
August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 1

c© 2021 World Scientific Publishing Company

https://doi.org/10.1142/9789811235726 0001

Chapter 1

Mapping the Territory of Computation
Including Embodied Computation

Bruce J. MacLennan

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, Tennessee 37996, USA

maclennan@utk.edu

Investigation of alternatives to conventional computation is important
both in order to have a comprehensive science of computing and
to develop future computing technologies. To this end, we consider
the full range of computational paradigms that is revealed when
we relax the familiar assumptions of conventional computation. We
address the topology of information representation, the topology of
information processing, and unconventional notions of programmability
and universality. The physics of computation is especially relevant in
the post-Moore’s law era, and so we focus on embodied computation, an
alternative computing paradigm that focuses on the physical realization
of computation, either making more direct use of physical phenomena to
solve computational problems, or more directly exploiting the physical
correlates of computation to implement some intended physical process.
Examples of the exploitation of physical processes for information
processing include analog computation, quantum computation, and field
computation. Examples of the use of embodied computation for physical
purposes include programmable matter and artificial morphogenesis.

1.1. Unconventional Computation

Unconventional computation, non-standard computation, alternative

computation: I take these to be synonyms, but what do they mean?

They are all negative terms, defined more by what they are not than

by what they are; they refer to computation that is not conventional

or standard, or that is an alternative to what is conventional and

1

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

https://doi.org/10.1142/9789811235726_0001


August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 2

2 B. J. MacLennan

standard. Therefore, a computing paradigm may be “alternative”

by deviating from the common characteristics of computing as we

have come to know them. Among these are binary digital electron-

ics, sequential electronic logic, von Neumann architecture, discrete

data representation, discrete memory units randomly addressable

by natural numbers, modifiable memory, programs stored in this

memory, sequential execution from memory, deterministic process-

ing, conditional and iterative control mechanisms, and hierarchical

program organization. You can no doubt think of more, and some

otherwise quite conventional computing systems might lack one or

another of these characteristics, but they indicate possible directions

for alternative computing paradigms.

The conventional computing paradigm has been wildly success-

ful, and it is reasonable to question the value of investigating alter-

natives, but there are at least two motivations. The first motivation,

and I think the most important, is scientific. Computer science is

the science of computing and so it should investigate computing in

all its manifestations, artificial and natural. Restricting attention to

conventional computation would be akin to biologists restricting their

study to bacteria (because they are so numerous) while ignoring all

other living things.

Computation may be defined as a physical process with the

function or purpose of processing information (see Refs. [1, 2]

for more on distinguishing computing from other physical pro-

cesses). Throughout history, many computational techniques have

been developed, including manual arithmetic, slide rules, abacuses,

and similar devices, but also geometric constructions and tools

(e.g., pantographs). Also included are formal logical techniques,

including logical calculi and various sorts of logic diagrams. Over

the centuries machines have been designed to do more-or-less

automatic computation, including (electro-)mechanical arithmetic

calculators, mechanical analog integrators and Fourier analyzers,3, 4

and (electro-)mechanical analog differential analyzers.5, 6 In the realm

of electronic computation, we have the modern digital computer,

but also analog computers, which were once as common as digital

machines and are returning to importance for some applications,

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 3

Mapping the Territory of Computation Including Embodied Computation 3

such as neural networks.7 It behoves us to study all the ways

computing has been done in the past, both to understand it more

completely, but also to better understand the possibilities for future,

alternative computing technologies.

Computer science also investigates the manifestations of com-

puting and information processing in nature, not only in the brains

of individual animals, but also in the “group brains” of social

animals (including human beings). Computational principles are

involved in the cooperation and coordination of flocks of birds,

schools of fish, and herds of land animals. Social insects (and

much simpler organisms, such as slime molds) solve optimization

problems and construct complex nests and colonies simultaneously

fulfilling multiple functions. Evolution by natural selection is itself

information processing, searching a complex space for designs with

selective advantage. The discipline of natural computation studies

these instances of computation in nature, but also takes inspiration

from them to develop future computing methods.

It is apparent that computation in nature has little in common

with conventional computation: it is rarely binary or even digital, but

more often analog; it is rarely strictly sequential and more commonly

asynchronous and parallel; typically it does not separate memory

and processing or make use of stored programs; it is often non-

deterministic; it operates reliably and robustly under conditions of

significant and unavoidable uncertainty, errors, defects, faults, and

noise; and so on.1 Nevertheless, natural computation is very effective;

it has facilitated the evolution of innumerable species, including our

own. This demonstrates that computing is much more than our

familiar digital von Neumann devices. Therefore, in Section 1.2, we

will consider computation in the broad sense.

Another important motivation for investigating alternative com-

puting is the inevitable end of Moore’s Law. Although this empirical

law results from a complex interaction of technological and economic

factors, it is apparent that it cannot continue forever. Due to the

atomic structure of matter and the laws of physics, there is a

limit to the smallness, density, and speed of electronic components.

The semiconductor industry continues to squeeze out incremental

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 4

4 B. J. MacLennan

improvements, but they are coming at an increasing cost and the

end is in sight.

A more distant, but harder barrier is posed by the von Neumann-

Landauer bound, which arises from the fact that information must

be represented physically.8 As a consequence, erasing, destroying,

or losing a bit of information must dissipate a certain minimum

amount of energy, specifically, kBT ln 2, where kB is Boltzmann’s

constant and T is ambient temperature; this minimum energy is

about 18 meV at 300K. The von Neumann–Landauer limit, which

was originally established theoretically, has been recently confirmed

empirically.9 Therefore, any computational operations that forget

information (in either computation or control) must dissipate at

least this much energy, which usually appears as heat. The only

way to avoid this limitation is to avoid discarding information

during computation, which is accomplished by reversible computing,

an alternative computing paradigm that has been explored both

theoretically10–13 and practically.14

1.1.1. Implications

Conventional computing technology is built upon many cleanly

separated levels of abstraction. Primitive data abstractions, such as

integers, characters, and real numbers, are implemented in terms of

bits, which are realized by physical devices with continuous state

spaces but operated in saturation, so as to simulate binary states.

Primitive data processing operations, such as addition, division, and

comparison, are realized by sequential digital logic, which is realized

by devices obeying continuous physical laws, but switching quickly

between saturated states. This clean separation of abstraction levels

has facilitated independent progress on each level. For example,

the same basic sequential digital logic has survived while switching

technology has progressed from mechanical, to electromechanical

(relays), to vacuum tubes (valves), to discrete transistors, to inte-

grated circuits, to very large scale integration. Algorithms (e.g.,

Newton’s algorithm, sorting algorithms) that ran on the earliest

computers can be and are run on the latest computers. Therefore,

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 5

Mapping the Territory of Computation Including Embodied Computation 5

progress on these various levels has not required us to abandon

the accumulated technological knowledge on other levels, which has

enabled rapid progress in computer science.

Unfortunately, we are reaching the limits of this hierarchical com-

puting technology, with its many levels between our programming

abstractions (embodied, e.g., in high-level programming languages)

and the physical laws governing our basic computing devices. To

achieve greater component densities and speeds, the number of layers

of abstraction must be decreased, since each layer introduces an

“abstraction cost”. The only way to accomplish this, since the laws of

physics are invariable, is to bring our programing abstractions closer

to the underlying physics.15 That is, our programming abstractions

should be more like the physical processes that realize them.

The laws of physics are continuous — differential and partial dif-

ferential equations — and therefore one implication of this increasing

assimilation of computing to physics is a greater dependance on ana-

log models of computation, that is, computation that is continuous

in state space and perhaps also dynamics. Analog computing avoids

the inefficiency of implementing continuous computation in terms of

digital computation that is in turn realized by continuous physical

processes. This conclusion applies as well to quantum computing,

which is founded on a continuous wave function, continuous (complex

valued) superpositions of basis states, and continuous dynamics

(Schrödinger’s equation).

The clean separation of levels of abstraction has depended on

the accuracy of simulation at each level; for example, our digital

switches really behave like perfect switches. This has been facilitated

by the largeness of our devices (compared to atomic dimensions), by

redundancy in our digital state representations, and by the relative

slowness of our digital processes compared to the underlying physics

(e.g., allowing processes to reach saturation in much less than a

clock cycle). Our technology has been built on a stack of idealized

abstractions, in which the idealizations have been close enough to

reality to be reliable. As we push toward smaller devices and higher

densities, however, and toward higher speeds, these idealizations

break down.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 6

6 B. J. MacLennan

In particular, noise, inaccuracy, imperfections, faults, uncer-

tainty, and other deviations from our idealized models will be

unavoidable. Instead of striving to completely eliminate them (which

would increase cost and inefficiency), we should embrace these

inevitable physical phenomena as sources of free variability, which

can be exploited for computational purposes (e.g., escape from

deadlock, exploration, non-determinism). Natural computation, that

is, computational processes in nature, teaches us ways to use this

free variability, since noise and error are unavoidable in nature, and

living systems, which are imperfect, have evolved to survive under

these circumstances.

1.2. Computation in General

Since we will need to “think outside of the Boolean box” to develop

future alternative models of computation, it will be worthwhile to

explore the landscape and boundaries of the idea of computation.

We will consider first the range of possibilities for information

representation, and second the variety of dynamical processes by

which information might be processed.

1.2.1. Topology of information representation

Rolf Landauer coined the slogan “Information is physical” to remind

us that information must be embodied in physical reality (at least if

it is to be used in any way), and therefore that information is not

independent of physical properties and limitations.8 (I have already

mentioned the von Neumann–Landauer limit as an example.)

In order to explore the physical nature of information, it is

convenient to use the Aristotelian distinction of form and matter

(hylomorphism).15 For our purposes, the form (Grk. morphē, eidos;

Lat. forma) is some discernable or discriminable arrangement or

structure of an underlying medium or substrate, the matter (Grk.

hulē; Lat. materia), which might be physical matter or energy. Form

and matter are relative terms, in which form refers to physical

properties that are intended or used to represent the information,

and matter refers to those physical properties that are not. Although

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 7

Mapping the Territory of Computation Including Embodied Computation 7

information must be instantiated in some physical substrate, it is,

qua information, independent of the matter and exists only in the

form. This independence leads to the misleading idea of disembodied

or non-physical information, to which Landauer objected. On the

other hand, information is multiply realizable in that the same or

an equivalent form can be realized in various material substrates, so

long as they support the fundamental differences of form required to

represent the information. (Thus, information is potentially separable

from matter, but in actuality always materially realized.)

Most material substates possess a large number of physical

properties, many degrees of freedom, only some of which are

used to represent information. Therefore it is useful to distin-

guish information-bearing degrees of freedom (IBDF ) from non-

information-bearing degrees of freedom (NIBDF ).13 The distinction

is grounded in the information processing, in the computational

processes to which the information is subject. Which are relevant to

the computation? Which irrelevant? For an example, we may consider

a simple electrical implementation of a bit: if all the free electrons

are on one plate of a capacitor, it represents a 0; if they are on the

other plate, a 1. This is the IBDF; the positions and velocities of

the electrons within the plate are NIBDF, for they are irrelevant to

whether a 0 or 1 is represented.

The relevant distinctions of form that constitute an information

space can be expressed often in terms of the topology of the space.

For example, a conventional digital computer operates on the discrete

topology on {0, 1} (or any homeomorphic space); an analog computer

might operate on continuous variables with states in the continuum

[0, 1] (or spaces homeomorphic to it). Another might operate on a

bounded region of the complex plane. These all are supported by a

variety of physical realizations.

More generally, the topology of an information space defines

relationships of similarity and difference, of approximation and

distance. It is the background on which information processing and

control takes place. Second-countable metric spaces (i.e., metric

spaces with a countable base) are a useful framework for many models

of computation, for they include both discrete spaces and continua.16

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 8

8 B. J. MacLennan

Information often has a complex constituent structure, which is

exemplified by the data structures used in conventional computer

programming. In general, the topology of these composite informa-

tion spaces is in some relevant sense the product of the topologies

of its constituent spaces. In conventional digital computation, the

components of a data structure are discrete, for example, the

homogeneous elements of an array or the heterogeneous elements

of a structure (record); memory in a von Neumann machine is an

indexable array of discrete bytes or words. Many analog computers

similarly operate on a discrete set of continuous variables or on

vectors or matrices of continuous variables, and so they have a

discrete constituent structure. However, analog computers have also

made use of continuous distributions of continuous information, that

is, of continuous fields of data. Early analog computers used a field

analogy method for solving partial differential equation problems [6,

p. 34], and fields provide a model for optical and quantum computing

technologies.17–20 For these information spaces, Hilbert spaces often

provide the relevant topology.21 In general, information spaces may

be function spaces on discrete or continuous domains.

1.2.2. Topology of information processing

Information is physical, as Landauer said, and therefore information

processing is also physical, which gets at the heart of computing.

Computation is a physical process, but what distinguishes it as com-

putation from other physical processes is that (in hylomorphic terms)

it depends only on the form of its state and not on its matter to fulfill

its purpose1, 2; we may call these information processes. Therefore,

an information process (computation) is multiply realizable, since

it can be realized by any physical system that supports the formal

distinctions and transformations used in the computation.

In general, a computation may be considered a dynamical system

coupled with its environment. The state space of the composite

system is a product of the external state space (at least as manifest

in the interface between the coupled systems) and the computational

state space; either may be discrete or continuous. If the state space is

discrete, then the dynamics is necessarily discrete as well. Often in a

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 9

Mapping the Territory of Computation Including Embodied Computation 9

discrete-time dynamical system, the state changes as fixed intervals,

perhaps controlled by a clock, but another possibility is sequential

dynamics, in which the sequence of states is defined, but not the state

transition times.22 Conventional digital computer programs exhibit

sequential dynamics, for the sequence of operations is defined, but

there is no presumption that they take equal amounts of time. If, on

the other hand, the state space is a continuum, then the dynamics

can be either continuous or discrete (including sequential). In all

these cases, the information relationships within the computational

system constrain the dynamics of the composite system to fulfill some

function or purpose.

Within this broad framework, there are many alternatives. Are

states strictly ordered or only partially ordered? Are state changes

deterministic or probabilistic? Are they reversible (as in Brownian

and quantum computing)? In states with either a finite discrete set

of components or with a continuum of components (such as a field),

how are the dynamics of the components related? Sequential? Syn-

chronous parallel? Asynchronous parallel? Stochastic? The dynamics

of information processing in natural systems, non-living as well as

living, suggest many possibilities.

1.2.3. Programmability

Conventional computation is generally associated with the idea

of programmability, but computers in general do not need to be

programmable; we can have special purpose computers designed for

a single computation. Nevertheless, programmability is important,

for it allows a single computer to be easily reconfigured for different

computational purposes, but we must consider programmability in a

more general sense. There is a tendency now to define programma-

bility in relation to the universal Turing machine or its equivalents

(lambda calculus, etc.), but as will be discussed later (Section 1.2.4),

alternative models of computation require alternative definitions of

computability.

If we think about the variety of ways that we use the verb “pro-

gram”, it is apparent that it refers to a process by which the behavior

of some system can be controlled by some abstract means. That is, a

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 10

10 B. J. MacLennan

more general class of possible behavior is restricted to some desired

subclass by means of an abstract specification, the program. To put

it in hylomorphic terms, the programmable system is the matter,

which has a broad class of possible behaviors, from which a subclass

is selected by imposition of a form, which is the program. The

form (program) organizes the computational substrate or medium to

have the desired dynamical behavior. The form becomes operative

(is executed) by its embodiment in the computational medium. It

is actualized (becomes active) by embodiment in an appropriate

computational medium, otherwise it is only a potential program so

long as its form is embodied in a non-computational medium (e.g.,

a piece of paper or a text file).

We are most familiar with textual and diagrammatic represen-

tations of programs, that is, programs expressed in programming

languages or flow diagrams. Both have a discrete constituent struc-

ture, which represents the dynamics in terms of basic computational

processes. The space of possible programs for a computer is generally

a formal language (over a finite, discrete alphabet) defined by a

formal grammar. Of course, programs are often translated from

one form to another, for example, from a program for an abstract

computer to an equivalent program for a physical computer.

Programs need not belong to discrete spaces, they can belong

to continua. For example, the dynamics of a computation can be

governed by a Hamiltonian function or a potential surface. In a simple

case, the input is encoded in the initial state, and the output is

encoded in a fixed-point attractor to which the system converges,

governed by the potential function.

Such continuous programs may be described in a discrete lan-

guage; for example, a potential function might be defined by a finite

set of equations, describing a problem Hamiltonian, as is done in

quantum annealing and similar optimization techniques. In this case,

the discrete program implicitly defines a continuous program. In

other cases, a continuous program might be expressed directly; the

appropriate metaphor might not be writing a program, but rather

sculpting a program.1 More commonly, continuous programs will not

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 11

Mapping the Territory of Computation Including Embodied Computation 11

be created explicitly by some programmer, but will emerge from

machine learning.

1.2.4. Universality

Any discussion of alternative, unconventional computing paradigms

must address the issue of Church–Turing computability, which has

been the de facto definition of computability for the better part of a

century. It is so familiar that it is difficult to imagine other definitions,

and the assumptions on which it is built are largely forgotten. We

must remember that Church, Turing, and the others who created the

theory of computation were trying to formalize the notion of effective

calculability in the foundations of mathematics. The assumptions

built into the model (discrete symbols, exact matching, sequential

dynamics, finiteness of representation and processing, etc.) were

appropriate for the problems they were addressing, and it is quite

remarkable that it has been applicable to conventional computing

more generally.

Nevertheless we must recall that the Turing machine is a model

of computation, and like all models it is useful because it makes

simplifying assumptions that are unproblematic for the domain of

questions it is intended to address. We may call this domain of

questions and issues the model’s frame of relevance.1, 23 Models

generally give incorrect or misleading answers when applied outside

of their frame of relevance or near to its boundaries, where its

simplifying assumptions affect the answers. Near or beyond the

boundaries, we are in danger of obtaining answers that have more to

do with the model and its assumptions than with the system being

modeled. Questions of computing power (e.g., whether a computing

paradigm has the power of a universal Turing machine), depending on

how they are framed (e.g., in terms of the class of functions that can

be computed), might or might not be in a model’s frame of relevance.

For example, the Church–Turing model is generally ill-equipped

to answer questions about real-time performance and real-time

emulation, which are relevant to some notions of computing power.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 12

12 B. J. MacLennan

A more pragmatic model of computational universality, which

is sometimes used, may be termed logic-gate computational uni-

versality. It is based on the observation that all our conventional,

von Neumann computers are constructed from a few logic gates,

and therefore any computing paradigm that can implement arbi-

trary finite circuits of these gates can, in principle, do anything a

conventional digital computer can do. (This is, of course, only an

approximation to Church–Turing universality, which also requires

an unbounded memory; conventional digital computers are finite-

state machines.) This model is suitable for addressing questions

of binary computation, but is less useful for questions relevant to

unconventional computation (e.g., analog computing), which are

outside of its frame of relevance.

In natural computation and many other alternative computing

paradigms (see, e.g., Section 1.3), other notions of universality may

be more relevant than the universal Turing machine.1 In general, we

are asking what class of dynamical systems can be implemented in

a particular computational medium (matter) by a specified space of

programs (forms). Since this dynamical system might be intended to

interact with the external, non-computational environment, issues

of real-time performance, accuracy, physical resources, and energy

dissipation might be relevant. In other words, the question of whether

a programmed system is “equivalent” to some hardware might not be

a simple matter of computing the same class of functions; it might be

more than this in some respects, and less in others. We must beware

of being seduced by our familiar models and theories.

1.3. Embodied Computation

1.3.1. Definition

If future progress in computation, especially post-Moore’s law

computation, will require a greater assimilation of computation to

physics, then we need to look deeper into the relation between

computations and their physical realizations. As discussed above,

computation has been viewed traditionally as an abstract process

largely independent of its material embodiment. This parallels a

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 13

Mapping the Territory of Computation Including Embodied Computation 13

Cartesian approach to cognition, which treats it as information

processing independent of the brain and of the body more generally.

Cartesianism has been found inadequate in cognitive science, and

embodied cognition approaches cognition from the perspective of

information processes realized in a biological brain and with a

principal function of controlling a physical body in its physical

environment.24 When cognition is approached from this perspective,

many problems become easier to solve. Neurological processes in the

physical brain simplify some information processing tasks, as does the

fact that it is controlling a body with specific physical properties.

Embodied computation applies these insights to information

processing more generally by thematizing and exploiting the relation

between computation and its physical realization. On one hand, it

makes more direct use of physical processes to implement information

processes, thereby achieving a closer assimilation of computation to

physics. On the other, it provides a framework for understanding and

designing systems in which the goal is not information processing

per se, but in which information processes are essential to some

intended physical process. With these considerations in mind, we

have proposed the following definition of embodied computation:

Embodied computation may be defined as computation in which
the physical realization of the computation or the physical effects
of the computation are essential to the computation.25

(Reference [26] uses “embodied computation” in a different, but

related sense. Other related ideas are material computation and

in materio computation.27) We consider first the use of physical

processes for computational purposes, which is more familiar and

easier to understand, and then we turn to the use of computational

processes for physical purposes.

1.3.2. Physics for computational purposes

Embodied computation can exploit physical processes for more

direct and effective realization of a computational process when

the physical process has a mathematical structure that is the same

or closely related to the computational process. This is of course

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 14

14 B. J. MacLennan

analog computation in the original sense, in which a target system

is simulated by a more convenient analogous system with the same

mathematical structure. This is especially advantageous when the

physical system has a very large number of information-bearing

elements (e.g., atoms) or when the information is represented by

a continuous field, for in these cases the simultaneous interaction of

the spatial elements can directly implement what would be a very

expensive computation on a conventional computer (e.g., solving a

system of PDEs).

Since all computation must be physically realized, the reader may

wonder how embodied computation differs from conventional compu-

tation. It is in fact a matter of degree. Conventional computers pro-

vide a generic physical realization which is universally adequate for a

broad class of computations (roughly, Turing-computable functions).

These are the familiar electronic bits and binary operations discussed

previously (Section 1.1). Since embodied computation depends on

more direct physical realizations of computational processes, or

because it is in direct physical interaction with its environment, the

possible physical realizations may be more limited. For example,

there may be few specific realizations that have an appropriate

mathematical structure for a computation (e.g., obey appropriate

PDEs) and that also operate at a rate suitable for environmental

interactions. In other words, in embodied computation we cannot

ignore physical realization to the same degree that we have in

conventional computation, and different specific realizations might

be more or less suitable for different embodied computations.

A hallmark of conventional computation is multiple realizability,

which means that, in principle, any computation can be realized on

any computer that has the power of a universal Turing machine,

and this independence of specific physical realization depends on the

many levels of abstraction between computations and the physical

processes implementing them. Multiple realizability is also important

in embodied computation, and so we look for computational abstrac-

tions that can be realized — more directly than in conventional

computation — by a variety of physical processes, thus expanding

the range of usable specific realizations.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 15

Mapping the Territory of Computation Including Embodied Computation 15

Therefore, one challenge in embodied computation is to identify

or design physical processes that have the same mathematical

structure as useful computations, while also having desirable physical

characteristics (e.g., speed and controllability). It is not essential that

the physical process have the same mathematical structure as the

computation, so long as it can be easily “programmed” (in the sense

of Section 1.2.3) to simulate the desired computation without many

levels of abstraction.

1.3.2.1. Transduction

Input and output transduction, which is a transformation between

the generic computational realization and a specific input or output

medium, is somewhat different in embodied computation than in

conventional computation.1 This is easiest to understand in the

context of conventional embedded computers, which will have a

number of sensors and actuators that allow the computer to receive

information from the physical system in which it is embedded and

to have physical effects on that system. Sensors are specific to the

form of matter or energy that they sense, and thus they transduce

information with a specific physical realization into information

internal to the computer, which is generically realized, that is, in

principle realizable by any other appropriate physical process with

the same mathematical structure. In contrast, the specific physical

realization of the input cannot be changed, or the sensor will be

sensing the wrong information. For example, an electronic analog

computer might represent quantities by voltages; that is the generic

computational realization. It is generic because it could, in principle,

be changed to another realization (e.g., fluid pressure) and still

accomplish the computer’s function. On the other hand, a light sensor

has to detect light intensity; it cannot be changed to something else,

such as temperature, without changing the function of the computer.

The situation is similar for actuators: generically realized information

in the computer is transduced into a specific physical form so that it

can have the intended effect in the embedding physical system and

environment. So the computational medium (e.g., voltage or fluid

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 16

16 B. J. MacLennan

pressure) is converted to a specific medium (e.g., mechanical force or

light intensity) as required for its purpose.

In an ideal transduction process, only the matter of the infor-

mation is changed, not its form, as it is transferred from a specific

realization to the computational realization or vice versa. In practice,

there is also some change of form (for example, a continuous signal

might be digitized or limited in range). We can think of ideal input

transduction as the process of removing the units from a physical

quantity and turning it into a pure number, and output transduction

as the inverse process of turning a pure number into a physical

quantity by applying appropriate physical units.

In conventional computation, transduction has a bow tie orga-

nization, with a single computational realization being the target

of multiple input transductions and the source of multiple out-

put transductions. The issue of transduction is more complex in

embodied computation since we might not have the benefit of a

single computational representation as either the target or the

source of transductions. Rather, we will need to transduce physical

input information into the specific physical realization that will be

used for the computations to be applied to it. Conversely, output

signals will need to be transduced from the physical realization of

the computation that produced them to the appropriate physical

realization of the output signals.

1.3.2.2. Analog computation

Analog computation originally referred to computation in which

some convenient physical system was used as a model to simulate

some target system of interest. However, since most analog com-

puters (whether mechanical, electrical, or some other medium) used

continuous physical processes, and because they were most often

used to model physical systems obeying continuous laws (expressed

as systems of ordinary or partial differential equations), the term

“analog computation” soon came to refer to computation in contin-

uous media, as opposed to “digital” computation, implemented by

discrete (generally binary) processes. They are more properly called

continuous computation and discrete computation, respectively.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 17

Mapping the Territory of Computation Including Embodied Computation 17

Mathematically, analog computers are continuous-time dynam-

ical systems, typically defined by a system of ordinary or partial

differential equations (ODEs or PDEs). When applied to more con-

ventional computational problems, the inputs may be encoded in the

initial state of the system, and the corresponding outputs are encoded

in the final states to which they converge (attractors). All analog

computation is physically realized, but we call it embodied to the

extent that there is an ongoing interaction between the computation

and its physical environment, in which inputs may define boundary

conditions for the computation or define a subset of extrinsic

variables, and a subspace of the internal state space determines the

outputs. Analog computing, therefore, applies physical processes to

computation by identifying or implementing a dynamical system that

is able, relatively directly, to solve the computational problem. There

are many examples of such dynamical system solutions, even applied

to discrete combinatorial optimization problems, such as Boolean

satisfiability.28, 29 The challenge for embodied analog computation is

to find a physical dynamical system that can be easily configured to

solve the problem.

The problem of finding or designing a physical system to realize

a desired dynamical system points to the need for general-purpose

analog computers (GPACs), as was also apparent in an earlier

generation of analog computation.6 Ideally, we would like a model

of universal analog computation comparable to the universal Turing

machine (UTM) in conventional computation, but it does not yet

exist. Embodied computation is outside of the frame of relevance of

the Church–Turing model of computation, and so the UTM is not a

very useful basis for a universal analog computer (see Section 1.2.4).1

One promising approach to universal analog computation and

GPACs is provided by various universal approximation theorems

in mathematics, which typically establish how compositions of a

restricted set of basis functions can be used to approximate as closely

as required a given function in a large and interesting class.17, 18, 30

Polynomial and Fourier series approximations are familiar examples,

but not necessarily the most useful for GPACs. Already in the 1940s

Claude Shannon proved theorems establishing the computational

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 18

18 B. J. MacLennan

capabilities of GPACs inspired by the (mechanical) differential

analyzer,31,32 which were later corrected.33–36 More useful perhaps

are universal approximation theorems that show how GPACs can be

designed around sigmoidal neural networks and radial basis function

networks [30, pp. 166–168, 219–220, 236–239, 323–326].

1.3.2.3. Quantum computation

Quantum computation is a paradigmatic example of embodied

computation, for it makes direct use of the phenomena of quantum

mechanics to perform computations that would be prohibitively

expensive to solve on conventional computers. This is because

quantum computers have the potential to perform an exponential

number of conventional computations in quantum superposition.

In addition to the digital computer-inspired “circuit” or “logic-

gate” model of quantum computation,37 there are also models that

treat the complex amplitudes of quantum states as continuous vari-

ables, thereby providing a kind of analog quantum computation.38

Hilbert spaces provide the mathematical framework for quantum

computation.

1.3.2.4. Field computation

Conventional computers have a discrete address space comprising

discrete variables (bits, bytes, words) in a regular array, typically

indexed by natural numbers. As discussed in Section 1.2.1, some

alternative models of computation provide fields, that is, continua of

continuous quantity. In principle, individual values are indexed by

real numbers, but in practice field computation operates on entire

fields in parallel.17,18 Mathematically, fields are treated as functions

belonging to Hilbert spaces, field operations are (possibly nonlinear)

Hilbert space operators, and dynamical systems are defined by

PDEs.21 Embodied field computation makes use of physical processes

operating on physical fields and defined by PDEs. Computational

fields may be realized by physical fields that are literally continuous

(such as electromagnetic fields) or by phenomenological fields, such

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 19

Mapping the Territory of Computation Including Embodied Computation 19

as fluids, which are composed of discrete elements, but of sufficient

number and density to be treated as continua.

Many physical processes, including electrical, optical, and chem-

ical processes, are described by PDEs operating on fields, and they

are potential realizations of field computation. For example, physical

diffusion can be used for broadcasting information, optimization,

and parallel search.39–44 Large populations of microorganisms (e.g.,

bacteria, slime molds) can be used to solve some problems (rather

slowly).45 Indeed, quantum computation is a kind of field com-

putation implemented by linear operations on the wave function.

Functional analysis provides a series of universal approximation

theorems that are a basis for programmable general purpose field

computers.18 These include approximation by Taylor series over

Banach spaces, generalized Fourier series, and methods analogous

to convolutional neural networks.18, 21

1.3.3. Computation for physical purposes

We have seen how the idea of embodied computation suggests ways

that the physical realization of a computation can be exploited to

better fulfill its computational purposes. Here we will shift the focus

to see how computation can be used to better fulfill the purposes of

some physical system. What makes a physical system an example of

embodied computation is that it uses computational concepts and

techniques in an essential way in order to achieve desired physical

behavior and effects. Computation is a physical process, but in these

cases it is the physical process that fulfills the purpose of the system,

and the computation is a means to that end. In hylomorphic terms,

the computation’s formal relations evolving in time impose a desired

physical process on a relatively unstructured material substrate.

In other words, when a computation takes place, matter and

energy are transported and transformed within a physical system,

such as a computer. In embodied computation we make use of this

fact to achieve some desired series of physical states by means of the

computations that are realized by them.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 20

20 B. J. MacLennan

These applications of embodied computation may sound like

embedded computation, in which a computational system is a part

of a physical system, which it helps to control, but in embedded

computation the computer has its own physical realization (e.g., in

electronic circuits) separate from the physical system it is controlling.

In embodied computation, the physical realization of the computa-

tion is the system being controlled. There is no distinction between

controller and controlled.

Reaction-diffusion systems provide a simple example of embodied

computation for physical effect.46 They are fundamentally math-

ematical systems: a system of 2D PDEs combining diffusion with

nonlinear reaction terms. Under a variety of conditions, studied by

Turing, they evolve into stable arrangements of spots and stripes

now called Turing patterns.47 As computational systems they can

be realized in a variety of media, but when they are realized by

morphogens in the skin of a developing embryo, they lead to the

characteristic hair color and skin pigmentation patterns of various

species (the leopard’s spots, the tiger’s stripes, etc.).48–50 Therefore,

if for some application we want to arrange matter or energy in a

Turing pattern, we can do this by using the required materials to

realize an appropriate reaction-diffusion system.

More generally, developing embryos provide many examples of

embodied computation for physical effect. The proliferating cells in

an embryo communicate and coordinate with each other to control

their movement, differentiation, and adhesion to create an animal’s

complex physical body.51 The communication and coordination of

the cells is an information process because it could, in principle, be

realized by different physical substances and still fulfill its function.

Other examples of naturally occurring embodied computation for

physical effect include the communication and control within social

insect colonies by which they organize their group behavior and

construct their nests.50

Embodied computation for physical applications has different

tradeoffs and requirements than conventional computation (including

embedded computation). For example, conventional computation

and embodied computation applied to information processing both

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 21

Mapping the Territory of Computation Including Embodied Computation 21

exhibit some degree of multiple realizability: the physical realization

does not matter too much so long as it supports the required com-

putations. (We don’t care what matter and energy is moved around

so long as the pattern of its movement realizes the computation.)

With embodied computation, the computation must be realized by

physical processes that are appropriate for the application, which will

often dictate the physical realization.

When the purpose of computation is information processing, we

usually want it to execute as quickly as possible, with a minimum

expenditure of energy and other resources, which are just physical

means to the computational end. Therefore, progress in computer

technology has been measured by a decrease in the amount of

matter and energy involved in basic computational operations: from

relatively massive relay armatures, to the substantial currents in

vacuum tubes and the write currents for ferrite cores, to regularly

decreasing operating voltages and charges in semiconductor devices

(a major factor in Moore’s Law). Much of the technological progress

in computing has been directed at representing bits and implement-

ing bit operations with less matter and energy. When embodied

computation is used for physical applications, however, we may want

to move more matter and energy rather than less, since the system

itself or the desired physical effects may be large. Physically bigger

bits, for example, may be more suitable to the application.

1.4. Programmable Matter

Embodied computation for physical effect is exemplified by pro-

grammable matter, in which computational methods are used to

control the physical properties of a material.52, 53

Programmable matter has many potential applications, includ-

ing in radically reconfigurable systems. Reconfigurable systems are

valuable because they allow a system to be adapted, for example,

for a new mission, new circumstances, or for damage recovery,

instead of being replaced, which may be economically or physically

infeasible. A conventional reconfigurable system may be reconfigured

by changing the connections among a fixed set of components, but

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 22

22 B. J. MacLennan

the range of reconfiguration is limited by the builtin components.

Examples include field-programmable gate arrays (FPGAs) and field-

programmable analog arrays (FPAAs). A radically reconfigurable

system goes beyond this by allowing the physical properties of the

components to be changed.54 That is, rather than rearranging a

fixed set of hardware resources, radical reconfiguration changes the

hardware resources. This requires systems whose physical properties

are under programmatic control.

One way to accomplish limited radical configurability is by

implementing a random-access configuration memory with cells

whose (possibly non-binary) states have distinct physical properties

(e.g., conductance, reflectance, capacitance, switching, amplification,

mechanical force). Then, as a program runs with at least some of

its storage in the configuration memory, the properties of the cells

will change under program control. We may call this externally

programmed configuration or assembly, because the configuration

memory is controlled by a separate program execution unit. Of

course, the same can be accomplished by a conventional computer

connected to the configuration memory as an I/O device, but

then the computation would not be embodied; to be embodied

the configuration memory should have an important role in the

computational process (a matter of degree, of course).

Even though such a system gives some control over the physical

properties of a system, it is limited by the state space of the

memory cells, a function of their design, and we might wonder if

there is a way to programmatically control a potentially unbounded

variety of physical properties. This might seem unlikely, but nature

has provided an existence proof: proteins.25, 54 Among many other

things, proteins include the keratin of feathers, horns, and nails, the

elastin and collagen of connective tissue, the tubulin that forms the

cellular cytoskeleton (enabling rigidity and movement), and signaling

molecules, ion channels, and enzymes. There are also active proteins,

such as the rhodopsin, which senses light, motor proteins, proteins

that make decisions by changing their conformation, and of course

proteins that correct errors in DNA, and transcribe RNA to assemble

other proteins. In summary, proteins are an effectively infinite class

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 23

Mapping the Territory of Computation Including Embodied Computation 23

of compounds with a very wide range of active and passive physical

properties. What is also important for our purposes is that they

are all produced by a common process from a limited set of basic

components (20 amino acids).

Two other factors give proteins their generality and diversity.

First, they are composed of long chains of amino acid residues,

which relax into complex conformations that determine their physical

properties (and hence their chemical and biological properties). It

is the complexity of protein folding that gives them their enormous

diversity of properties. Second, the amino acid sequences are encoded

in DNA, which allows general programmability of the proteins’ struc-

ture and facilitates a common set of information (computational)

processes for exploring the space of DNA sequences (e.g., mutation,

crossover, deletion, transposition, duplication, explored through evo-

lution by natural selection). So the combinatorial diversity in DNA

sequences translates to diversity of physical behavior in the proteins.

These ideas can be applied to artificial protein-like molecules

as well. The first requirement is a class of polymers composed of

a small fixed set of components so that the chains relax or fold

into complex configurations with a very wide variety of physical

properties. Second, we require a combinatorially rich data structure,

such as a string, that represents the component sequence, and a

means for translating the string into physical polymers (the embodied

part of the computation). Aping biology again, the space of possible

sequences can be searched by genetic algorithms, for example, to

find polymer sequences that fold into useful structures. Radical

reconfiguration, then, is able to change the sequences to assemble

polymers with the required properties.

1.5. Artificial Morphogenesis

Proteins and protein-analogs use an information structure to deter-

mine a polymer chain, which then folds passively under physical

forces into a configuration with functional properties. The resulting

individual molecules may self-assemble into relatively homogeneous

tissues or other materials with a statistically regular structure.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 24

24 B. J. MacLennan

For more complex heterogeneous and irregular structures, we can

use externally programmed assembly, but the resulting structures

will be limited by the fixed physical arrangement of the cells, whose

states are under program control. For more complex structures, we

may turn to internally programmed assembly, in which the individual

components need not react purely passively, but can have their own

behavioral program by which they self-assemble into the required

structure. An example of this approach is algorithmic assembly by

DNA.55–57

For a general and robust approach for assembling more complex

physical structures, especially those with a hierarchical structure

spanning many length scales, perhaps from microns up to meters,

we can look again to biology for inspiration because developing

embryos accomplish this, coordinating an ever-increasing number

of cells (ultimately in the trillions) to coordinate their movement,

differentiation, and interaction to produce reliably a specific complex

body form. This is certainly an example of embodied computation for

physical effect, since the goal of the information processes embodied

in the cells’ interactions is for them to assemble themselves into a

physical body.

In embryology morphogenesis refers to the process by which

embryos develop 3D structures, and so the technological application

of these ideas may be termed artificial morphogenesis or morpho-

genetic engineering. Projects investigating this technology have taken

a variety of approaches, often differing in how closely they model the

biological processes.58–67

Our approach to artificial morphogenesis follows a common

embryological practice of using PDEs to describe morphogenetic

processes. This is appropriate in biology because of the large number

and small size of cells compared to the tissues they constitute,

and also because developing tissues often have the characteristics

of soft-matter (visco-elastic materials), which may be described by

continuum mechanics. In artificial morphogenesis, PDEs have the

advantage of being suited to describing processes involving very large

numbers of very small agents (e.g., microrobots, synthetic microor-

ganisms). Descriptions are also relatively independent of the size and

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 25

Mapping the Territory of Computation Including Embodied Computation 25

number of the agents, so long as the continuum approximation is close

enough. This serves our goal of having morphogenetic algorithms that

scale well to very large numbers of agents and that are relatively

independent of the agents’ size.

To facilitate and test morphogenetic algorithms, we have devel-

oped a morphogenetic programming language, which allows “sub-

stances” to be defined, with properties and behaviors described

by PDEs.68, 69 We can execute these algorithms on a conventional

computer, but if they were realized in an appropriate physical

medium (e.g., a massive swarm of programmed microrobots or

genetically engineered microorganisms), then the result of execution

would be the desired physical structure. We are currently developing

global-to-local compilation algorithms to translate from the PDEs

(which describe the behavior of continua of infinitesimal particles)

to behavioral programs for finite numbers of agents of a specific size

while maintaining a large range of scale independence.70

Through simulation we have demonstrated the application of

artificial morphogenesis to several problems, including the routing

of dense fiber bundles between regions of an artificial brain, and

the assembly of an insect-like body frame, with specified numbers of

spinal segments, legs, and leg segments.69–71

1.6. Conclusions

Computation is a physical process, but of a very special kind in which

the physical interactions can be described as information processes.

For both scientific and technological reasons we should be exploring

the full range of computational paradigms, both artificial and

natural. One direction for future alternative computing paradigms

is embodied computation, which focuses on the physical realization

of computational processes. On the one hand, this suggests new ways

that physical processes can be used for computation, thus providing

directions for post-Moore’s law computing. On the other, it points

towards applications of computing in which the physical processes

realizing the computation are the purpose of the computation,

thereby using programs as a general means of directly determining

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 26

26 B. J. MacLennan

physical processes. In particular, the physical properties of materials

can be controlled programmatically, and physical systems with com-

plex hierarchical structures over many size scales can be assembled

by morphogenetic algorithms.

References

1. B. J. MacLennan, Natural computation and non-Turing models of compu-
tation. Theoretical Computer Science 317, 115–145 (2004).

2. B. J. MacLennan, Super-Turing or non-Turing? Extending the concept of
computation. Int. J. Unconvent. Comput. 5(3–4), 369–387 (2009).

3. J. Lipka, Graphical and Mechanical Computation (Wiley, New York, 1918).
4. W. Thomson, Harmonic analyzer, Proc. Roy. Soci. 27, 371–373 (1878).
5. A. B. Clymer, The mechanical analog computers of Hannibal Ford and

William Newell. IEEE Ann. Hist. Comput. 15(2), 19–34 (1993).
6. J. S. Small, The Analogue Alternative (Routledge, London & New York,

2001).
7. B. J. MacLennan, The promise of analog computation. Int. J. Gen. Syst.

43(7), 682–696 (2014). doi: 10.1080/03081079.2014.920997.
8. R. Landauer, Irreversibility and heat generation in the computing process.

IBM J. Res. Develop. 5(3), 183–191 (1961). Reprinted, Vol. 44 No. 1/2,
Jan./March 2000, pp. 261–269.

9. A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz, Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature 483, 187–189 (2012). doi: 10.1038/
nature10872.

10. C. H. Bennett, Logical reversibility of computation. IBM J. Res. Develop.
17(6), 525–532 (1973).

11. C. H. Bennett, The thermodynamics of computation — A review. Int. J.
Theo. Phys. 21(12), 905–940 (1982).

12. E. F. Fredkin and T. Toffoli, Conservative logic. Int. J. Theo. Phys. 21(3/4),
219–253 (1982).

13. C. H. Bennett, Notes on Landauer’s principle, reversible computation, and
Maxwell’s Demon. Stud. Hist. Phil. Mod. Phys. 34, 501–510 (2003).

14. M. P. Frank, Introduction to reversible computing: Motivation, progress,
and challenges. In CF ‘05: Proceedings of the 2nd Conference on Computing
Frontiers, Ischia, Italy, May 4–6, 2005.

15. B. J. MacLennan, Bodies — Both informed and transformed: Embodied com-
putation and information processing. In G. Dodig-Crnkovic and M. Burgin
(eds.), Information and Computation: Essays on Scientific and Philosophical
Understanding of Foundations of Information and Computation, vol. 2,
World Scientific Series in Information Studies (World Scientific, Singapore,
2011), pp. 225–253.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 27

Mapping the Territory of Computation Including Embodied Computation 27

16. B. J. MacLennan, The U-machine: A model of generalized computation. Int.
J. Unconvent. Comput. 6(3–4), 265–283 (2010).

17. B. J. MacLennan, Technology-independent design of neurocomputers: The
universal field computer. In M. Caudill and C. Butler (eds.), Proceedings of
the IEEE First International Conference on Neural Networks, vol. 3, (IEEE
Press, 1987), pp. 39–49.

18. B. J. MacLennan, Field computation in natural and artificial intelligence.
Inform. Sci. 119, 73–89 (1999).

19. B. J. MacLennan, Field computation: A framework for quantum-inspired
computing. In S. Bhattacharyya, U. Maulik, and P. Dutta (eds.), Quan-
tum Inspired Computational Intelligence: Research and Applications, Chap-
ter 3 (Morgan Kaufmann/Elsevier, Cambridge, MA, 2017). pp. 85–110.
doi: http://dx.doi.org/10.1016/B978-0-12-804409-4.00003-6.

20. B. J. MacLennan, Topographic representation for quantum machine learning.
In S. Bhattacharyya, I. Pan, A. Mani, S. De, E. Behrman, and S. Chakraborti
(eds.), Quantum Machine Learning, Chapter 2 (De Gruyter, Berlin/Boston,
2020).

21. B. J. MacLennan, Foundations of Field Computation. URL http://web.eecs.
utk.edu/∼bmaclenn/FFC.pdf.

22. T. van Gelder. Dynamics and cognition. In J. Haugeland (ed.), Mind Design
II: Philosophy, Psychology and Artificial Intelligence, Chapter 16 (MIT Press,
Cambridge, MA, 1997), pp. 421–450, revised & enlarged edn.

23. B. J. MacLennan, Transcending Turing computability. Minds Mach. 13, 3–22
(2003).

24. M. Johnson and T. Rohrer, We are live creatures: Embodiment, American
pragmatism, and the cognitive organism. In J. Zlatev, T. Ziemke, R. Frank,
and R. Dirven (eds.), Body, Language, and Mind, vol. 1 (Mouton de Gruyter,
Berlin, 2007), pp. 17–54.

25. B. J. MacLennan, Embodied computation: Applying the physics of com-
putation to artificial morphogenesis, Parallel Process. Lett. 22(3), 1240013
(2012).

26. H. Hamann and H. Wörn, Embodied computation. Parallel Process. Lett.
17(3), 287–298 (2007).

27. S. Stepney, The neglected pillar of material computation. Physica D 237(9),
1157–64 (2008).

28. M. Ercsey-Ravasz and Z. Toroczkai, Optimization hardness as transient chaos
in an analog approach to constraint satisfaction. Nat. Phys. 7, 966–970
(2011).

29. B. Molnár and M. Ercsey-Ravasz, Asymmetric continuous-time neural
networks without local traps for solving constraint satisfaction problems.
PLoS ONE 8(9), e73400 (2013). doi: 10.1371/journal.pone.0073400.

30. S. Haykin, Neural Networks and Learning Machines, 3rd edn. (Pearson
Education, New York, 2008).

31. C. E. Shannon, Mathematical theory of the differential analyzer. J. Math.
Phys. Mass. Inst. Technol. 20, 337–354 (1941).

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://web.eecs.utk.edu/~bmaclenn/FFC.pdf
http://web.eecs.utk.edu/~bmaclenn/FFC.pdf


August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 28

28 B. J. MacLennan

32. C. E. Shannon. Mathematical theory of the differential analyzer. In N. J. A.
Sloane and A. D. Wyner (eds.), Claude Elwood Shannon: Collected Papers
(IEEE Press, New York, 1993), pp. 496–513.

33. M. Pour-El, Abstract computability and its relation to the general purpose
analog computer (some connections between logic, differential equations and
analog computers). Trans. Am. Math. Soc. 199, 1–29 (1974).

34. L. A. Rubel, The brain as an analog computer. J. Theoret. Neurobiol. 4,
73–81 (1985).

35. L. Lipshitz and L. A. Rubel, A differentially algebraic replacment theorem.
Proc. Am. Math. Soci. 99(2), 367–72 (1987).

36. L. A. Rubel, Some mathematical limitations of the general-purpose analog
computer. Adv. Appl. Math. 9, 22–34 (1988).

37. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Infor-
mation, 10th anniversary edition (Cambridge University Press, Cambridge,
2010),

38. S. Lloyd and S. L. Braunstein, Quantum computation over continuous
variables. Phys. Rev. Lett. 82, 1784–1787 (1999). doi: 10.1103/PhysRevLett.
82.1784. URL http://link.aps.org/doi/10.1103/PhysRevLett.82.1784.

39. O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots.
Int. J. Robot. Res. 5, 90–9 (1986).

40. M. Miller, B. Roysam, K. Smith, and J. O’Sullivan. Representing and
computing regular languages on massively parallel networks. IEEE Trans.
Neural Netw. 2, 56–72 (1991).

41. E. Rimon and D. Koditschek. The construction of analytic diffeomorphisms
for exact robot navigation on star worlds. In Proceedings of the 1989 IEEE
International Conference on Robotics and Automation, Scottsdale AZ (IEEE
Press, New York, 1989), pp. 21–6.

42. O. Steinbeck, A. Tóth, and K. Showalter, Navigating complex labyrinths:
Optimal paths from chemical waves. Science 267, 868–71 (1995).

43. P. Ting and R. Iltis, Diffusion network architectures for implementation
of Gibbs samplers with applications to assignment problems. IEEE Trans.
Neural Netw. 5, 622–38 (1994).

44. J. W. Mills, B. Himebaugh, B. Kopecky, M. Parker, C. Shue, and
C. Weilemann, “Empty space” computes: The evolution of an unconventional
supercomputer. In Proceedings of the 3rd Conference on Computing Frontiers
(ACM Press, New York, 2006), pp. 115–26.

45. A. Adamatzky, Physarum Machines: Computers from Slime Mould. World
Scientific Series on Nonlinear Science Series A: Volume 74 (World Scientific,
Singapore, 2010).

46. A. Adamatzky, B. De Lacy Costello, and T. Asai, Reaction-Diffusion
Computers (Elsevier, Amsterdam, 2005).

47. A. Turing, The chemical basis of morphogenesis. Philos. Trans. Roy. Soci. B
237, 37–72 (1952).

48. J. D. Murray, Lectures on Nonlinear Differential-Equation Models in Biology
(Oxford, Oxford, 1977).

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://link.aps.org/doi/10.1103/PhysRevLett.82.1784


August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 29

Mapping the Territory of Computation Including Embodied Computation 29

49. P. K. Maini and H. G. Othmer (eds.), Mathematical Models for Biological
Pattern Formation (Springer-Verlag, New York, 2001).

50. S. Camazine, J. Deneubourg, N. R. Franks, G. Sneyd, J. Theraulaz, and
E. Bonabeau, Self-organization in Biological Systems (Princeton University
Press, Princeton, New Jersey, 2001).

51. G. Forgacs and S. A. Newman, Biological Physics of the Developing Embryo
(Cambridge University Press, Cambridge, UK, 2005).

52. T. Toffoli and N. Margolus, Programmable matter: Concepts and
realization. Physica D: Nonlinear Phenomena 47(1), 263–272 (1991).
ISSN 0167-2789. doi: https://doi.org/10.1016/0167-2789(91)90296-L. URL
http://www.sciencedirect.com/science/article/pii/016727899190296L.

53. S. C. Goldstein, J. D. Campbell, and T. C. Mowry, Programmable matter,
Computer 38(6), 99–101 (June, 2005).

54. B. J. MacLennan, The morphogenetic path to programmable matter,
Proceedings of the IEEE 103(7), 1226–1232 (2015). doi: 10.1109/JPROC.
2015.2425394.

55. P. Rothemund and E. Winfree. The program-size complexity of self-
assembled squares. In Symposium on Theory of Computing (STOC) (Asso-
ciation for Computing Machinery, New York, 2000), pp. 459–468.

56. R. Barish, P. Rothemund, and E. Winfree, Two computational primitives
for algorithmic self-assembly: Copying and counting. Nano Lett. 5, 2586–92
(2005).

57. P. Rothemund, N. Papadakis, and E. Winfree, Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2(12), 2041–53 (2004).

58. H. Kitano. Morphogenesis for evolvable systems. In E. Sanchez and
M. Tomassini (eds.), Towards Evolvable Hardware: The Evolutionary Engi-
neering Approach (Springer, Berlin, 1996), pp. 99–117.

59. R. Nagpal, A. Kondacs, and C. Chang. Programming methodology for
biologically-inspired self-assembling systems. In AAAI Spring Symposium on
Computational Synthesis: From Basic Building Blocks to High Level Func-
tionality (March, 2003). URL http://www.eecs.harvard.edu/ssr/papers/
aaaiSS03-nagpal.pdf.

60. A. Spicher, O. Michel, and J. Giavitto. Algorithmic self-assembly by accretion
and by carving in MGS. In Proceedings of the 7th International Conference
on Artificial Evolution (EA ‘05), number 3871 in Lecture Notes in Computer
Science (Springer-Verlag, Berlin, 2005), pp. 189–200.

61. S. Murata and H. Kurokawa, Self-reconfigurable robots: Shape-changing
cellular robots can exceed conventional robot flexibility. IEEE Robot. Autom.
Magaz. 71–78 (2007).

62. R. Doursat. Organically grown architectures: Creating decentralized,
autonomous systems by embryomorphic engineering. In R. P. Würtz (ed.),
Organic Computing (Springer, 2008), pp. 167–200.

63. B. J. MacLennan, Morphogenesis as a model for nano communication, Nano
Commun. Netw. 1(3), 199–208 (2010). doi: 10.1016/j.nancom.2010.09.007.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://www.sciencedirect.com/science/article/pii/016727899190296L
http://www.eecs.harvard.edu/ssr/papers/aaaiSS03-nagpal.pdf
http://www.eecs.harvard.edu/ssr/papers/aaaiSS03-nagpal.pdf


August 2, 2021 16:18 Handbook of Unconventional Computing (in 2 Vols.) - 9in x 6in b4205-v1-ch01 page 30

30 B. J. MacLennan

64. P. Bourgine and A. Lesne (eds.), Morphogenesis: Origins of Patterns and
Shapes (Springer, Berlin, 2011).

65. J. Giavitto and A. Spicher. Computer morphogenesis. In P. Bourgine and
A. Lesne (eds.), Morphogenesis: Origins of Patterns and Shapes (Springer,
Berlin, 2011), pp. 315–340.

66. R. Doursat, H. Sayama, and O. Michel, A review of morphogenetic engineer-
ing. Nat. Comput. 12(4), 517–535 (2013). ISSN 1567-7818, 1572-9796. doi:
10.1007/s11047-013-9398-1.

67. H. Oh, A. Ramezan Shirazi, C. Sun, and Y. Jin, Bio-inspired self-organising
multi-robot pattern formation: A review. Robot. Auton. Syst. 91, 83–100
(2017). ISSN 09218890. doi: 10.1016/j.robot.2016.12.006. URL https://
linkinghub.elsevier.com/retrieve/pii/S0921889016300185.

68. B. J. MacLennan, Preliminary development of a formalism for embodied com-
putation and morphogenesis. Technical Report UT-CS-09-644, Department
of Electrical Engineering and Computer Science, University of Tennessee,
Knoxville, TN (2009).

69. B. J. MacLennan, A morphogenetic program for path formation by continu-
ous flocking. Int. J. Unconvent. Comput. 14, 91–119 (2019).

70. B. J. MacLennan and A. C. McBride, Swarm intelligence for morphogenetic
engineering. In A. Schumann (ed.), Swarm Intelligence: From Social Bacteria
to Human Beings (Taylor & Francis/CRC, 2020).

71. B. J. MacLennan. Coordinating swarms of microscopic agents to assemble
complex structures. In Y. Tan (ed.), Swarm Intelligence, Vol. 1: Principles,
Current Algorithms and Methods, PBCE 119, chapter 20 (Institution of
Engineering and Technology, 2018), pp. 583–612.

 H
an

db
oo

k 
of

 U
nc

on
ve

nt
io

na
l C

om
pu

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 B
ru

ce
 M

ac
L

en
na

n 
on

 0
8/

27
/2

1.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

https://linkinghub.elsevier.com/retrieve/pii/S0921889016300185
https://linkinghub.elsevier.com/retrieve/pii/S0921889016300185



