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1. Introduction 

Axiomatic set theory provides a universal basis for 
mathematical discourse. By this we mean that all mathe- 
matical concepts can be expressed in set theory and all 
proofs are ultimately proofs in set theory. Similarly, set 
theory can serve as a basis for the study of program 
semantics; indeed, most current approaches to this topic 
in some sense use set theory. This paper develops an 
axiomatic theory which is felt to provide a more intui- 
tive system in which to describe program semantics. Al- 
though the system is coextensive with set theory, its 
basic axioms deal with functions and structured data 
rather than classes. It is believed that such a system will 
facilitate programming language definition and asser- 
tion proving. 

A formal system is presented which abstracts the 
notions of data item, function, and relation. It is argued 
that the system is more suitable than set theory (or its 
derivatives) for the concise and accurate description of 
program semantics. It is shown how the system can be 
used to build composite data types out of simpler ones 
with the operations of rowing, structuring, and uniting. 
It is also demonstrated that completely new primitive 
types can be introduced into languages through the 
mechanism of singleton data types. 

Both deterministic and nondeterministic functions 
are shown to be definable in the system. It is described 
how the local environment can be modeled as a data 
item and how imperative statements can be considered 
functions on the environment. The nature of recursive 
functions is briefly discussed, and a technique is 
presented by which they can be introduced into the 
system. The technique is contrasted with the use of the 
paradoxical combinator, 1I. The questions of local ~;ld 
global environments and of various modes of function 
caUing and parameter passing are touched upon. 

The theory is applied to the proof of several 
elementary theorems concerning the semantics of the 
assignment, conditional, and iterative statements. 

An appendix is included which presents in detail the 
formal system governing webs and fen, the abstractions 
used informally in the body of the paper. 
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2. Webs and Fen 

Structured data items are usually placed in two cate- 
gories: either they are primitive, i.e. in some sense in- 
divisible, or they are composite, i.e composed of other 
composite or primitive data items. It will be shown later 
that this division is to a great degree illusory, the dis- 
tinction being based on program efficiency considera- 
tions. With this in mind, we will concentrate on com- 
posite data items in the following discussion. 

Composite data items are characterized by being 
composed of some finite number of fields, which are 
themselves data items. Each field of a composite data 
item has an associated selector, which is also a data 
item. Given a composite data item and a selector we 
can find the corresponding field, a process known as 
selection. If  x is a selector of a data item d and if y is a 
field selected by this selector, then this fact is represented 
by d[x:y]. 

As an aid to visualization, composite data items can 
be considered nodes in a directed graph. Interpreted in 
this way, d[x:y] means that an edge labeled x is directed 
from node d to node y. 

The notation [xl:yl, x.,.:y.,_ . . . .  , x,+:y~] is used to 
represent any composite data item with selectors xl, 
xe, . . . ,  x~ and fields y~, y._,, . . . ,  y+ in which xz selects 
y~. The class of all such data items is represented by 

{ x ~ : y l ,  x . , _ : y . , ,  . . . ,  x,+:y,,} 

and is called the pelforrning class of the items. The dis- 
tinction between individual data items and the class of 
all similar data items is one that is difficult to make in 
systems based on set theory. The techniques used in 
these systems to avoid this problem are exemplified by 
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Beki6 and Walk [1] who require all values to have dis- 
tinct names. I t  is shown later that the above distinction 
is crucial to the discussion of program semantics. 

2.1. Fen and Intentional Data Items 
A fen (functional entity) is a composite data item all 

of whose selectors are distinct. If  f is a fen and x is any 
data item, then there is at most one y such that f[x:y]. 
Since this y is unique (if it exists), it can be represented 
by f ix ]  or, when unambiguous, bylfx.  Considered in this 
way, fen are seen to be analogous to finite partial func- 
tions on the domain of data items. For  example, the fen 
[a:0, b:l]  corresponds to the partial function F on the 
domain {a, b} which satisfies F(a) = 0 and F(b) = 1. 
It  can be shown that there is an isomorphism between 
performing classes and finite partial functions on data 
items. 

The close relation between fen and functions sug- 
gests an obvious generalization, viz. the specification of 
data items by intension. I f  for some function on data 
items, F, we have that the data item w is represented by 
[x [ F(x)], then we have that w[x] =-- F(x). (2~ I f  the use of  
braces to denote performing classes is extended to in- 
clude intensional items, then it can be seen that there is 
a correspondence between the fen class {x [ M} and the 
lambda expression Xx{M}, see [4, 5]. 

The special case where F is a Boolean function de- 
serves some note. Suppose s is the data item [x [ P(x)], 
for some predicate P on data items. I f  S is the set coex- 
tensive with P then 

xC S ~ P(x) ~ s[x]. 

In addition, there is an isomorphism between sets of 
data items and performing classes of the form {x ] P(x) }, 
where P is a predicate on data items. The technique of 
representing sets as functions onto { true, false } is exactly 
analogous to that used by von Neumann  in his axio- 
matic set theory [22, 23], and is one way to represent 
infinite sets in finite memory.  

2.2. Determinism 
No assumption has been made that requires the 

selectors of a data item to be distinct. Although this 
possibility may seem counter to our intuitive conception 
of structured data, it is in fact necessary for a complete 
treatment of program semantics. Many normal, well 
defined programs in high level languages will embody 
nondeterministic states in their execution. Consider the 
case of storage allocation. When a program requests the 
allocation of storage for a real value, it is only derivable 
that the pointer returned will refer to an otherwise un- 
used cell of shape real. It  is not (and for implementation 
efficiency should not be) derivable what cell is allo- 
cated. As another example, consider the parallel execu- 
tion of x := 0 and x := 1. The execution of this pair 
of statements is nondeterministic, but the results are not 
completely undefined. In particular, we should be able 
to derive that either x = 0 or x = 1. Indeed, the pro- 
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gram containing this pair might well be deterministic if 
it computed the same function for x = 0 and x = 1. 
Controlled nondeterminacy of this type is a frequent 
occurrence in high level language systems and must be 
describable in any system intended to represent pro- 
gramming language semantics. Several other systems [3, 
20] do include the concept of an undefined quantity but 
do not attempt to specify what set of  values the unde- 
fined quantity represents in a given situation. It  is 
claimed that such a facility is necessary to accurately 
portray the actions of reasonable programs. In particu- 
lar, it is necessary if we are to prove that a given pro- 
gram is deterministic. 

General (possibly nondeterministic) composite data 
items are called webs and correspond to binary relations 
on data items. Like fen, webs can be represented by 
intension. I f  for some relation on data items, S, we have 
that the data item w is represented by [x:yl  S(x, y)], 
then we have that w[x:y] ~ S(x, y), for all data items 
x and y. Observe that i f F  is a function, then [x IF(x)] 
and [x:y I Y - F(x)] are the same fen. It should be em- 
phasized here that the notions of extension and inten- 
sion apply only to the notation. Thus [a:0, b:l]  and 
[ x : y [ x = a  A y = 0  V x = b  A y = l l  are equal fen. 

3. The Semantics of Data Types 

As a sample application of the theory we consider 
the representation of data and the definition of data 
t~cpes. This problem is particularly acute in the area of  
extensible languages, and a number of  attempts have 
been made to solve it [11, 21, 29, 30]. With the exception 
of Jorrand [l 1 ] and Wirth [29], most work in this area 
has concentrated on the building of composite data 
items and data types from certain primitive data items 
and types. The primitive data types usually include real, 
integer, Boolean, pointer, and several others. In this 
section we will present a technique which allows the 
definition o f  composite types as well as the usual primi- 
tive types, and provides the programmer  with a mecha- 
nism for defining new primitive types. 

3.1. The Construction of Data Types 
A data type is a crass of data items whose elements 

(usually) have some structural similarity. The methods 
used to construct new types from others correspond to 
the operations permitted in regular expressions. These 
operations are rowing, structuring, and uniting, 3 sym- 
bolized by * , . ,  and U. 

The simplest nontrivial data type is that to which 
only a single data item belongs. Such a type is called a 
singleton data type. I f  Sh S..,, . . . ,  Sn are a finite number 

1 These notations are left associative. 
z The relation ~ denotes equality in the sense of  Leibniz, i.e. 

a ~ b ~ V P I P ( a )  ~ .  P(b)]. This is discussed further in Section 
3.2. 

Terminology is based on that of  the ALGOL 68 Report  [28]. 
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of singleton data types, 4 then the set of data types con- 
structable is seen to be the set of all regular sets over the 
a l p h a b e t ~  = U { S i ] 0  < i < n}. 

If  T is any data type, then it can be rowed to T*, the 
type of all arrays of elements of T. Arrays are modeled 
by fen whose selectors are integers. If  TI, T . , , . . . ,  T,, are 
datatypes,  thenthey may be structured to T~.T.,_ . . . . .  T,,, 
the type of all composite data items with components of 
the specified types. Structures are modeled by fen whose 
selectors are e lementary  fen. A fen is elementary if it has 
no substructure; i.e. it corresponds to a node from which 
no edges are directed. If  S and T are data types, then 
they can be united to S U T, thetype towhichall  elements 
of  either S or T belong. Elements of  united types are 
represented by elements of any of the types forming the 
union. 

3.2. Instances of Data Items 
Two concepts of equality are meaningful in the sys- 

tem. Leibnizian, or strong, equality is symbolized by 
x = - y  and has the meaning that x and y are identical in- 
dividuals. This is defined 

x = - y  ~-, V P [ P ( x )  ~ P(y)J. 

With the above definitions of structured data items, we 
see that strong equality corresponds to the ALGOL 68 [28] 
identity relation ( :=  :). Extensional, or weak, equality is 
symbolized by x = y  and has the meaning that x and y 
are in the same performing class. Alternately, 

x = y  ~ (Va, b)(x[a:b] ~ ,  y[a:b]). 

Thus if x and y are different instances of the same data 
value, we will have x = y  but not x=-y .  Since in most  
languages different instances of the same value are con- 
sidered equal, we will probably want the "equal to"  
relation to correspond to the concept of equality in the 
language. 

4. A Semantic Model of Computation 

A formal semantics for a programming language 
generally has the form of a t ransformation which takes 
well formed source language programs into equivalent 
programs in an abstract language. Often the semantics 
of the abstract language is specified by an interpreter 
written in some more primitive language. Sample ap- 
plications of this technique can be found in [13, 17, 18], 
and an analysis of the interpretive approach can be 
found in [24]. 

The approach to be taken here is similar to that used 
by Strachey and Scott [26, 27] in that it presents a 
mathematical  (or denotational) semantics for a lan- 
guage. That  is to say, meaning is assigned to a procedure 
by specifying what partial function it denotes. There is 
no interpreter involved. 

4 This restriction to a finite number of singleton data types is met 
in all practical languages. 

It was mentioned above that there is a close corre- 
spondence between the performing class {x I F} and the 
lambda expression Xx.F.  In particular the notation 
[ x l F ]  denotes a particular instance of the function 
Xx.F. Complex fen can be constructed by substitution in 
the same way complex lambda expressions can be built 
by substitution. As an example note that the function 

Y = XfIlXx.f(xx) I(Xx.f(xx))I 

corresponds to 

Y = [ f  I [x t f ( x x )  ltx I J(xx)  ll 
Statements about  convertabil i ty  [5, p. 347] in the 
lambda-calculus can then, with some exceptions, be 
translated into statements about  strong fen equality. 
This mechanism enables the computat ion of recursive 
functions and the convenient description of applicative 
(or descriptive, see [14, 15, 16, 27], particularly [i6, p. 
164-166]) languages. 

4.1. Statements and Environment in Imperative 
Languages 

Most languages are not descriptive; i.e. they contain 
the concepts of an imperative s ta tement  which can cause 
the environment  (state) to change in time. This is for- 
malized by defining statements to be functions on the 
environment.  The environment itself is taken to be a 
composite data item which contains as felds  what we 
think of as the storage accessible to a series of state- 
ments. The symbol C will be used uniformly to indicate 
the current environment. Following the above defini- 
tion, if F is any function then [C ] FC] is a statement. 

4.2. The Synthesis of Programs 
In [25] Scott has observed that there are three funda- 

mental techniques through which composite programs 
can be synthesized from simpler ones. We paraphrase 
these as: 
--product: the functional product of two statements is a 
statement. 
--conditional or sum: a fen and two statements can be 
combined to form a conditional statement. 
--while-loop: the discussion of while-loops is postponed 
until after recursion has been introduced. 

We are dealing with what amounts to *, . ,  and U, the 
operations from which regular expressions are built. It  
will be shown below that these operations are easily de- 
fined as fen. 

4.3. The Product of Statements 
It  will be convenient at this point to introduce a 

notation for non-unary fen. We define [ x l x 2 . . .  x,, [ F] 
to be [xl I [x~ I • - • [x,~ I F] . . . ]]. Thus [xy [ Fxy]  means 
[x I [Y I Fxy]] and corresponds to the lambda expression 
X x y . F x y .  Similarly we write F[xx, x2, . . . , x ,]  for F[x~] 
[ x . , ] . . .  [x,~l. 

The right product (composition) o f f  and g will be de- 
noted byf ;g .  This operator is formally defined by 

; = [ r s l  [Cls[,'c]]] = [,'sCls[,'c]]. 
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This operator is declared to be left associative to allow 
statements separated by semicolons to mean what we 
intuitively expect; e.g. ( f ;g;h)C = h[g[fC]]. 

x ¢  y, we have Update[C,x,F]x = F and Update[C,x, 
Fly  = Cy. 

PROOF. Let the hypothesis be satisfied. 

4.4. The Sum of Statements 
The conditional is represented in most languages by 

a construct resembling if B then T else F, where B is a 
fen and T and F are statements. The intuitive meaning is 
that if BC = true, then evaluate TC, whereas if B C  = 
false, then FC will be evaluated. The formal definition 
of a conditional is as follows. 

Definition. If  B is a fen and T and F are statements, 
then if B then T else F stands in the place of [C ] [true :7, 
false :F] [BC]C]. 

The following theorem states that this definition 
works as expected. 

THEOREM. I f  B C =  true then (if B then T else F)C = 
TC and i f  B C =  false then (if B then T else F)C = FC. 

PROOF. We prove the theorem for B C =  true only, as 
the other case is exactly analogous. Suppose B C =  true, 
then 

(if B then T else F) C 
= [CI [true:T, false:F][BC]C]C 
= [true:T, false:F][BC]C 
= T C D  

It should be noted that BC=t rue  (or false) requires that 
the computation of B on C will terminate. If  this is not 
the case, then B C  will have no value. 

4.5. Assignment 
If  for the moment we assume that several operators 

are defined in the obvious way, then we might write a 
small program as follows: 

y *--- [Hd:O,Th[Hd:l, TI:[Hd:2, Tl:Nil]]J; 
x ~-- Cy[TIJ[Hd]; 
z ~-- Cy[Tll[Tll[Hdl; 
w ~ Cx + Cy. 

Update[C,x,FJx 
= [Cxy j  [a:bjc[a:b] A a ~ x  V a=--x A b--y]] 
CxFx  
= [a:b[c[a:b] A aT~x V a=-x ^ b=--F]x 
= F .  

Similarly the other result holds. [] 
One consequence of this model is that only state- 

ments can have side effects in the environment. A sub- 
expression of a statement can affect the local environ- 
ment only indirectly, i.e. by passing a value to the state- 
ment of which it is a part. A result of this is that the 
assignment operator has no value. 

4.6. The Star of  Statements 
To model computation in any reasonable way, it is 

necessary to be able to represent iteration or recursion. 
The approach to recursion taken here is based on the 
technique used in real implementations; i.e. the function 
is part of the environment. We indicate the general tech- 
nique with an example, the factorial function. Again, 
any undefined fen should be assumed to have their ob- 
vious definitions. 

x ~-- 0; y ~-- 10; 
fact ~-- [Cx I i fx  = 0then 1 else x*C fact [C, x]]; 
x ~ C fact [C, Cy] 

At termination x will select 10! from the resulting en- 
vironment. Observe that the definition invokes fact in 
the environment of the caller. 

Recursion is often introduced into formal systems 
with Curry and Feys' paradoxical combinator, 1I, which 
is defined by 

Y = I f  [ Ix I f(xx) j ix I f ( xx ) ] l .  

If R is the result of this program applied to an elemen- 
tary item, then Rw = 3. In this context the prefix C is seen 
to be analogous to a dereferencing operator on the en- 
vironment. 

The assignment, or updating operator, ~--, is defined 
as follows: 

x ~ y [ C J  = Update[C,x,y[ 
where Update = [Cxy l  [a:b I c[a:b] A a C x  V 
a=---x A b--y]]. 

Defining Update in this way causes the allocation of x 
in C if it is not already a selector of C. 

The following elementary theorem guarantees that 
the assignment operator has the properties we expect it 
to have. This theorem corresponds to Kaplan's axioms 
A1 and A2 in [12]. 

THEOREM. For any fen  F, C and selectors x, y where 

B6hm calls Y by 0, following Rosenbloom. 

This approach is taken by Strachey [27], Henderson [8], 
Landin [13], and B6hm [2]? The definition of Y is such 

that Y f  ---~ J 'Y f  ---~ f f Y f  ---~ . . .. 
The Y colnbinator is seen to be a special case of stor- 

ing the function in the environment. With the Y combi- 
nator the local environment contains only the function 
[x ] f(xx)] .  The fen approach is to be preferred since it is 
more in accord with actual practice. Also, as is shown 
later, this is itself a special case of the more general prob- 
lem of environment. 

4.7. While-loops 
We briefly discuss the semantics of the while-loop. 

The intuitive meaning associated with while B do S is 
that the statement S is to be applied to the environment 
as long as the fen B evaluates to true. 

Let W be a selector distinct from all those used in a 

given program. We assume each environment contains 
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what amounts to the result of the assignment: 6 

W ~ [CBS I (if B then(S;while B do S) else KC)C[. 

The while-loop is defined by stating that the statement 
while B do S stands in the place of the statement [C] C W  
[C, B, SIC]. Thus the while-loop operates by recursively 
calling itself as long as B on the current environment is 
true. Following is a proof that this definition works as 
intuitively expected. 

THEOREM. I f  B, C are fen and S is a statement and 
B(SnC) = false and for all k < n (with k > O) we have 
B(SkC) = true, then (while B do S)C = SnC. 

PROOF. Suppose the hypothesis is satisfied. The 
proof will be by induction on n. For the case n = 0 we 
are assuming BC = false. By the definition we have 

(while B do S)C = CW[C, B, SIC 
= (if B then (S; while B do S)else KC)C 
-- KCC = C. 

Now suppose 11 > 0. Since B(S'~C) = false, we know 
B (S '~-1 (SC)) = false. Since for all k < n B (SkC) = 
true, we know for all j < n -- 1, B(SJ(SC)) = true. 
Since B (S"C) = false, we know SC terminates and is 
thus a fen. By the induction hypothesis 

(while B do S)SC = S"-I(SC) = SnC. 
(while B do S)C = CW[C, B, S]C 

= (if B then (S; while B do S) else KC)C 
= (while B do S)SC 
= S " C U ]  

The following two corollaries follow trivially from the 
above theorem. Together they constitute Hoare 's  axiom 
D3 [10]. 

COROLLARY. I f  for some finite n, B(S'~C) = false, 
then (while B do S)CB = false; i.e. the condition is' false 
after the loop. 

COROLLARY. I f  for some finite 1l, B( S"C) = false, and 
for  all fen, C, and predicates, P, we have that i f  PC then 
P(SC), then we have that i f  PC then P((while B do S)C). 

4.8. Environment 
Most programming languages include some concept 

of "scope of names" and automatic allocation and deal- 
location of storage. Change of scope and storage alloca- 
tion/deallocation is usually associated with entry to and 
exit from blocks, composite statements delimited by 
begin and end or similar symbols. The semantics asso- 
ciated with begin typically include pushing down the 
current environment and creating a new environment 
with some preallocated variables. The semantics asso- 
ciated with end involves deleting the current environ- 
ment and restoring the environment saved by the last 
begin. 

Some mechanism is provided to allow statements to 
have access to the global-environment, the collection of 
environments saved by as yet unmatched begins. The 
following discussion presents two ways in which the 
global environment can be maintained. 

Previous environments can be maintained as a linked 
list with the local environment as the head of the list. Let 
K = [xC I x]; i.e. Kis a statement which makes its argu- 
ment the new local environment. If  we then define 

begin = K[[globahC]] 

the statement begin will create a new local environment 
whose only selector is global, which contains the old en- 
vironmentY If we define 

end = K[Cglobal] 

then the end statement will have the effect of restoring 
the old environment. References to a variable x in the 
local environment are accomplished, as before, by Cx. 
References to x in the global environment are accom- 
plished with Cglobal x, Cglobal global x, etc., depending 
on how deeply the environment of x has been depressed. 
Updates of the global environment are more compli- 
cated, as the following example indicates. 

begin; 
x ~--- 1; 
z~-- 1; 
begin; 

y ~-- 2; 
global +-- (z ~-- Cy + Cglobal x) [Cglobal] ; 

end; 
end 

If  S is any product of statements then the construction 
G ~ (S) [CG] is called an environment switch and may be 
abbreviated G:S. In the above example we could have 
written 

global: z ~-- Cy -t- Cglobal x. 

As suggested above, chaining is not the only mecha- 
nism through which access to global environments may 
be obtained. Another possible technique is to maintain 
in the local environment a vector 8 of previous environ- 
ments. Accesses to the global environment for x take the 
form CE[1 ix, CE[2]x, etc. Both of these methods corre- 
spond closely to real implementation techniques. 

5. Conclusions 

An abstract entity (called a web) has been introduced 
which corresponds to a particular instance of a relation. 
Some of these entities (those called fen) correspond to 
particular instances of functions. The resulting mecha- 
nism is so general that one can summon up the power of 
the algebras of classes and relations, if this is necessary. 
Furthermore, the system is close enough to the basic 
substratum of computer science to enable concise defini- 
tions of important semantic concepts. Common infor- 

6 The statement KC, as will be shown later, is a do-nothing or 
empty statement. 

7 This technique is analogous to that used by Landin in [13] in 
which the selector global was called D (Dump). 

8 A vector is a fen whose domain is a contiguous subset of the 
integers. 
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mation structures such as arrays, records, random files, 
relational data bases, and functions are seen to be special 
cases of  webs and fen. 

As sample applications of the theory, a possible se- 
mantics for data types and computat ions was presented. 
Clearly the models presented are not the only ones possi- 
ble, or even desirable. The semantics of some languages 
might require a data item to include an indication of its 
type. Similarly, certain languages will allow side effects. 
These will have to be allowed for by making each value a 
two-element structure, one of whose fields is the environ- 
ment (see [27]). 

It is not obvious that a lambda-calculus format  is the 
best representation of a program. In [7] and [19] it has 
been suggested that a format  similar to that of a Petri 
net would be superior for optimization and machine 
independent compiler output. The theory of webs and 
fen lends itself nicely to the description of this variety of 
computation,  and work is currently being done on the 
complete formal specification of a language designed on 
this basis. When it is clear which semantic primitives are 
necessary, a microprogrammed implementation is in- 
tended. It  is hoped that the formal system will provide a 
convenient medium in which to prove the correctness 
both of the implementation and of programs based on 
the implementation. 

Appendix 

The Formalism 
The following presentation of the formalism govern- 

ing data items (webs and fen) assumes some familiarity 
with formal systems as defined by Curry and Feys in [6, 
ch. 2]. 

Morphology 
1. Primitive Ideas. The obs of the system can be clas- 

sified as follows. 
The connectives --1, --% e, and the punctuation sym- 

bols ( and ). Using these symbols and well known defini- 
tions the usual formulas of the predicate calculus can be 
constructed. 

The system includes a denumerable infinity of indi- 
vidual variables serving as place holders for names of 
members of the domain of interpretation. On the in- 
tended interpretation these variables will stand for arbi- 
trary "things." 

The system includes one ternary predicate con- 
stant, w[x:y]. On the intended interpretation w[x:y] 
means the selector/field pair x :y is a member  of the ob w. 

2. Formation Rules. Individual variables are terms. 
I f  w, x, and y are terms, then w[x:y] is a formula. 
I f  R and S are formulas, then -1 R and R --+ S are 

formulas. 
I f  x is an individual variable and S is a formula, 

then (ex)S is a term. The intended meaning of (ex)S is 
"any x such that S." 
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The application of the above rules will be further 
constrained by the requirements of  simple type theory. 

Using the above formation rules and obvious defini- 
tions all statements concerning the obs of the system can 
be expressed. 

Transformation Rules 
1. Axioms. The axioms of the system include the 

four usual axioms of the propositional calculus, the 
axiom governing the e operator  [9], and the axioms 
commonly  known as extensionality and Zusammenfas-  
sung. These axioms provide for the usual theorems of 
logic and the algebra of classes. 

There are two axioms that govern the individuals of 
the system. 

The term web is introduced to denote the formal con- 
cept corresponding to the informal concept of  "data  
i tem." 

Definition. A web is any " th ing"  (individual) which 
satisfies: 
- - a t  least one individual is not in its domain, and 
- - a t  least one individual is not in its range. 

This distinction between a web and a " th ing"  is ex- 
actly analogous to the distinction between a set and a 
l l .Ding in von Neumann ' s  set theory [22, 23]. The exclu- 
sion from web-hood of individuals that have domains or 
ranges containing the universe prevents the definition of 
contradictory webs. 

Definition. We say that an individual, w, performs a 
relation, R, when for all x and y, w[x:y] if and only i f x  
and y are webs and R(x, y). The class of all webs (n.b. 
not individuals) that perform a given relation is called 
the performing class of that relation. 

Since webs correspond to data items in the intended 
domain of interpretation, and since it is intuitively felt 
that  there should be an unlimited number  of "copies"  of  
any datum, we postulate: 

AXIOM 1. WEAX--the Web Existence Axiom. I f  R is 
any relation on individuals, then the performing class of R 
is infinite. 

This axiom will guarantee that a sufficient number of  
webs are available to derive the theorems we desire to be 
true. Note  that it is not required that the performing 
class of a relation be denumerably infinite. 

The fieM of an individual is defined to be the union of 
its domain and its range. The following theorem is easy 
to prove using the definition of performing. 

THEOREM. The field of an individual contains only webs 
if  and only if there is some relation (on webs) that that 
individual performs. 

This theorem suggests that we should postulate: 
AXIOM 2. WFAX--the Web FieM Axiom. The field of 

an individual contains only webs. 
2. Rules of Inference. The rules of inference are 

Modus Ponens and generalization. Thus conventional 
techniques may be used in derivations and proofs about  
webs. 
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Petri Nets and Speed 
Independent Design 
David Misunas 
Massachusetts Institute of Technology 

Petri nets are investigated as one method of 
modeling speed independent asynchronous circuits. A 
study of circuit realizations of Petri nets leads to a 
demonstration of their usefulness in modeling speed 
independent operation. This usefulness is emphasized by 
the design of a speed independent processor from 
modules developed in the investigation of Petri net 
implementation. 

Key Words and Phrases: speed independent asyn- 
chronous, Petri net 

CR Categories: 6.1, 6.33 

1. Introduction 

The uti l izat ion of a synchronous  techniques in logic 
design has in t roduced many  new problems in the digital 
field. One of the difficulties inherent  in the design of 
a synchronous  circuits is the possible presence of arbi- 
t rary delays both  in elements and  connect ions  of the 
circuit. A circuit  in which such delays have no effect 
upon  circuit  operat ion,  other than  possibly causing the 
circuit  to run  slower, is known  as a speed independen t  

circuit. 
Ear ly  studies of speed independen t  circuits [10, 19, 

22] were concerned  with methods  of model ing  such 
circuits and  describing their opera t ion  in some precise 
mathemat ica l  form. These studies merely exposed . the  
problems inherent  in developing such a method.  Any  
means  in order to be useful in depict ing speed independ-  
ent opera t ion must :  (1) conta in  a direct correlat ion be- 

Copyright @ 1973, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Author's address: MIT project MAC Room 530, 545 Technol- 
ogy Square, Cambridge, MA. 02139. 

474 Communications August 1973 
of Volume 16 
the ACM Number 8 


