ex-
ternal to the agent are copied to different physical locations and integrated to determine
the agent’s behavioral response. (Had we not used nonnegative integers to represent the
global-state values, a less trivial transformation to the internal representation would have
been required.) We find similarly rudimentary internal representations in simple organ-
isms such as bacteria.

Third, we can understand a symbol as a triadic relation between a sign, its referent,
and the receiver or interpreter, and we can observe this triadic relation in our synthetic
ethology experiments. For example, the co-occurrence matrices (e.g., Tables 2 and 3)
show how the symbols (global-environment states) are interpreted by the population at a
given point in time. A substantially different population (either in a different experiment,
or in the same experiment at a substantially different point in time) may interpret the
symbols differently. Furthermore, as will be discussed later, we can sometimes discern
two or more subpopulations that interpret one or more symbols differently. Finally, we
can look at individual agents and determine what a symbol means to it (i.e., how it re-
sponds to the symbol) in any particular context.

Indeed, one of our FSM’s behavioral rules (i.e., rows in its transition table) can be un-
derstood directly in terms of the five-place relation that, according to Morris (1964, p. 2),
characterizes a sign process or semiosis. For suppose that under conditions (g, m) the
FSM R responds act (n) and that the last emitter’s local environment is in state n. Then
in this semiosis, (1) global state g is the sign, (2) R is the interpreter, (3) act (n) is the in-
terpretant (the effect of the sign qua sign), (4) local-state n is the signification (or refer-
ent), and (5) m is the context of the sign.

Finally, before discussing the experimental results, it is worth observing that synthetic
ethology affords much easier experimental control than natural ethology, and we made
use of this control in these experiments. The fundamental control addressed Burghardt’s
(1970) definition of communication: for genuine communication to be taking place we
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would have to show that it was contributing to the inclusive fitness of the population.
Therefore we wanted to be able to compare the evolution of the population under condi-
tions in which it was possible for communication to evolve with those under which it was
impossible. Thus we designed the experiments so they could be run with communication
suppressed or not. To suppress communication, we randomized the global-environment
state at every opportunity, in effect raising the noise level so high that the only potential
medium of communication was unusable. This allowed us to run parallel experiments
with genetically identical (random) initial populations differing only in whether commu-
nication was suppressed or not. The second major control that we used in this series of
experiments was to enable or disable the simple learning rule described above. This al-
lowed us to do some preliminary investigations of whether learning facilitated the evolu-
tion of communication or not.

3.1.3 Results

We ran over one hundred experiments with the parameters as described above. In most
cases we made three parallel runs with the same random initial populations: (1) commu-
nication suppressed, (2) communication not suppressed and learning disabled, and (3)
communication not suppressed and learning enabled. This allowed us to investigate the
effects of communication and learning independently of the initial population. Although
there was considerable quantitative difference from experiment to experiment, due to the
random initial populations and the many other random factors, nevertheless the qualita-
tive results were quite predictable. Therefore, in the following I will discuss a typical ex-
periment.

Analysis (MacLennan, 1990) shows that in the absence of communication agents can
be expected to exhibit a degree of coordination of 6.25 cooperations per unit time (1
breeding cycle, in this case). Indeed, when communication is suppressed we find that the
average degree of coordination begins at this value and stays very close to it. Neverthe-
less, linear regression shows a slight upward trend, 3.67 x 10~ coop. / unit time / unit
time, a somewhat surprising result discussed later. The degree of coordination was up to
6.6 coop. / unit time after 5000 breeding cycles, and had been as high as 6.95 (see Fig. 2).
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Figure 2: Degree of Coordination: Communication Suppressed.

When communication was not suppressed (but learning was still disabled) the degree
of coordination began at the chance level, but increased at a rate of 9.72 x 10™* coop. /
unit time / unit time, a rate 26 times as great as when communication was suppressed. Af-
ter 5000 breeding cycles the degree of coordination was up to 10.28 coop. / unit time,
which is 60% higher than when communication was suppressed, and had been as high as
10.6 (see Fig. 3). This significant difference shows that the population is using the global
environment for genuine communication, since it has increased the agents’ inclusive fit-
ness.

------------------------------------------

Figure 3: Degree of Coordination: Communication Permitted with Learning Disabled.
When communication was not suppressed and learning was enabled, the degree of co-

ordination began at about 45 coop. / unit time, which is much higher than the 6.25 ex-
pected with neither communication nor learning. This high level of coordination,
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achieved before communication has evolved, is a consequence of the fact that an agent
has several opportunities to respond to a local-environment configuration before the local
environments are re-randomized. So there is a baseline advantage to learning even in the
absence of communication. Over the 5000 breeding cycles, the degree of coordination in-
creased at a rate of 3.71 x 10~ coop. / unit time / unit time, which is 3.82 times the rate
when learning was disabled and approximately 100 times the rate when communication
was suppressed. By the end of the experiment the degree of coordination had reached
59.84 coop. / unit time, which is 857% above that achieved when communication was
suppressed (see Fig. 4). Therefore learning reinforces the selective benefits of communi-
cation.
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Figure 4: Degree of Coordination: Communication Permitted with Learning Enabled.

Finally, we must consider why there is a very slow increase in the degree of coordina-
tion even when communication is suppressed. This results from the population evolving
to exploit a loophole in the fitness determination rule by means of partial cooperation.
Recall that a cooperation is judged to have taken place only if the action of an agent
matches the local environment of the last emitter. (To allow it to match any local environ-
ment would increase the probability of chance cooperation too much, decreasing the se-
lective pressure.) Therefore the population can increase the probability of cooperation by
co-evolving so that agents emit only in a small subset of local-environment states and
only act in ways appropriate to this same subset. As a further consequence we observed
that in long experiments with communication suppressed, the uniform co-occurrence ma-
trix would become slightly structured due to attempted cooperations being attempted in
only a subset of the local-environment states (see below). This explanation was con-
firmed by Noble and Cliff (1996). It is worth emphasizing that these simple agents found
a way to improve their performance that was not anticipated when we designed the exper-
iment, and that required some investigation in order to explain.

We can get more information about the agents’ evolved ability to communicate by in-

specting the co-occurrence tables. As previously mentioned, we quantified the structure
of the tables by several measures, including entropy. For G = 8 = L the maximum en-
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tropy, which occurs with a uniform distribution, is Hmax = 6 bits. For comparison, we can
compute the entropy for an ideal code, in which there is a one-to-one correspondence be-
tween global- and local-environment states; it is Higa = 3 bits.

Table 1: Co-occurrence Matrix: Communication Suppressed

loc.— | 0 1 2 3 4 5 6 7

glob. |
0 94 130 133 34 166 0 150 682
1 16 105 279 228 261 307 0 118
2 0 199 229 12 0 0 161 274
3 95 19 93 283 669 89 0 201
4 1 97 212 200 112 0 0 0
5 28 135 84 8 600 215 0 351
6 0 0 0 118 59 70 0 690
7 0 33 41 0 371 0 0 0

When communication was suppressed, the entropy started at approximately 6 bits, but
by the end of 5000 breeding cycles had decreased to 4.95. This resulted from partial co-
operation, as already discussed. An inspection of the co-occurrence matrix at the end of
the experiment, and therefore reflecting the last 50 breeding cycles (Table 1), showed that
there was little or no cooperation in a subset of the local-environment states (e.g., 0 and
6).

Figure 5: Entropy: Communication Permitted with Learning Disabled.

-18-



Table 2: Co-occurrence Matrix: Communication Permitted with Learning Disabled

loc.— 0 1 2 3 4 5 6 7

glob. |
0 0 0 2825 0 500 20 0 0
1 206 0 0 505 999 231 2 0
2 1 0 0 277 39 4935 1 2394
3 385 1 1 94 0 0 1483 1
4 0 292 0 0 19 555 0 0
5 0 0 1291 0 0 144 0 0
6 494 279 0 403 0 1133 2222 0
7 140 2659 0 202 962 0 0 0

When communication was not suppressed (but learning was disabled) the entropy de-
creased to 3.87 bits, which is much closer to Hiwat = 3 bits (see Fig. 5). Visual inspection
of the final co-occurrence matrix (Table 2) reveals much more systematic use of the glob-
al environment as a communication medium. Sometimes a global-environment state de-
notes a single local-environment state almost exclusively, and vice versa. We also find
examples of ambiguity, in which a global state denotes primarily two local states, and
synonymy, in which two global states denote the same local state. Other complexities,
typical of natural communication, also appear. The occurrence of ambiguity and syn-
onymy in the population’s communication could result from competing “dialects” in the
population or from inconsistent signal use by individual agents (or by both in combina-
tion). Experiments by Noble and Cliff (1996) seem to have ruled out the dialect explana-
tion. Rather, their research supports ambiguous signal use by individual agents, that is,
the same symbol is emitted for two different local-environment states.

Table 3: Co-occurrence Matrix: Communication Permitted with Learning Enabled

loc.— 1 2 3 4 5 6 7

glob. |
0 29172 1287 12281 2719 1132 93 3836
1 634 107 1039 0 0 2078 0
2 1306 0 37960 85 410 7306 26611
3 410 0 0 0 126 1306 304
4 0 353 62 575 1268 420 519
5 0 46 469 0 0 0 26
6 156 0 0 0 951 0 1086
7 73 54 0 2764 135 461 102

When communication was not suppressed and learning was enabled, then the entropy
achieved in this experiment was 3.91 bits, about the same as in the non-learning case (see
Table 3). This is typical; sometimes it is a little greater than the non-learning entropy,
sometimes a little less. Table 4 summarizes the entropy and coefficient of variation under
the three experimental conditions.
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Table 4: Summary of Order Measures

Communication/Learning
Measurement | Random N/N Y/N % Ideal
Coefficient of
Variation, V/ 0 1.27 2.13 2.39 2.65
Entropy, H
(bits) 6 4.95 3.87 3.91 3

It is worth stepping back from these experiments to stress an important point. The
symbols used by the population, as recorded in the co-occurrence matrices, are meaning-
ful to the agents themselves, because they are relevant to the inclusive fitness, indeed to
the continued existence, of the agents. That is, the symbols exhibit intrinsic intentionality,
not a derivative intentionality coming from us as designers or observers of the system. In-
deed, we cannot know the meaning of the individual symbols except through empirical
investigation. Thus, we may study their use as reflected, for example, in a co-occurrence
matrix, and compile a “dictionary” based on observation, or we may “dissect” the agents,
as described later, to see how they interpret the symbols (see MacLennan, 1990, for ex-
amples). Indeed, any meaning the symbols have for us is derived from the intrinsic mean-
ing of the symbols to the synthetic agents.

Now certainly these agents are very simple, and they do not have any awareness of
the meaning of the symbols; their response is purely mechanical. But conscious aware-
ness is not necessary for intrinsic intentionality and meaningful communication, which
can be found in microorganisms with no (or very little) awareness. For example, bacteria
communicate meaningfully (e.g., Dunny & Winans, 1999) and fitness-enhancing chemo-
taxis shows they have intentional internal states, for example, internal representations of
external chemical gradients (Dretske, 1985, p. 29), but bacteria are not conscious. Thus
synthetic ethology provides a means of investigating intrinsic intentionality in its barest,
simplest form, which is exactly where experimental investigations should begin.

Neuroethology seeks to understand the neural basis of a species’ behavior in an evolu-
tionary context, but neuroethological investigations are difficult because of the complexi-
ty of nervous systems, the slow pace of evolution, and the difficulty of doing controlled
experiments. On the other hand, in synthetic ethology we are dealing with simpler agents
and their behavioral control mechanisms are completely transparent for investigation. If
some interesting behavior evolves in a population, then we can “dissect” the members of
the population and determine their entire behavioral control system (see MacLennan,
1990, for examples). In particular, if, as in these experiments, the agents evolve to exhibit
intrinsic intentionality, then we can completely explicate the mechanism underlying that
intentionality; there can be no “ghost in the machine.” Thus synthetic ethology provides a
means of bridging the gap between inherently mental phenomena, such as intentionality,
and the physical processes supporting them.

3.2  Other Experiments
I’ll briefly review some of our other early experiments in synthetic ethology. One

simple extension to the preceding experiments was to test the population’s evolution of
the ability to communicate by emitting and recognizing sequences of two signals
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(MacLennan, 2001). To create selective pressure toward this result, we reduced the num-
ber of global-environment states to G = 4 while keeping the local-environment states L =
8; thus there were not enough global-environment states to uniquely denote the local-en-
vironment states. Of course, using sequential signals requires that the agents be able to re-
member the signals they have already generated as well as those they have already recog-
nized. Therefore we increased the number of internal (memory) states to / = 4. As a con-
sequence, the agents’ genomes contained 128 genes with 48 alleles each. In other respects
the setup was the same as our previous experiments.

Table 5: Co-occurrence Matrix: Communication Permitted with Learning Disabled
(Two Symbols)

loc.— 0 1 2 3 4 5 6 7

glob. |
0/0 31 22 42 0 144 0 0 0
1/0 26 15 62 0 175 0 0 0
2/0 119 23 44 0 47 0 0 0
3/0 8 9 18 0 31 0 0 0
0/1 0 54 106 2 74 59 516 0
1/1 0 33 174 3 423 227 1979 0
211 0 23 65 17 139 74 125 0
31 0 1 24 0 48 96 51 0
0/2 50 4 4 366 7 0 8 42
172 35 9 0 32 1 0 6 44
2/2 52 76 0 112 7 0 13 135
3/2 52 6 1 215 2 0 2 78
0/3 0 2 13 17 0 3 0 0
1/3 0 66 19 6 0 4 0 0
2/3 0 33 61 27 0 2 0 0
3/3 0 39 38 8 0 0 0 0

Two-symbol communication was comparatively slow to evolve and never reached the
same degree of organization as we observed for single-symbol communication. For ex-
ample, the final co-occurrence matrix (Table 5) shows that, for the most part, the meaning
is conveyed by the second (i.e., most recently received) symbol. Thus the local-environ-
ment state 5 is denoted primarily by signals 0/1, 1/1, 2/1, and 3/1. On the other hand,
there are some cases in which both symbols have meaning: although 0/0, 1/0, and 3/0 de-
note primarily state 4, 2/0 denotes primarily state 0. Furthermore, order is significant, be-
cause 0/2 denotes primarily state 3.
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Figure 6: Entropy: Two-symbol Communication.

Although we ran experiments considerably longer than the 5000 breeding cycles used
in the preceding experiments, two-symbol communication never seemed to evolve much
beyond the level of organization shown in Table 5. This is displayed clearly in Fig. 6,
which shows the entropy of the co-occurrence matrix. Over 5000 breeding cycles it de-
creases from Hma.x = 7 bits to about H = 4.5 bits, at which point it stalls, still well above
Hiqer = 3 bits. Changes to the fitness calculation formula and other experimental parame-
ters (such as population size) did not seem to have much effect on the qualitative result,
nor did enabling learning.

In retrospect it is not surprising that these agents did not do better (indeed, it is some-
what remarkable they did as well as they did), for they were being asked to solve a very
hard problem. Consider the problem of an agent trying to transmit its local-environment
state by a two-symbol signal. Since every emission depends on the combination of local,
global, and internal state, any change by another agent to the global environment will
probably disrupt the first agent’s emission of the second symbol. Also observe that there
is no global-environment state that represents the absence of a symbol; therefore there is
no way to determine the beginning or ending of a transmission, which means that it is dif-
ficult for the population to make use of the distinction between, for example, 2/0 and 0/2.
Finally, since every agent must act or emit on every cycle (there is no “do nothing” oper-
ation), the only way an agent can avoid a premature attempt at cooperation after receiving
the first symbol is be emitting a symbol, which will probably change the global environ-
ment and prevent any other agents from receiving the first symbol. Clearly the experi-
ments could be designed differently to avoid these difficulties, and so we explored sever-
al alternatives.

For example, Crumpton (1994) studied a system in which (1) in each time slice the
agents cycled twice, thus giving them the opportunity to emit or recognize two symbols
without interference from other agents, and (2) agents could “do nothing” in addition to
acting or emitting; other parameters were the same. In these experiments he observed a
significantly higher use of non-repeating symbol pairs than in the preceding experiments,
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but the entropy level attained was about the same.

As previously mentioned, we considered alternative behavioral control mechanisms
to FSMs. For example, my students Stroud and Jerke conducted preliminary experiments
using artificial neural networks (ANNs) as the control mechanism (MacLennan, Jerke,
Stroud, & VanHeyningen, 1990, sec. 2; MacLennan, 2001). Aside from the greater bio-
logical verisimilitude of ANNS, these experiments were motivated by two other consider-
ations. First, in the experiments already described both the global and local environments
were associated with discrete state spaces, and so the agents were not faced with the
problem of dividing a continuum of states into discrete categories, which is a significant
problem faced by biological agents (e.g., Wiley, 1983, pp. 163—4; MacLennan, 1992;
Steels, 1997a, 1997b). Second, the behavioral mechanism used in our earlier experiments
did not facilitate generalization. Therefore, for example, to attach a unique response to a
global-environment state, an agent would have to acquire (through evolution or learning)
that response in the context of every possible state of its local environment. Similarly, to
emit a unique signal whenever its local environment was in a particular state, an agent
would have to acquire that response in every possible prior global-environment state. In
brief, the FSM’s rules are inherently context-dependent, but the optimal signaling system,
for this problem, is context-free.

To explore these issues, both the global and local environments were allowed to take
real-valued states in the range [0, 1]. Thus each agent had two real-valued inputs: the
state of the global environment and the state of its own local environment. Each agent
also had two real-valued output neurons. One, with values in [-1, 1], indicated whether
the agent was emitting or acting (as indicated by the sign of the output value). The other
output, with values in [0, 1], was the value to be put into the global state in the case of an
emission, or the value to be matched against the last emitter’s local state in the case of an
action (attempted cooperation). The match was deemed successful if the action value
was within a certain distance € of the last emitter’s local-state value; to simplify compari-
son with the earlier experiments, they set € = 0.125. There were six hidden layer neurons
and the network was trained by back-propagation.

The experiments were similar in structure to the FSM-based experiments. The genet-
ic strings determined the signs of the connections between the neurons, but not their
weights, which adapted through back-propagation. That is, the genetic strings defined the
initial pattern of excitatory and inhibitory connections, but back-propagation learning
adapted the connection strengths.

In order to capture signaling patterns in a way comparable to the co-occurrence matri-
ces, Jerke and Stroud divided the global- and local-state spaces into ten bins of size 0.1
and kept track of the correlation of global- and local-environment states whenever a suc-
cessful cooperation occurred. Non-random signal use, similar to that in the FSM experi-
ments, was observed, but it was partial cooperation (described above) resulting from the
agents communicating about only a subset of the state spaces. See MacLennan et al.
(1990, sec. 2) and MacLennan (2001) for more information about these experiments.
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3.3 Related Work

As previously noted, Noble and Cliff (1996) replicated our earliest experiments on the
evolution of communication (Maclennan, 1990, 1992; MacLennan & Burghardt, 1993)
and extended them in several informative ways. In addition to investigating partial coop-
eration and ambiguous and synonymous symbols use, as already mentioned, they investi-
gated the effect of the order in which agents were serviced in the experiments.

Werner and Dyer (1992) also demonstrated the evolution of communication by syn-
thetic ethology. They used ANN-controlled agents of two kinds, “male” and “female,”
which had to find each other in order to mate. The females were immobile, but could de-
termine the location of the males, who were blind but mobile. In their experiments the
population evolved so that the females signaled the males how to find them.

The use of computers to study the origins and evolution of communication and lan-
guage has developed into a rich and diverse research area. Cangelosi and Parisi (2001) is
a good sampling of progress up to that time, and Wagner, Reggia, Uriagereka, and
Wilkinson (2003) is a useful review of recent progress. Unfortunately, Wagner et al. in-
correctly classify our experiments as an investigation of nonsituated communication. In
situated experiments, “agents are evaluated based on their performance on a task instead
of being directly evaluated on their communication abilities” (Wagner et al., 2003). Al-
though the task performed by our agents is simple, it is distinct from any communication
that might or might not be taking place (indeed, it can be accomplished to a limited de-
gree when communication is impossible, as already explained). Agents are evaluated ac-
cording to whether their actions are appropriate for other agents’ local environments,
which are out of the agents’ control; the local-environment states are determined by the
environmental physics of the synthetic world. Thus they exemplify a rudimentary degree
of symbol grounding (Harnad, 1990), for the signals (global-state values) refer to condi-
tions in the agents’ local environments, which are external to them. Agents are causally
responsive to their local environments and interact causally with the global environment.
Certainly, however, the topology of the synthetic world in our experiments was too sim-
ple to permit the exploration of spatial factors, as in the experiments of Werner and Dyer
(1992), Cangelosi and Parisi (1998), and Reggia, Schulz, Wilkinson, and Uriagereka
(2001), for example.

4 Reconsideration and New Directions

In this section I will address some lessons that we learned from our synthetic ethology
experiments and consider some important new directions.

4.1 Making Real Worlds Inside a Computer

In the spirit of keeping the experiments as simple as possible while still exhibiting the
phenomena of interest, most of our synthetic ethology experiments have made use of a
very simple world, in which the states about which the agents communicated were simple
and unstructured. The communication system that they evolved was similarly simple, as
were the agents’ “psychological states” (internal representations). More structured repre-
sentations and systems of communication would be expected to evolve in order to cope
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with a more structured environment. For example, we would not expect to observe the
evolution of a language including nouns, adjectives, and verbs unless the synthetic world
included objects, properties, and actions of various kinds. Nor, in the absence of these,
would we expect the evolution of propositional mental states. We could, of course, build
a more structured synthetic world, but there is a pitfall we must avoid in order to investi-
gate these more complex phenomena through synthetic ethology.

As mentioned, the obvious approach to studying more complex communication, psy-
chological states, etc. is to populate the synthetic world with various sorts of macroscopic
objects (including other agents) with various sorts of properties. However, no matter how
many objects and properties we build into such a system, it will still be unrealistically
simple compared to any natural environment. The sum-total of things that can occur in
such a world will be limited to the combinations of built-in objects and properties. This is
not a problem for some investigations, but if we are trying to understand how animals
parse the complexity of the natural world into meaningful categories, then by construct-
ing our synthetic world in this way we will be begging the question, since we will have
built the categories into the basic structure of the world. For example, if we build into our
system two kinds of agents (which we think of as predator and prey), and we build in a
behavior (which we think of as the predator killing the prey), then it is not such a surprise
if our agents discover categories corresponding to predator, prey, and predator-Kills-
prey. In the natural world, in contrast, there is not such a simple relationship between the
structure of the world and the categories used by humans and other animals. Even simple
sensory categories are radically underdetermined (Steels, 1997a, 1997b). Therefore, if we
want to use synthetic ethology to study the emergence of categories, we must be careful
not to build them in from the beginning.

Certainly, the synthetic ethology experiments described in this chapter are not im-
mune to this objection. Most of these experiments made use of unstructured discrete
state spaces and the relevant categories were small finite sets (e.g., a specific value from
one space paired with all possible values from the other). Even our ANN-based experi-
ments, which use continuous state spaces, did not require significant category construc-
tion. Therefore I believe that future experiments should address the emergence of cate-
gories meaningful to the agents, as opposed to those meaningful to the experimenters.

If we don't build objects and properties into our synthetic world, how will they get
there? Here we may take a hint from the natural world, in which objects and properties
are emergent phenomena arising from the interaction of fundamental particles. Thus, in
physical terms, when we say, “the fox sees the hare,” we are giving a high-level, approxi-
mate description of a situation in which the particles constituting the hare are interacting
with the particles of the fox through the intermediary of photons. From a physical per-
spective, only the particles and their interactions are real in a primary sense; the fox, hare,
and act of seeing have only derivative reality, as high-level descriptions of fundamental
physical reality (i.e., the perspective of the intentional stance, Dennett, 1987). Neverthe-
less, the hare is meaningful to the fox (for it is relevant to its continued existence as an or-
ganized physical system). Therefore, if we want to study the emergence of meaning, we
cannot begin with macroscopic objects and relations (e.g., fox, hare, sees), for then we
have simply encoded our meanings (our context of relevance) into the synthetic world.
Rather, we must allow meaning to emerge from underlying, fundamentally meaningless
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processes (i.e., processes explainable from the physical stance but not from the intention-
al stance), as it does in the natural world.

How can this be accomplished? One way would be to simulate the real world at the
level of elementary particles (or strings) and allow meaning to emerge in macroscopic ob-
jects, just as it does in the natural world. However, aside from the computational impossi-
bility of doing such a simulation, the shear complexity of the system (comparable to na-
ture itself) would limit our ability to understand it. The goal of synthetic ethology is to in-
vestigate experimentally systems that are as simple as possible while still exhibiting the
phenomena of interest (in this case, the emergence of meaning).

We do not want (and cannot have) the complexity of the natural world in our synthet-
ic worlds, but we can use a simpler version of the same separation of levels. By a judi-
cious choice of microscopic objects and interactions to build into our world, we can have
emergent macroscopic objects and interactions with a rich and unpredictable structure.
The agents, which are macroscopic objects whose fundamental interactions with the envi-
ronment are at the microscopic level, will have to construct whatever macroscopic cate-
gories they need. In this way we will not “rig the game” by building them in from the be-
ginning, although of course they are implicit in the microscopic objects and interactions.

It may seem implausible that we could design a synthetic world that is, on the one
hand, complex enough to exhibit emergent objects, properties, and interactions, and is, on
the hand, simple enough to be computationally tractable and transparent to investigation.
At present, this is a topic for investigation, but I can offer one example of a possible ap-
proach.

It is well known that cellular automata (CAs), such as Conway’s “Game of Life”
(Gardner, 1970), can exhibit rich emergent behavior. Although the individual cells inter-
act with their neighbors in a simple way, in “Life” we can observe the emergence of mod-
erately-sized macroscopic objects that are able to maintain their shape, move through
space, and interact with other macroscopic objects. This emergent behavior is especially
characteristic of CAs whose transition rules have been designed to place them at the
“edge of chaos,” Wolfram’s class IV (Langton, 1991; Wolfram, 1984).

Therefore we can imagine designing a synthetic world based on CAs in which agents
interact with the emergent objects in terms of cell-level interactions. The agents them-
selves need not be modeled by CAs (although I will consider that possibility below), but
their sense organs and effectors must operate at the cell level, for that is the only level of
the environment that is real (in the synthetic physics). Higher-level interactions are emer-
gent from these lower level ones, presumably through adaptive processes such as evolu-
tion and learning. Just as, according to our interests, we may categorize macroscopic
“Life” configurations (e.g., as “gliders”) and their group behavior (e.g., as “translation”),
so we can expect synthetic agents to develop categories of objects, relations, and actions
that are relevant fo them. The behavior of the agents may be controlled by non-cellular
processes, such as production rules, FSMs, or ANNs. We may construct the physics of
our synthetic world so that agents must interact with the environment (or with other
agents via the environment) in certain ways (defined in terms of elementary cell proper-
ties) in order to survive and reproduce.
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It might be argued that CAs are not much like the physics of the natural world (al-
though Wolfram has argued the contrary), but that is not important. Again, our goal in
synthetic ethology is not to simulate any specific natural system. So for studying the
emergence of meaning it does not matter that the CA does not model the fundamental
physical processes of our world, or that the emergent objects do not correspond with
macroscopic objects in our world. In the synthetic world within the computer, the CA is
a physical environment, in which synthetic agents may behave and evolve.

4.2 Artificial Embodiment

A similar limitation of conventional simulations arises in connection with embodiment.
We understand better now the essential role played by embodied interaction with an envi-
ronment as a foundation for genuine intelligence (see below). Also, the fundamental test
of an agent’s intelligence is how well it can cope with the natural world (especially its
EEA), and it is arguable whether a truly intelligent system can exist in the absence of em-
bodiment. This had led some researchers to conclude that artificial intelligence research
should be conducted in the context of autonomous robots operating in the natural world
(e.g., Brooks, 1986, 1997; Steels, 1997a, 1997b; Ziemke & Sharkey, 2001). I’ll briefly
consider the issues.

We agree that autonomous robotics provides the fundamental benchmark of genuine
intelligence, but it is a complex and difficult approach, because the building of robots
may be slowed by problems of mechanical and electrical engineering and of physical
construction that have no direct relevance to artificial intelligence. On the other hand,
decades of Al research have shown that investigation of simulated agents in simulated
worlds (micro-worlds) is inadequate to address the fundamental issues of embodied intel-
ligence; simulated worlds do not have the complexity, unpredictability, uncertainty, open-
ness, and genuine novelty of the natural world (Dreyfus, 1997).

For example, in a micro-world, if an agent is told move-to (23, 488), it can be expect-
ed to move to that location; if it tests ahead (rock) it can be expected to determine reli-
ably whether there is an object of type rock in front of it; and if it executes grasp (rock)
it can be expected to be in the state holding (rock). However, for an autonomous robot
moving in a natural environment, all these assumptions are problematic. In attempting to
move to a location, it may encounter an obstruction, get stuck, or topple over; it may be
difficult to determine if there is an object ahead of it, and if it is a rock; and the attempt to
grasp the rock may fail, or the rock may slip out of its grip later. These are among the
myriad problems faced by real autonomous robots (and by insects crawling through the
undergrowth), which are left out of micro-world simulations. Of course, we can build
such hazards into the simulation: randomly distribute some simulated obstacles, intro-
duce noise or a probability of misclassification, allow an object to be dropped with some
probability, etc. However, the problems that occur will be just those we have built into the
simulation; genuine surprises cannot arise, because the modes of failure are predefined,
just like the objects, properties, and actions.

In the foregoing I have focused on the problems that are faced by autonomous robots,

but that are missing from micro-world simulations. However, autonomous robots may
have some advantages compared to their disembodied counterparts. There is a great deal
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of information that every animal knows implicitly just by virtue of having a physical
body.

In both biology and situated, embodied robotics (Brooks, 1997), higher-level faculties
are built upon lower-level faculties, and intelligence emerges from the interaction of less
intelligent components. The foundation of this pyramid consists of low-level sensory and
motor modules in direct, dynamic physical interaction with the real world. As a conse-
quence, such intelligence is always grounded in the real world. Further, low-level senso-
ry-motor competencies, such as the ability to perceive structure in visual and auditory in-
puts, and the ability to sequence and coordinate motor activities, provide a neurological
basis for higher faculties such as language, propositional thought, and planning (see also
Moravec, 1984).

Another advantage of embodiment is that by being situated in the real world, a robot
can often avoid having a complex internal model of the world; the external world pro-
vides the only model necessary (Brooks, 1997). This is one of the ways that simple ani-
mals, such as insects, are able to accomplish complex tasks without elaborate mental
models (a principle called stigmergy; see Camazine, Deneubourg, Franks, Sneyd, Ther-
aulaz, and Bonabeau, 2001, pp. 5659, ch. 19). As Simon (1969) and others have ob-
served, complex behavior may emerge from a simple agent interacting with a complex
environment, and so complex intelligent behavior may arise as much from the interaction
of the agent with its environments as from the agent itself (insects, especially social in-
sects, are again an example). Furthermore, as explained in Sec. 2, genuine semiosis may
occur in very simple agents with correspondingly simple internal representations.

As a consequence of the foregoing considerations, we are faced with a research
dilemma. On the one hand, we realize the inadequacy of micro-world approaches and the
necessity of studying intelligence in the context of embodied agents situated in a com-
plex, unpredictable environment. On the other, autonomous robotics research is difficult
and expensive, and plagued by many engineering problems only peripherally related to
the scientific study of intelligence. Therefore we would like is to bring the relative sim-
plicity of micro-worlds to the investigation of embodied, situated intelligence.

We believe that synthetic ethology may provide such a compromise. The goal is a real
but synthetic world (inside the computer) that is simpler than the natural world, but is un-
predictable and open, and so can serve as an environment in which genuine intelligence
may function. As before, the approach is to construct the synthetic world at the micro lev-
el, so relevant objects and behaviors emerge at the macro level; in this way we may ex-
pect genuine novelty, open-endedness, unpredictability, and uncertainty. However these
objects must include the agents themselves, so that the microscopic physics of the syn-
thetic world is sufficient for everything that takes place in it, agent behavior as well as en-
vironmental processes. The result will be a synthetic real world, simple but complete, in
which we can investigate the evolution and adaptive functioning of (genuinely) intelli-
gent agents.

It seems likely the CA model previously described could be extended to incorporate

the agents. An agent would correspond to a macroscopic configuration of CA cells, which
would define the agent’s behavior. It is well known that the “Life” CA can be configured
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to compute (e.g., implementing logic gates or simulating a Turing machine), but we have
not decided the best approach to use for synthetic ethology. We do not necessarily need
computational universality, and the approach should be as simple as possible, for the sake
of experimental control as well as computational efficiency. Further, to ensure that the
agents become coupled with their environment, the synthetic world must support the evo-
lution of the population in some form.

5 Conclusions

We have described synthetic ethology, a scientific methodology in which we construct
synthetic worlds in which synthetic agents evolve and become coupled to their environ-
ment. Such a world is complete — in that it defines all the conditions for the survival and
reproduction of the agents — but it is simple, which permits greater experimental control
than does the natural world. As a result we can perform experiments relating the mecha-
nisms of behavior to social phenomena in an evolutionary context. We presented several
examples of such experiments, in which genuine (i.e., not simulated) meaningful commu-
nication evolved in a population of simple agents. The communication was intrinsically
meaningful to the agents, but only indirectly meaningful to us, as observers. These exper-
iments demonstrate intrinsic intentionality arising from a transparent mechanism. Finally
we discussed the extension of the synthetic ethology paradigm to the problems of struc-
tured communications and mental states, complex environments, and embodied intelli-
gence, and suggested one way in which this extension could be accomplished. Indeed,
synthetic ethology offers a new tool in a comprehensive research program investigating
the neuro-evolutionary basis of cognitive processes.
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