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Abstract: Although we agree with Lake et al.’s central argument, there are
numerous flaws in the way people use causal models. Our models are often
incorrect, resistant to correction, and applied inappropriately to new
situations. These deficiencies are pervasive and have real-world
consequences. Developers of machines with similar capacities should
proceed with caution.

Lake et al. present a compelling case for why causal model-build-
ing is a key component of human learning, and we agree that
beliefs about causal relations need to be captured by any convinc-
ingly human-like approach to artificial intelligence (AI). Knowl-
edge of physical relations between objects and psychological
relations between agents brings huge advantages. It provides a
wealth of transferable information that allows humans to quickly
apprehend a new situation. As such, combining the computational
power of deep-neural networks with model-building capacities
could indeed bring solutions to some of the world’s most pressing
problems. However, as advantageous as causal model-building
might be, it also brings problems that can lead to flawed learning
and reasoning. We therefore ask, would making machines
“human-like” in their development of causal models also make
those systems flawed in human-like ways?

Applying a causal model, especially one based on intuitive under-
standing, is essentially a gamble. Even though we often feel like we
understand the physical and psychological relations surrounding us,
our causal knowledge is almost always incomplete and sometimes
completely wrong (Rozenblit & Keil 2002). These errors may be
an inevitable part of the learning process by which models are
updated based on experience. However, there are many examples
in which incorrect causal models persist, despite strong counterevi-
dence. Take the supposed link between immunisation and autism.
Despite the science and the author of the original vaccine-autism
connection being widely and publicly discredited, many continue
to believe that immunisation increases the risk of autism and their
refusal to immunise has decreased thepopulation’s immunity to pre-
ventable diseases (Larson et al. 2011; Silverman & Hendrix 2015).

Failures to revise false causal models are far from rare. In fact,
they seem to be an inherent part of human reasoning. Lewandow-
sky and colleagues (2012) identify numerous factors that increase
resistance to belief revision, including several that are societal-
level (e.g., biased exposure to information) or motivational (e.g.,
vested interest in retaining a false belief). Notwithstanding the sig-
nificance of these factors (machines too can be influenced by
biases in data availability and the motives of their human develop-
ers), it is noteworthy that people still show resistance to updating
their beliefs even when these sources of bias are removed, espe-
cially when new information conflicts with the existing causal
model (Taylor & Ahn 2012).

Flawed causal models can also be based on confusions that are
less easily traced to specific falsehoods. Well-educated adults reg-
ularly confuse basic ontological categories (Chi et al. 1994), dis-
tinctions between mental, biological, and physical phenomena
that are fundamental to our models of the world and typically
acquired in childhood (Carey 2011). A common example is the
belief that physical energy possesses psychological desires and
intentions – a belief that even some physics students appear to
endorse (Svedholm & Lindeman 2013). These errors affect both
our causal beliefs and our choices. Ontological confusions have

been linked to people’s acceptance of alternative medicine, poten-
tially leading an individual to choose an ineffective treatment over
evidence-based treatments, sometimes at extreme personal risk
(Lindeman 2011).

Causal models, especially those that affect beliefs about treat-
ment efficacy, can even influence physiological responses to
medical treatments. In this case, known as the placebo effect,
beliefs regarding a treatment can modulate the treatment
response, positively or negatively, independently of whether a
genuine treatment is delivered (Colagiuri et al. 2015). The
placebo effect is caused by a combination of expectations driven
by causal beliefs and associative learning mechanisms that are
more analogous to the operations of simple neural networks. Asso-
ciative learning algorithms, of the kind often used in neural net-
works, are surprisingly susceptible to illusory correlations, for
example, when a treatment actually has no effect on a medical
outcome (Matute et al. 2015). Successfully integrating two differ-
ent mechanisms for knowledge generation (neural networks and
causal models), when each individually may be prone to bias, is
an interesting problem, not unlike the challenge of understanding
the nature of human learning. Higher-level beliefs interact in
numerous ways with basic learning and memory mechanisms,
and the precise nature and consequences of these interactions
remain unknown (Thorwart & Livesey 2016).

Even when humans hold an appropriate causal model, they often
fail to use it.When facing a new problem, humans often erroneously
draw upon models that share superficial properties with the current
problem, rather than those that sharekey structural relations (Gick&
Holyoak 1980). Even professional management consultants, whose
job it is to use their prior experiences to help businesses solve
novel problems, often fail to retrieve the most relevant prior experi-
ence to the newproblem (Gentner et al. 2009). It is unclear whether
an artificial system that possesses mental modelling capabilities
would suffer the same limitations. On the one hand, they may be
caused by human processing limitations. For example, effective
model-based decision-making is associated with capacities for learn-
ing and transferring abstract rules (Donet al. 2016), and for cognitive
control (Otto et al. 2015), which may potentially be far more power-
ful in future AI systems.On the other hand, the power of neural net-
works lies precisely in their ability to encode rich featural and
contextual information. Given that experience with particular
causal relations is likely to correlate with experience of more super-
ficial features, a more powerful AI model generator may still suffer
similar problems when faced with the difficult decision of which
model to apply to a new situation.

Would human-like AI suffer human-like flaws, whereby recalci-
trant causal models lead to persistence with poor solutions, or
novel problems activate inappropriate causal models? Developers
of AI systems should proceed with caution, as these properties of
human causal modelling produce pervasive biases, and may be
symptomatic of the use of mental models rather than the limita-
tions on human cognition. Monitoring the degree to which AI
systems show the same flaws as humans will be invaluable for
shedding light on why human cognition is the way it is and, it is
hoped, will offer some solutions to help us change our minds
when we desperately need to.

Benefits of embodiment
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Abstract: Physical competence is acquired through animals’ embodied
interaction with their physical environments, and psychological
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competence is acquired through situated interaction with other agents.
The acquired neural models essential to these competencies are implicit
and permit more fluent and nuanced behavior than explicit models. The
challenge is to understand how such models are acquired and used to
control behavior.

The target article argues for the importance of “developmental
start-up software” (sects. 4.1 and 5.1), but neglects the nature of
that software and how it is acquired. The embodied interaction
of an organism with its environment, provides a foundation for
its understanding of “intuitive physics” and physical causality.
Animal nervous systems control their complex physical bodies in
their complex physical environments in real time, and this compe-
tence is a consequence of innate developmental processes and,
especially in more complex species, subsequent developmental
processes that fine-tune neural control, such as prenatal and post-
natal “motor babbling” (non-goal-directed motor activity) (Meltz-
off & Moore 1997). Through these developmental processes,
animals acquire a non-conceptual understanding of their bodies
and physical environments, which provides a foundation for
higher-order imaginative and conceptual physical understanding.

Animals acquire physical competence through interaction with
their environments (both phylogenetic through evolution and
ontogenetic through development), and robots can acquire phys-
ical competence similarly, for example, through motor babbling
(Mahoor et al. 2016), and this is one goal of epigenetic and devel-
opmental robotics (Lungarella et al. 2003). In principle, compara-
ble competence can be acquired by simulated physical agents
behaving in simulated physical environments, but it is difficult
to develop sufficiently accurate physical simulations so that
agents acquire genuine physical competence (i.e., competence
in the real world, not some simulated world). It should be possible
to transfer physical competence from one agent to others that are
sufficiently similar physically, but the tight coupling of body and
nervous system suggests that physical competence will remain
tied to a “form of life.”

Animals are said to be situated because cognition primarily
serves behavior, and behavior is always contextual. For most
animals, situatedness involves interaction with other animals; it
conditions the goals, motivations, and other factors that are caus-
ative in an animal’s own behavior, and can be projected onto other
agents, providing a foundation for “intuitive psychology.” Psycho-
logical competence is grounded in the fact that animals are situ-
ated physical agents with interests, desires, goals, fears, and so
on. Therefore, they have a basis for non-conceptual understanding
of other agents (through imagination, mental simulation, projec-
tion, mirror neurons, etc.). In particular, they can project their
experience of psychological causality onto other animals. This psy-
chological competence is acquired through phylogenetic and
ontogenetic adaptation.

The problem hindering AI systems from acquiring psychologi-
cal competence is that most artificial agents do not have interests,
desires, goals, fears, and so on that they can project onto others or
use as a basis for mental simulation. For example, computer vision
systems do not “care” in any significant way about the images they
process. Because we can be injured and die, because we can feel
fear and pain, we perceive immediately (i.e., without the media-
tion of conceptual thought) the significance of a man being
dragged by a horse, or a family fleeing a disaster (Lake et al.,
Fig. 6). Certainly, through artificial evolution and reinforcement
learning, we can train artificial agents to interact competently
with other (real or simulated) agents, but because they are a dif-
ferent form of life, it will be difficult to give them the same
cares and concerns as we have and that are relevant to many of
our practical applications.

The target article does not directly address the important dis-
tinction between explicit and implicit models. Explicit models
are the sort scientists construct, generally in terms of symbolic
(lexical-level) variables; we expect to be able to understand explicit
models conceptually, to communicate them in language, and to
reason about them discursively (including mathematically).

Implicit models are the sort that neural networks construct, gen-
erally in terms of large numbers of sub-symbolic variables,
densely interrelated. Implicit models often allow an approximate
emergent symbolic description, but such descriptions typically
capture only the largest effects and interrelationships implicit in
the sub-symbolic model. Therefore, they may lack the subtlety
and context sensitivity of implicit models, which is why it is diffi-
cult, if not impossible, to capture expert behavior in explicit
rules (Dreyfus & Dreyfus 1986). Therefore, terms such as “intui-
tive physics,” “intuitive psychology,” and “theory of mind” are mis-
leading because they connote explicit models, but implicit models
(especially those acquired by virtue of embodiment and situated-
ness) are more likely to be relevant to the sorts of learning dis-
cussed in the target article. It is less misleading to refer to
competencies, because humans and other animals can use their
physical and psychological understanding to behave competently
even in the absence of explicit models.
The target article shows the importance of hierarchical compo-

sitionality to the physical competence of humans and other animals
(sect. 4.2.1); therefore, it is essential to understand how hierarchi-
cal structure is represented in implicit models. Recognizing the
centrality of embodiment can help, for our bodies are hierarchi-
cally articulated and our physical environments are hierarchically
structured. The motor affordances of our bodies provide a basis
for non-conceptual understanding of the hierarchical structure of
objects and actions. However, it iss important to recognize that
hierarchical decompositions need not be unique; they may be
context dependent and subject to needs and interests, and a holis-
tic behavior may admit multiple incompatible decompositions.
The target article points to the importance of simulation-based

and imagistic inference (sect. 4.1.1). Therefore, we need to under-
stand how they are implemented through implicit models. Fortu-
nately, neural representations, such as topographic maps, permit
analog transformations, which are better than symbolic digital
computation for simulation-based and imagistic inference. The
fact of neural implementation can reveal modes of information
processing and control beyond the symbolic paradigm.
Connectionism consciously abandoned the explicit models of

symbolic AI and cognitive science in favor of implicit, neural
network models, which had a liberating effect on cognitive
modeling, AI, and robotics. With 20-20 hindsight, we know
that many of the successes of connectionism could have been
achieved through existing statistical methods (e.g., Bayesian
inference), without any reference to the brain, but they were
not. Progress had been retarded by the desire for explicit,
human-interpretable models, which connectionism abandoned
in favor of neural plausibility. We are ill advised to ignore the
brain again.

Understand the cogs to understand cognition
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Abstract: Lake et al. suggest that current AI systems lack the inductive
biases that enable human learning. However, Lake et al.’s proposed
biases may not directly map onto mechanisms in the developing brain. A
convergence of fields may soon create a correspondence between
biological neural circuits and optimization in structured architectures,
allowing us to systematically dissect how brains learn.
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In this commentary, we highlight a crucial challenge posed by the proposal of Lake et al. to introduce key elements of human cognition into deep neural networks and future artificial-intelligence systems: the need to design effective sophisticated architectures. We propose that looking at the brain is an important means of facing this great challenge.
We agree with the claim of Lake et al. that to obtain human-level learning speed and cognitive flexibility, future artificial-intelligence (AI) systems will have to incorporate key elements of human cognition: from causal models of the world, to intuitive psychological theories, compositionality, and knowledge transfer. However, the authors largely overlook the importance of a major challenge to implementation of the functions they advocate: the need to develop sophisticated architectures to learn, represent, and process the knowledge related to those functions. Here we call this the architecture challenge. In this commentary, we make two claims: (1) tackling the architecture challenge is fundamental to success in developing human-level AI systems; (2) looking at the brain can furnish important insights on how to face the architecture challenge.
The difficulty of the architecture challenge stems from the fact that the space of the architectures needed to implement the several functions advocated by Lake et al. is huge. The authors get close to this problem when they recognize that one thing that the enormous genetic algorithm of evolution has done in millions of years of the stochastic hill-climbing search is to develop suitable brain architectures. One possible way to attack the architecture challenge, also mentioned by Lake et al., would be to use evolutionary techniques mimicking evolution. We think that today this strategy is out of reach, given the &ldquo;ocean-like&rdquo; size of the search space. At most, we can use such techniques to explore small, interesting &ldquo;islands lost within the ocean.&rdquo; But how do we find those islands in the first place? We propose looking at the architecture of real brains, the product of the evolution genetic algorithm, and try to &ldquo;steal insights&rdquo; from nature. Indeed, we think that much of the intelligence of the brain resides in its architecture. Obviously, identifying the proper insights is not easy to do, as the brain is very difficult to understand. However, it might be useful to try, as the effort might give us at least some general indications, a compass, to find the islands in the ocean. Here we present some examples to support our intuition.
When building architectures of AI systems, even when following cognitive science indications (e.g., Franklin 2007), the tendency is to &ldquo;divide and conquer,&rdquo; that is, to list the needed high-level functions, implement a module for each of them, and suitably interface the modules. However, the organisation of the brain can be understood on the basis of not only high-level functions (see below), but also &ldquo;low-level&rdquo; functions (usually called &ldquo;mechanisms&rdquo;). An example of a mechanism is brain organisation based on macro-structures, each having fine repeated micro-architectures implementing specific computations and learning processes (Caligiore et al. 2016; Doya 1999): the cortex to statically and dynamically store knowledge acquired by associative learning processes (Penhune &amp; Steele 2012; Shadmehr &amp; Krakauer 2008), the basal ganglia to learn to select information by reinforcement learning (Graybiel 2005; Houk et al. 1995), the cerebellum to implement fast time-scale computations possibly acquired with supervised learning (Kawato et al. 2011; Wolpert et al. 1998), and the limbic brain structures interfacing the brain to the body and generating motivations, emotions, and the value of things (Mirolli et al. 2010; Mogenson et al. 1980). Each of these mechanisms supports multiple, high-level functions (see below).
Brain architecture is also forged by the fact that natural intelligence is strongly embodied and situated (an aspect not much stressed by Lake et al.); that is, it is shaped to adaptively interact with the physical world (Anderson 2003; Pfeifer &amp; G&oacute;mez 2009) to satisfy the organism&apos;s needs and goals (Mannella et al. 2013). Thus, the cortex is organised along multiple cortical pathways running from sensors to actuators (Baldassarre et al. 2013a) and &ldquo;intercepted&rdquo; by the basal ganglia selective processes in their last part closer to action (Mannella &amp; Baldassarre 2015). These pathways are organised in a hierarchical fashion, with the higher ones that process needs and motivational information controlling the lower ones closer to sensation&sol;action. The lowest pathways dynamically connect musculoskeletal body proprioception with primary motor areas (Churchland et al. 2012). Higher-level &ldquo;dorsal&rdquo; pathways control the lowest pathways by processing visual&sol;auditory information used to interact with the environment (Scott 2004). Even higher-level &ldquo;ventral&rdquo; pathways inform the brain on the identity and nature of resources in the environment to support decisions (Caligiore et al. 2010; Milner &amp; Goodale 2006). At the hierarchy apex, the limbic brain supports goal selection based on visceral, social, and other types of needs&sol;goals. Embedded within the higher pathways, an important structure involving basal ganglia&ndash;cortical loops learns and implements stimulus&ndash;response habitual behaviours (used to act in familiar situations) and goal-directed behaviours (important for problem solving and planning when new challenges are encountered) (Baldassarre et al. 2013b; Mannella et al. 2013). These brain structures form a sophisticated network, knowledge of which might help in designing the architectures of human-like embodied AI systems able to act in the real world.
A last example of the need for sophisticated architectures starts with the recognition by Lake et al. that we need to endow AI systems with a &ldquo;developmental start-up software.&rdquo; In this respect, together with other authors (e.g., Weng et al. 2001; see Baldassarre et al. 2013b; 2014, for collections of works) we believe that human-level intelligence can be achieved only through open-ended learning, that is, the cumulative learning of progressively more complex skills and knowledge, driven by intrinsic motivations, which are motivations related to the acquisition of knowledge and skills rather than material resources (Baldassarre 2011). The brain (e.g., Lisman &amp; Grace 2005; Redgrave &amp; Gurney 2006) and computational theories and models (e.g., Baldassarre &amp; Mirolli 2013; Baldassarre et al. 2014; Santucci et al. 2016) indicate how the implementation of these processes indeed requires very sophisticated architectures able to store multiple skills, to transfer knowledge while avoiding catastrophic interference, to explore the environment based on the acquired skills, to self-generate goals&sol;tasks, and to focus on goals that ensure a maximum knowledge gain.
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