
Fen--An Axiomatic
Basis for
Program Semantics
B.J. MacLennan
Florida State University

1. Introduction

Axiomatic set theory provides a universal basis for
mathematical discourse. By this we mean that all mathe-
matical concepts can be expressed in set theory and all
proofs are ultimately proofs in set theory. Similarly, set
theory can serve as a basis for the study of program
semantics; indeed, most current approaches to this topic
in some sense use set theory. This paper develops an
axiomatic theory which is felt to provide a more intui-
tive system in which to describe program semantics. Al-
though the system is coextensive with set theory, its
basic axioms deal with functions and structured data
rather than classes. It is believed that such a system will
facilitate programming language definition and asser-
tion proving.

A formal system is presented which abstracts the
notions of data item, function, and relation. It is argued
that the system is more suitable than set theory (or its
derivatives) for the concise and accurate description of
program semantics. It is shown how the system can be
used to build composite data types out of simpler ones
with the operations of rowing, structuring, and uniting.
It is also demonstrated that completely new primitive
types can be introduced into languages through the
mechanism of singleton data types.

Both deterministic and nondeterministic functions
are shown to be definable in the system. It is described
how the local environment can be modeled as a data
item and how imperative statements can be considered
functions on the environment. The nature of recursive
functions is briefly discussed, and a technique is
presented by which they can be introduced into the
system. The technique is contrasted with the use of the
paradoxical combinator, 1I. The questions of local ~;ld
global environments and of various modes of function
caUing and parameter passing are touched upon.

The theory is applied to the proof of several
elementary theorems concerning the semantics of the
assignment, conditional, and iterative statements.

An appendix is included which presents in detail the
formal system governing webs and fen, the abstractions
used informally in the body of the paper.

Key Words and Phrases: semantics, formal systems,
lambda-calculus, extensible languages, data types,
modes, axioms, correctness, formal language definition,
formal description, data structures, description
languages, models of computation

CR Categories: 4.22, 5.21, 5.24, 5.26

468

2. Webs and Fen

Structured data items are usually placed in two cate-
gories: either they are primitive, i.e. in some sense in-
divisible, or they are composite, i.e composed of other
composite or primitive data items. It will be shown later
that this division is to a great degree illusory, the dis-
tinction being based on program efficiency considera-
tions. With this in mind, we will concentrate on com-
posite data items in the following discussion.

Composite data items are characterized by being
composed of some finite number of fields, which are
themselves data items. Each field of a composite data
item has an associated selector, which is also a data
item. Given a composite data item and a selector we
can find the corresponding field, a process known as
selection. If x is a selector of a data item d and if y is a
field selected by this selector, then this fact is represented
by d[x:y].

As an aid to visualization, composite data items can
be considered nodes in a directed graph. Interpreted in
this way, d[x:y] means that an edge labeled x is directed
from node d to node y.

The notation [xl:yl, x.,.:y.,_ , x,+:y~] is used to
represent any composite data item with selectors xl,
xe, . . . , x~ and fields y~, y._,, . . . , y+ in which xz selects
y~. The class of all such data items is represented by

{ x ~ : y l , x . , _ : y . , , . . . , x,+:y,,}

and is called the pelforrning class of the items. The dis-
tinction between individual data items and the class of
all similar data items is one that is difficult to make in
systems based on set theory. The techniques used in
these systems to avoid this problem are exemplified by

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's present address; Computer Science Department,
Purdue University, Lafayette, 1N 47906.

Communications August 1973
of Volume 16
the ACM Number 8

Beki6 and Walk [1] who require all values to have dis-
tinct names. I t is shown later that the above distinction
is crucial to the discussion of program semantics.

2.1. Fen and Intentional Data Items
A fen (functional entity) is a composite data item all

of whose selectors are distinct. If f is a fen and x is any
data item, then there is at most one y such that f[x:y].
Since this y is unique (if it exists), it can be represented
by f ix] or, when unambiguous, bylfx. Considered in this
way, fen are seen to be analogous to finite partial func-
tions on the domain of data items. For example, the fen
[a:0, b:l] corresponds to the partial function F on the
domain {a, b} which satisfies F(a) = 0 and F(b) = 1.
It can be shown that there is an isomorphism between
performing classes and finite partial functions on data
items.

The close relation between fen and functions sug-
gests an obvious generalization, viz. the specification of
data items by intension. I f for some function on data
items, F, we have that the data item w is represented by
[x [F(x)], then we have that w[x] =-- F(x). (2~ I f the use of
braces to denote performing classes is extended to in-
clude intensional items, then it can be seen that there is
a correspondence between the fen class {x [M} and the
lambda expression Xx{M}, see [4, 5].

The special case where F is a Boolean function de-
serves some note. Suppose s is the data item [x [P(x)],
for some predicate P on data items. I f S is the set coex-
tensive with P then

xC S ~ P(x) ~ s[x].

In addition, there is an isomorphism between sets of
data items and performing classes of the form {x] P(x) },
where P is a predicate on data items. The technique of
representing sets as functions onto { true, false } is exactly
analogous to that used by von Neumann in his axio-
matic set theory [22, 23], and is one way to represent
infinite sets in finite memory.

2.2. Determinism
No assumption has been made that requires the

selectors of a data item to be distinct. Although this
possibility may seem counter to our intuitive conception
of structured data, it is in fact necessary for a complete
treatment of program semantics. Many normal, well
defined programs in high level languages will embody
nondeterministic states in their execution. Consider the
case of storage allocation. When a program requests the
allocation of storage for a real value, it is only derivable
that the pointer returned will refer to an otherwise un-
used cell of shape real. It is not (and for implementation
efficiency should not be) derivable what cell is allo-
cated. As another example, consider the parallel execu-
tion of x := 0 and x := 1. The execution of this pair
of statements is nondeterministic, but the results are not
completely undefined. In particular, we should be able
to derive that either x = 0 or x = 1. Indeed, the pro-

469

gram containing this pair might well be deterministic if
it computed the same function for x = 0 and x = 1.
Controlled nondeterminacy of this type is a frequent
occurrence in high level language systems and must be
describable in any system intended to represent pro-
gramming language semantics. Several other systems [3,
20] do include the concept of an undefined quantity but
do not attempt to specify what set of values the unde-
fined quantity represents in a given situation. It is
claimed that such a facility is necessary to accurately
portray the actions of reasonable programs. In particu-
lar, it is necessary if we are to prove that a given pro-
gram is deterministic.

General (possibly nondeterministic) composite data
items are called webs and correspond to binary relations
on data items. Like fen, webs can be represented by
intension. I f for some relation on data items, S, we have
that the data item w is represented by [x:yl S(x, y)],
then we have that w[x:y] ~ S(x, y), for all data items
x and y. Observe that i f F is a function, then [x IF(x)]
and [x:y I Y - F(x)] are the same fen. It should be em-
phasized here that the notions of extension and inten-
sion apply only to the notation. Thus [a:0, b:l] and
[x : y [x = a A y = 0 V x = b A y = l l are equal fen.

3. The Semantics of Data Types

As a sample application of the theory we consider
the representation of data and the definition of data
t~cpes. This problem is particularly acute in the area of
extensible languages, and a number of attempts have
been made to solve it [11, 21, 29, 30]. With the exception
of Jorrand [l 1] and Wirth [29], most work in this area
has concentrated on the building of composite data
items and data types from certain primitive data items
and types. The primitive data types usually include real,
integer, Boolean, pointer, and several others. In this
section we will present a technique which allows the
definition o f composite types as well as the usual primi-
tive types, and provides the programmer with a mecha-
nism for defining new primitive types.

3.1. The Construction of Data Types
A data type is a crass of data items whose elements

(usually) have some structural similarity. The methods
used to construct new types from others correspond to
the operations permitted in regular expressions. These
operations are rowing, structuring, and uniting, 3 sym-
bolized by * , . , and U.

The simplest nontrivial data type is that to which
only a single data item belongs. Such a type is called a
singleton data type. I f Sh S..,, . . . , Sn are a finite number

1 These notations are left associative.
z The relation ~ denotes equality in the sense of Leibniz, i.e.

a ~ b ~ V P I P (a) ~ . P(b)]. This is discussed further in Section
3.2.

Terminology is based on that of the ALGOL 68 Report [28].

Communications August 1973
of Volume 16
the ACM Number 8

of singleton data types, 4 then the set of data types con-
structable is seen to be the set of all regular sets over the
a l p h a b e t ~ = U { S i] 0 < i < n}.

If T is any data type, then it can be rowed to T*, the
type of all arrays of elements of T. Arrays are modeled
by fen whose selectors are integers. If TI, T . , , . . . , T,, are
datatypes, thenthey may be structured to T~.T.,_ T,,,
the type of all composite data items with components of
the specified types. Structures are modeled by fen whose
selectors are e lementary fen. A fen is elementary if it has
no substructure; i.e. it corresponds to a node from which
no edges are directed. If S and T are data types, then
they can be united to S U T, thetype towhichall elements
of either S or T belong. Elements of united types are
represented by elements of any of the types forming the
union.

3.2. Instances of Data Items
Two concepts of equality are meaningful in the sys-

tem. Leibnizian, or strong, equality is symbolized by
x = - y and has the meaning that x and y are identical in-
dividuals. This is defined

x = - y ~-, V P [P (x) ~ P(y)J.

With the above definitions of structured data items, we
see that strong equality corresponds to the ALGOL 68 [28]
identity relation (:= :). Extensional, or weak, equality is
symbolized by x = y and has the meaning that x and y
are in the same performing class. Alternately,

x = y ~ (Va, b)(x[a:b] ~ , y[a:b]).

Thus if x and y are different instances of the same data
value, we will have x = y but not x=-y . Since in most
languages different instances of the same value are con-
sidered equal, we will probably want the "equal to"
relation to correspond to the concept of equality in the
language.

4. A Semantic Model of Computation

A formal semantics for a programming language
generally has the form of a t ransformation which takes
well formed source language programs into equivalent
programs in an abstract language. Often the semantics
of the abstract language is specified by an interpreter
written in some more primitive language. Sample ap-
plications of this technique can be found in [13, 17, 18],
and an analysis of the interpretive approach can be
found in [24].

The approach to be taken here is similar to that used
by Strachey and Scott [26, 27] in that it presents a
mathematical (or denotational) semantics for a lan-
guage. That is to say, meaning is assigned to a procedure
by specifying what partial function it denotes. There is
no interpreter involved.

4 This restriction to a finite number of singleton data types is met
in all practical languages.

It was mentioned above that there is a close corre-
spondence between the performing class {x I F} and the
lambda expression Xx.F. In particular the notation
[x l F] denotes a particular instance of the function
Xx.F. Complex fen can be constructed by substitution in
the same way complex lambda expressions can be built
by substitution. As an example note that the function

Y = XfIlXx.f(xx) I(Xx.f(xx))I

corresponds to

Y = [f I [x t f (x x) ltx I J(xx) ll
Statements about convertabil i ty [5, p. 347] in the
lambda-calculus can then, with some exceptions, be
translated into statements about strong fen equality.
This mechanism enables the computat ion of recursive
functions and the convenient description of applicative
(or descriptive, see [14, 15, 16, 27], particularly [i6, p.
164-166]) languages.

4.1. Statements and Environment in Imperative
Languages

Most languages are not descriptive; i.e. they contain
the concepts of an imperative s ta tement which can cause
the environment (state) to change in time. This is for-
malized by defining statements to be functions on the
environment. The environment itself is taken to be a
composite data item which contains as felds what we
think of as the storage accessible to a series of state-
ments. The symbol C will be used uniformly to indicate
the current environment. Following the above defini-
tion, if F is any function then [C] FC] is a statement.

4.2. The Synthesis of Programs
In [25] Scott has observed that there are three funda-

mental techniques through which composite programs
can be synthesized from simpler ones. We paraphrase
these as:
--product: the functional product of two statements is a
statement.
--conditional or sum: a fen and two statements can be
combined to form a conditional statement.
--while-loop: the discussion of while-loops is postponed
until after recursion has been introduced.

We are dealing with what amounts to *, . , and U, the
operations from which regular expressions are built. It
will be shown below that these operations are easily de-
fined as fen.

4.3. The Product of Statements
It will be convenient at this point to introduce a

notation for non-unary fen. We define [x l x 2 . . . x,, [F]
to be [xl I [x~ I • - • [x,~ I F] . . .]]. Thus [xy [Fxy] means
[x I [Y I Fxy]] and corresponds to the lambda expression
X x y . F x y . Similarly we write F[xx, x2, . . . , x ,] for F[x~]
[x . ,] . . . [x,~l.

The right product (composition) o f f and g will be de-
noted byf ;g . This operator is formally defined by

; = [r s l [Cls[,'c]]] = [,'sCls[,'c]].

470 Communications August 1973
of Volume 16
the ACM Number 8

This operator is declared to be left associative to allow
statements separated by semicolons to mean what we
intuitively expect; e.g. (f ;g;h)C = h[g[fC]].

x ¢ y, we have Update[C,x,F]x = F and Update[C,x,
Fly = Cy.

PROOF. Let the hypothesis be satisfied.

4.4. The Sum of Statements
The conditional is represented in most languages by

a construct resembling if B then T else F, where B is a
fen and T and F are statements. The intuitive meaning is
that if BC = true, then evaluate TC, whereas if B C =
false, then FC will be evaluated. The formal definition
of a conditional is as follows.

Definition. If B is a fen and T and F are statements,
then if B then T else F stands in the place of [C] [true :7,
false :F] [BC]C].

The following theorem states that this definition
works as expected.

THEOREM. I f B C = true then (if B then T else F)C =
TC and i f B C = false then (if B then T else F)C = FC.

PROOF. We prove the theorem for B C = true only, as
the other case is exactly analogous. Suppose B C = true,
then

(if B then T else F) C
= [CI [true:T, false:F][BC]C]C
= [true:T, false:F][BC]C
= T C D

It should be noted that BC=t rue (or false) requires that
the computation of B on C will terminate. If this is not
the case, then B C will have no value.

4.5. Assignment
If for the moment we assume that several operators

are defined in the obvious way, then we might write a
small program as follows:

y *--- [Hd:O,Th[Hd:l, TI:[Hd:2, Tl:Nil]]J;
x ~-- Cy[TIJ[Hd];
z ~-- Cy[Tll[Tll[Hdl;
w ~ Cx + Cy.

Update[C,x,FJx
= [Cxy j [a:bjc[a:b] A a ~ x V a=--x A b--y]]
CxFx
= [a:b[c[a:b] A aT~x V a=-x ^ b=--F]x
= F .

Similarly the other result holds. []
One consequence of this model is that only state-

ments can have side effects in the environment. A sub-
expression of a statement can affect the local environ-
ment only indirectly, i.e. by passing a value to the state-
ment of which it is a part. A result of this is that the
assignment operator has no value.

4.6. The Star of Statements
To model computation in any reasonable way, it is

necessary to be able to represent iteration or recursion.
The approach to recursion taken here is based on the
technique used in real implementations; i.e. the function
is part of the environment. We indicate the general tech-
nique with an example, the factorial function. Again,
any undefined fen should be assumed to have their ob-
vious definitions.

x ~-- 0; y ~-- 10;
fact ~-- [Cx I i fx = 0then 1 else x*C fact [C, x]];
x ~ C fact [C, Cy]

At termination x will select 10! from the resulting en-
vironment. Observe that the definition invokes fact in
the environment of the caller.

Recursion is often introduced into formal systems
with Curry and Feys' paradoxical combinator, 1I, which
is defined by

Y = I f [Ix I f(xx) j ix I f (xx)] l .

If R is the result of this program applied to an elemen-
tary item, then Rw = 3. In this context the prefix C is seen
to be analogous to a dereferencing operator on the en-
vironment.

The assignment, or updating operator, ~--, is defined
as follows:

x ~ y [C J = Update[C,x,y[
where Update = [Cxy l [a:b I c[a:b] A a C x V
a=---x A b--y]].

Defining Update in this way causes the allocation of x
in C if it is not already a selector of C.

The following elementary theorem guarantees that
the assignment operator has the properties we expect it
to have. This theorem corresponds to Kaplan's axioms
A1 and A2 in [12].

THEOREM. For any fen F, C and selectors x, y where

B6hm calls Y by 0, following Rosenbloom.

This approach is taken by Strachey [27], Henderson [8],
Landin [13], and B6hm [2]? The definition of Y is such

that Y f ---~ J 'Y f ---~ f f Y f ---~
The Y colnbinator is seen to be a special case of stor-

ing the function in the environment. With the Y combi-
nator the local environment contains only the function
[x] f(xx)] . The fen approach is to be preferred since it is
more in accord with actual practice. Also, as is shown
later, this is itself a special case of the more general prob-
lem of environment.

4.7. While-loops
We briefly discuss the semantics of the while-loop.

The intuitive meaning associated with while B do S is
that the statement S is to be applied to the environment
as long as the fen B evaluates to true.

Let W be a selector distinct from all those used in a

given program. We assume each environment contains

471 Communications August 1973
of Volume 16
the ACM Number 8

what amounts to the result of the assignment: 6

W ~ [CBS I (if B then(S;while B do S) else KC)C[.

The while-loop is defined by stating that the statement
while B do S stands in the place of the statement [C] C W
[C, B, SIC]. Thus the while-loop operates by recursively
calling itself as long as B on the current environment is
true. Following is a proof that this definition works as
intuitively expected.

THEOREM. I f B, C are fen and S is a statement and
B(SnC) = false and for all k < n (with k > O) we have
B(SkC) = true, then (while B do S)C = SnC.

PROOF. Suppose the hypothesis is satisfied. The
proof will be by induction on n. For the case n = 0 we
are assuming BC = false. By the definition we have

(while B do S)C = CW[C, B, SIC
= (if B then (S; while B do S)else KC)C
-- KCC = C.

Now suppose 11 > 0. Since B(S'~C) = false, we know
B (S '~-1 (SC)) = false. Since for all k < n B (SkC) =
true, we know for all j < n -- 1, B(SJ(SC)) = true.
Since B (S"C) = false, we know SC terminates and is
thus a fen. By the induction hypothesis

(while B do S)SC = S"-I(SC) = SnC.
(while B do S)C = CW[C, B, S]C

= (if B then (S; while B do S) else KC)C
= (while B do S)SC
= S " C U]

The following two corollaries follow trivially from the
above theorem. Together they constitute Hoare 's axiom
D3 [10].

COROLLARY. I f for some finite n, B(S'~C) = false,
then (while B do S)CB = false; i.e. the condition is' false
after the loop.

COROLLARY. I f for some finite 1l, B(S"C) = false, and
for all fen, C, and predicates, P, we have that i f PC then
P(SC), then we have that i f PC then P((while B do S)C).

4.8. Environment
Most programming languages include some concept

of "scope of names" and automatic allocation and deal-
location of storage. Change of scope and storage alloca-
tion/deallocation is usually associated with entry to and
exit from blocks, composite statements delimited by
begin and end or similar symbols. The semantics asso-
ciated with begin typically include pushing down the
current environment and creating a new environment
with some preallocated variables. The semantics asso-
ciated with end involves deleting the current environ-
ment and restoring the environment saved by the last
begin.

Some mechanism is provided to allow statements to
have access to the global-environment, the collection of
environments saved by as yet unmatched begins. The
following discussion presents two ways in which the
global environment can be maintained.

Previous environments can be maintained as a linked
list with the local environment as the head of the list. Let
K = [xC I x]; i.e. Kis a statement which makes its argu-
ment the new local environment. If we then define

begin = K[[globahC]]

the statement begin will create a new local environment
whose only selector is global, which contains the old en-
vironmentY If we define

end = K[Cglobal]

then the end statement will have the effect of restoring
the old environment. References to a variable x in the
local environment are accomplished, as before, by Cx.
References to x in the global environment are accom-
plished with Cglobal x, Cglobal global x, etc., depending
on how deeply the environment of x has been depressed.
Updates of the global environment are more compli-
cated, as the following example indicates.

begin;
x ~--- 1;
z~-- 1;
begin;

y ~-- 2;
global +-- (z ~-- Cy + Cglobal x) [Cglobal] ;

end;
end

If S is any product of statements then the construction
G ~ (S) [CG] is called an environment switch and may be
abbreviated G:S. In the above example we could have
written

global: z ~-- Cy -t- Cglobal x.

As suggested above, chaining is not the only mecha-
nism through which access to global environments may
be obtained. Another possible technique is to maintain
in the local environment a vector 8 of previous environ-
ments. Accesses to the global environment for x take the
form CE[1 ix, CE[2]x, etc. Both of these methods corre-
spond closely to real implementation techniques.

5. Conclusions

An abstract entity (called a web) has been introduced
which corresponds to a particular instance of a relation.
Some of these entities (those called fen) correspond to
particular instances of functions. The resulting mecha-
nism is so general that one can summon up the power of
the algebras of classes and relations, if this is necessary.
Furthermore, the system is close enough to the basic
substratum of computer science to enable concise defini-
tions of important semantic concepts. Common infor-

6 The statement KC, as will be shown later, is a do-nothing or
empty statement.

7 This technique is analogous to that used by Landin in [13] in
which the selector global was called D (Dump).

8 A vector is a fen whose domain is a contiguous subset of the
integers.

472 Communications August 1973
of Volume 16
the ACM Number 8

mation structures such as arrays, records, random files,
relational data bases, and functions are seen to be special
cases of webs and fen.

As sample applications of the theory, a possible se-
mantics for data types and computat ions was presented.
Clearly the models presented are not the only ones possi-
ble, or even desirable. The semantics of some languages
might require a data item to include an indication of its
type. Similarly, certain languages will allow side effects.
These will have to be allowed for by making each value a
two-element structure, one of whose fields is the environ-
ment (see [27]).

It is not obvious that a lambda-calculus format is the
best representation of a program. In [7] and [19] it has
been suggested that a format similar to that of a Petri
net would be superior for optimization and machine
independent compiler output. The theory of webs and
fen lends itself nicely to the description of this variety of
computation, and work is currently being done on the
complete formal specification of a language designed on
this basis. When it is clear which semantic primitives are
necessary, a microprogrammed implementation is in-
tended. It is hoped that the formal system will provide a
convenient medium in which to prove the correctness
both of the implementation and of programs based on
the implementation.

Appendix

The Formalism
The following presentation of the formalism govern-

ing data items (webs and fen) assumes some familiarity
with formal systems as defined by Curry and Feys in [6,
ch. 2].

Morphology
1. Primitive Ideas. The obs of the system can be clas-

sified as follows.
The connectives --1, --% e, and the punctuation sym-

bols (and). Using these symbols and well known defini-
tions the usual formulas of the predicate calculus can be
constructed.

The system includes a denumerable infinity of indi-
vidual variables serving as place holders for names of
members of the domain of interpretation. On the in-
tended interpretation these variables will stand for arbi-
trary "things."

The system includes one ternary predicate con-
stant, w[x:y]. On the intended interpretation w[x:y]
means the selector/field pair x :y is a member of the ob w.

2. Formation Rules. Individual variables are terms.
I f w, x, and y are terms, then w[x:y] is a formula.
I f R and S are formulas, then -1 R and R --+ S are

formulas.
I f x is an individual variable and S is a formula,

then (ex)S is a term. The intended meaning of (ex)S is
"any x such that S."

473

The application of the above rules will be further
constrained by the requirements of simple type theory.

Using the above formation rules and obvious defini-
tions all statements concerning the obs of the system can
be expressed.

Transformation Rules
1. Axioms. The axioms of the system include the

four usual axioms of the propositional calculus, the
axiom governing the e operator [9], and the axioms
commonly known as extensionality and Zusammenfas-
sung. These axioms provide for the usual theorems of
logic and the algebra of classes.

There are two axioms that govern the individuals of
the system.

The term web is introduced to denote the formal con-
cept corresponding to the informal concept of "data
i tem."

Definition. A web is any " th ing" (individual) which
satisfies:
- - a t least one individual is not in its domain, and
- - a t least one individual is not in its range.

This distinction between a web and a " th ing" is ex-
actly analogous to the distinction between a set and a
l l .Ding in von Neumann ' s set theory [22, 23]. The exclu-
sion from web-hood of individuals that have domains or
ranges containing the universe prevents the definition of
contradictory webs.

Definition. We say that an individual, w, performs a
relation, R, when for all x and y, w[x:y] if and only i f x
and y are webs and R(x, y). The class of all webs (n.b.
not individuals) that perform a given relation is called
the performing class of that relation.

Since webs correspond to data items in the intended
domain of interpretation, and since it is intuitively felt
that there should be an unlimited number of "copies" of
any datum, we postulate:

AXIOM 1. WEAX--the Web Existence Axiom. I f R is
any relation on individuals, then the performing class of R
is infinite.

This axiom will guarantee that a sufficient number of
webs are available to derive the theorems we desire to be
true. Note that it is not required that the performing
class of a relation be denumerably infinite.

The fieM of an individual is defined to be the union of
its domain and its range. The following theorem is easy
to prove using the definition of performing.

THEOREM. The field of an individual contains only webs
if and only if there is some relation (on webs) that that
individual performs.

This theorem suggests that we should postulate:
AXIOM 2. WFAX--the Web FieM Axiom. The field of

an individual contains only webs.
2. Rules of Inference. The rules of inference are

Modus Ponens and generalization. Thus conventional
techniques may be used in derivations and proofs about
webs.
Received April 1973

Communications August 1973
of Volume 16
the ACM Number 8

References
1. Bekid, H., and Walk, K. Formalization of storage properties.
In Symposium on Semantics t2lAIgorithmie Languages. Erwin
Engeler (Ed.), Springer Lecture Note Series, Springer-Verlag,
Heidelberg, 1971, p. 39.
2. BOhm, C. The CUCH as a formal and descriptive language.
In Formal Language Description Languages./or Computer Program-
mhlg T.B. Steel (Ed.), North-Holland, Amsterdam, 1966, pp. 198-
220.
3. Cadiou, J.M., and Manna, Z. Recursive definitions of partial
functions and their computations. SIGPLAN Notices 7 (Jan.
1972), 58-65.
4. Church, A. The Calculi of Lambda-Conversion. Princeton U.
Press., Princeton, N.J., 1951.
5. Church, A. An unsolvable problem of elementary number
theory. Am. J. .Math. 58 (1936), 345-363.
6. Curry, H. B., and Feys, R. Combinatory Logic, Vol 1. North-
Holland, Amsterdam, 1958.
7. Dennis, J. B. Notes on the design of a common base language.
Mimeographed notes prepared for Tutorial Syrup. on Semantic
Models of Computation, Dec. 1971.
8. Henderson, P. Derived semantics for some programming
language constructs. Comm. A C M 15, 11 (Nov. 1972), 967-973.
9. Hilbert, D., and Bernays, P. Grundlagen der Mathematik,
Berlin, 1934 and 1939, Sec. 1.
10. Hoare, C.A.R. An axiomatic basis for computer
programming. Comm. ACM 12, 10 (Oct. 1969), 576-583.
11. Jorrand, P. Data types and extensible languages. SIGPLAN
Notices 6 (Dec. 1971), 75-83.
12. Kaplan, D.M. Some completeness results in the mathematical
theory of computation. J. A C M 15, 1 (Jan. 1968), 124-134,
13. Landin, P.J. The mechanical evaluation of expressions.
Computer J. 6 (Jan. 1964), 308-320.
14. Landin, P.J. A formal description of ALGOL 60. In Formal
Language Description Languages ./or Computer Programming. T.
B. Steel (Ed.), North-Holland, Amsterdam, 1966, pp. 266-294.
15. Landin, P.J. A correspondence between ALGOL 60 and
Church's lambda notation. Comm. A C M 8, 2 (Feb. 1965), 89-
101, and (Mar. 1965), 158-165.
16. Landin, P. J. The next 700 programming languages. Comm.
A C M 9, 3 (Mar. 1966), 157-166.
17. Lee, J.A.N. Computer Semantics, Studies of Algorithms,
Processors and Languages. Van Nostrand Reinhold, Princeton,
N.J., 1972.
18. Lucas, P., and Walk, K. On the formal description of PL/I.
Annual Reviews t2[Automatic Programming 6, 3 (1969).
19. MacLennan, B. Semantic specification and machine
independent compilation. Proc. ACM 10th Ann. Southeast Reg.
Conf.,,June 1971 (mimeographed).
20. Manna, Z., Ness, S., and Vuillemin, J. Inductive methods for
proving properties of programs. SIGPLAN Notices 7 (Jan. 1972),
27-50.
21. Morris, J.B. Jr., and Wells, M.B. Generalized data structures
in Madcap VI. SIGPLAN Notices 6 (Feb. 1971), 321-336.
22. yon Neumann, J. Die Axiomatisierung der Mengenlehre.
Math. Z. 27 (1928), 669-752.
23. yon Neumann, J. Line Axiomatisierung der Mengenlehre. J.
reine angew. Math. 154 (1925), 219 240.
24. Reynolds, J.C. Definitional interpreters for higher-order
programming languages. Proc. ACM 25th Nat. Conf. 1972, pp.
714-737.
25. Scott, D. The lattice of flow diagrams. In Symposium on
Semantics of Algorithmic Languages. Erwin Engeler (Ed.),
Springer Lecture Note Series, Springer-Verlag, Heidelberg, 1971,
pp. 311-366.
26. Scott, D. and Strachey, C. Toward a Mathematical Semantics
Jbr Computer Languages. Oxford U. Computing Lab., Programming
Research Group Tech. Mono. PRG-6.
27. Strachey, C. Towards a formal semantics. In Formal Language
Description Languages .[or Computer Programming. T.B. Steel
(Ed.), North-Holland, Amsterdam, 1966, pp. 198 220.
28. van Wijngaarden, et al. Report on the algorithmic language
ALGOL 68. Numerische Mathematik 14 (1969), 79-218. Offprint
available from Dept. AL68-D, ACM Headquarters, New York.
29. Wirth, N. The programming language Pascal. Acta
blformatica 1, 1 (1971), 35-63.
30. Wulf, W.A., et al. Bliss Reference Manual. Dept. of Computer
Sci. document, Carnegie-Mellon U., Pittsburgh, Pa., 1970.

Petri Nets and Speed
Independent Design
David Misunas
Massachusetts Institute of Technology

Petri nets are investigated as one method of
modeling speed independent asynchronous circuits. A
study of circuit realizations of Petri nets leads to a
demonstration of their usefulness in modeling speed
independent operation. This usefulness is emphasized by
the design of a speed independent processor from
modules developed in the investigation of Petri net
implementation.

Key Words and Phrases: speed independent asyn-
chronous, Petri net

CR Categories: 6.1, 6.33

1. Introduction

The uti l izat ion of a synchronous techniques in logic
design has in t roduced many new problems in the digital
field. One of the difficulties inherent in the design of
a synchronous circuits is the possible presence of arbi-
t rary delays both in elements and connect ions of the
circuit. A circuit in which such delays have no effect
upon circuit operat ion, other than possibly causing the
circuit to run slower, is known as a speed independen t

circuit.
Ear ly studies of speed independen t circuits [10, 19,

22] were concerned with methods of model ing such
circuits and describing their opera t ion in some precise
mathemat ica l form. These studies merely exposed . the
problems inherent in developing such a method. Any
means in order to be useful in depict ing speed independ-
ent opera t ion must : (1) conta in a direct correlat ion be-

Copyright @ 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: MIT project MAC Room 530, 545 Technol-
ogy Square, Cambridge, MA. 02139.

474 Communications August 1973
of Volume 16
the ACM Number 8

