
Theoretical Computer Science 317 (2004) 115–145
www.elsevier.com/locate/tcs

Natural computation and non-Turing models
of computation
Bruce J. MacLennan∗

Department of Computer Science, University of Tennessee, Knoxville, TN 37996-3450,USA

Received 15 August 2003; received in revised form 17 October 2003

Abstract

We propose certain non-Turing models of computation, but our intent is not to advocate
models that surpass the power of Turing machines (TMs), but to defend the need for models
with orthogonal notions of power. We review the nature of models and argue that they are
relative to a domain of application and are ill-suited to use outside that domain. Hence we
review the presuppositions and context of the TM model and show that it is unsuited to natural
computation (computation occurring in or inspired by nature). Therefore we must consider an
expanded de3nition of computation that includes alternative (especially analog) models as well
as the TM. Finally we present an alternative model, of continuous computation, more suited to
natural computation. We conclude with remarks on the expressivity of formal mathematics.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Analog computation; Computation on reals; Continuous computation; Natural computation;
Turing machine

1. Introduction

The principal purpose of this article is to argue for and to propose certain non-
Turing Machine models of computation. The intent is not so much to advocate models
that surpass the power of Turing Machines (TMs) as to defend the need for models
with orthogonal notions of power. Traditionally, the power of a computational model
has been de3ned in terms of the class of functions it can compute. However there are
alternative criteria of merit (notions of power) more appropriate to natural computation
(computation occurring in or inspired by nature).

∗ Corresponding author.
E-mail address: maclennan@cs.utk.edu (B.J. MacLennan).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.12.008

mailto:maclennan@cs.utk.edu

116 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

I begin by reviewing the nature of mathematical models of any sort, arguing that they
are relative to a domain of application or concern and are generally ill-suited to use
outside that domain. This observation motivates a discussion of the presuppositions and
context of the TM model, arguing that, valuable though it is, it is ill-suited to certain
important applications. It has been argued that Turing computation is what we mean
by computation, but I propose a broader de3nition of computation that includes Turing
computation as well as alternative (especially analog) models. This is followed by a
discussion of natural computation, which asks questions that the TM model is unsuited
to answer. Finally I will present an alternative model, of continuous computation, more
suited to addressing the important issues in natural computation. I conclude with some
remarks on the expressivity of formal mathematics.
We will be discussing models of computation, so it will be worthwhile to begin by

reviewing some characteristics of models in general. (A more systematic discussion of
these issues has been published elsewhere [30].) Models are tools intended to address
a class of questions about some domain of phenomena. They accomplish this purpose
by making simpli3cations (idealizing assumptions) relevant to the domain and to the
intended class of questions. Such simpli3cation is both their strength and weakness.
The idealizing assumptions have an (often inde3nite) range of applicability over

which they give reasonably good answers, but outside of this range they give progres-
sively poorer answers, which reDect the structure of the model more than the underlying
phenomena. (That is, these answers tell us more about the map than about the territory
it purports to describe.) Sometimes, of course, the range of applicability of a model is
larger than intended, but this is a lucky accident and should not be assumed. Therefore
we should remind ourselves of the intended domain of applicability of the TM model
lest we inadvertently extend it outside of its range of usability.

2. The Turing-machine model

2.1. Historical context

We may begin to understand the range of applicability of the TM model by recalling
the historical context that gave it birth: it was developed to answer questions in the
formalist program in mathematics, which attempted to reduce mathematics to a calculus
(discrete formal system). Therefore the appropriate information representations were
idealizations of mathematical or logical formulas, and the processes operating on these
representations were idealizations of formal mathematical proof and calculation. The
central issue was the provability of formulas, since this is relevant to questions of
consistency and completeness in formal mathematics. Therefore, a key concept was
the class of theorems, or formulas derivable from a given set of axioms by given rules
of inference.
A closely related issue, when eEective calculability is more the concern than formal

axiomatics, is the class of functions computable by a speci3ed calculus or class of
calculi. Typically the problem of computability is recast as a problem of computing a
function of the integers: given an input integer, whether it will eventually compute the

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 117

corresponding output integer. In accord with the assumptions of formal logic (a proof
can be any 3nite length), a function was considered computable if for any input the
corresponding output would be produced after 3nitely many steps.
Similarly, as appropriate for questions of consistency and completeness, no bounds

were placed on the length of the individual steps, so long as they were 3nite. Likewise,
no bounds were placed on the size of formulas, so long as they were 3nite.
As this theory of computation evolved, questions of algorithm complexity were even-

tually addressed, but from a correspondingly abstract perspective. For example, asymp-
totic complexity was formulated consistently with these assumptions: once one has
chosen to ignore the speed of the individual steps, all that remains is how the number
of steps grows with the size of the input. Similarly, one may analyze the size of the
formulas produced during the computation. This perspective has led to the curious view
that any polynomial-time algorithm is “fast” and that problems that are polynomial-time
reducible are virtually identical. So, for example, an algorithm that takes N 100 years is
fast, but one that takes 2N ns is “intractable.”

2.2. Assumptions

Having reviewed the TM model in its historical context, we can summarize its
principal assumptions. (Note that some of these assumptions are abandoned in some
extensions of the TM model, but they form a basis from which the extensions are
made.) The TM belongs to the larger class of calculi, therefore we review the charac-
teristics of a calculus or discrete formal system; see MacLennan [23,30] for a more
systematic analysis.

2.2.1. Information representation
In a calculus, information representation is formal, 3nite, and de3nite. Formality

means that information processing is both abstract and syntactic, that is, the operation
of a calculus depends only on the form of the representations, in contrast to their
substance 1 (abstract formality) and their meaning (syntactic formality). Abstract for-
mality, when combined with an assumption of an unlimited supply of the representing
substance, implies in3nite producibility (and reproducibility) of formulas having a given
form, which is fundamental to the expression of in3nity in formal mathematics [31,
Chapters 1–2]. Syntactic formality permits mechanical processing, since we know how
to make mechanisms respond to the form of representations (but perhaps not to their
meanings). This was a primary goal in the formalist program in mathematics, but also
important if we want to eliminate the “ghost in the machine” in arti3cial intelligence
or in scienti3c theories of natural intelligence.
In calculi, information representations are assumed to be 9nite in size and number

of constituents. This is certainly reasonable in the context of formalist mathematics,
since mathematical formulas are 3nite arrays of discrete symbols. It was also essential

1 I use “substance” for the individuating substrate, which makes one instance of a formula diEerent from
another. It might be chalk on a blackboard, light on a display screen, electrons on a capacitor, electromagnetic
energy of a given frequency at a given time in a given location, etc.

118 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

to a principal historical goal of axiomatic mathematics, which was to account for the
in3nite in terms of the 3nite (e.g., Peano axioms, limits).
Finally, in a calculus, information representation is assumed to be de9nite, that is,

all determinations are simple and positive (hence reliable). This is because formalist
mathematicians were concerned with what could be calculated or proved if these formal
processes were carried out with the care and reliability that formalization permits.
There are several additional implications of these assumptions with regard to infor-

mation representation and processing. Although these assumptions are reasonable in the
original context of the study of eEective calculability (and also, to a large extent, for
many applications of digital computers), it should be noted that they are idealizations,
and are problematic under less ideal circumstances, such as will be described later.
First we will consider texts, the concrete physical instantiations of information rep-

resentations or formulas. The smallest (and therefore indivisible) constituents of a text
are called tokens. Their presence or absence is de3nite (i.e., they are de3nitely separa-
ble from the background) as is their extent (i.e., where one ends and another begins).
Tokens belong to a 3nite number of types, the determination of which is de3nite (i.e.,
types are reliably and mechanically discriminable). The tokens belonging to a type are
mutually interchangeable, without any eEect on the operation of the calculus. (That is,
for the purposes of the calculus, the set of allowable tokens may be partitioned into a
3nite number of equivalence classes.) For convenience we may refer to the matter and
form of a token, provided these terms are not interpreted too concretely (e.g., “matter”
as physical matter, “form” as shape). Finally, we assume that it is always possible to
make another token of a speci3ed type (i.e., we never run out of the “stuE” constituting
tokens).
Notice that the notion of mechanically determinable types is not entirely precise. For

example, humans can reliably and mechanically discriminate red and green tokens, but
probably not beautiful and ugly tokens. Humans could use, with considerable reliability,
pictures of the faces of GJodel and Turing as tokens of two distinct types, but it would
be more diKcult for a mechanical device to do so with contemporary face-recognition
technology.
The notion of mechanical determination is partly relative to what we are trying to

explain. For example, if we are studying formal mathematics, it is reasonable to assume
that mathematicians can reliably distinguish mathematical symbols, and this process is
taken to be unproblematic and transparent. However, if we are attempting to give a
computational account of human visual pattern recognition, then it is precisely this sort
of process than cannot be taken for granted, and must be reduced to more elementary
discriminations.
A text is a 3nite and de3nite ensemble of interrelated tokens; that is, we can deter-

mine reliably which tokens belong to the text, and there are a 3nite number of them.
Thus, we may say that a text is 9nite in breadth and depth.
For the purposes of the calculus, the possible physical relations among the tokens

of a text are divided into a 3nite number of equivalence classes (which may be called
elementary schemata), and it is always de3nitely, reliable, and mechanically deter-
minable whether or not a particular elementary schema holds among particular tokens.
Therefore, as we did for tokens, we may analyze texts in terms of matter and form.

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 119

Some combinations of elementary schemata may not be physically realizable. A
physically possible combination of elementary schemata is called a schema, which is
the form of a text for the purposes of the calculus. Further, the schema to which a text
belongs depends only on the types of the constituent tokens, not on the speci3c tokens
(a consequence of abstract formality). (That is, the types and elementary schemata
induce an equivalence relation on texts, the equivalence classes of which are called
schemata.)
There are assumed to be no resource limitations on the construction of texts; that

is, one can always obtain tokens of the required types and arrange them into a text
belonging to a speci3ed schema. Generally, no a priori limit is set on the size of a
text (although in practice they are always limited by physical resources).

2.2.2. Information processing
Like information representation, information processing in a calculus is formal, 3nite,

and de3nite. In particular, computation comprises a 3nite number of discrete, atomic
steps of de3nite type, each step requiring 3nite time and energy. At each step there is a
corresponding text, the state of the computation, and at each step an operation occurs,
which replaces the old state with a new state (which may be obtained by rearranging
the old state, or by constructing a new state from scratch, or by any combination of
the two). 2 The operation applied in a step depends de3nitely on the old state’s schema
(that is, on its syntax, not its substance); likewise, it constrains only the schema of the
new state, not its substance.
The changes eEected by an operation are mechanical, that is, they require no judg-

ment. However, as already remarked, the standard of what is “mechanical” is somewhat
relative to what is being explained. For example, the sensorimotor processes involved
in the manual application of an inference rule in formal logic and the substitution for
a bound variable in the lambda-calculus are commonly taken as mechanical processes,
but they are complex to implement on a computer. Another example: deciding the ter-
mination of an arbitrary TM description-input pair cannot be accomplished by a TM,
but for some purposes we may take this as a primitive operation (i.e., we may assume
we have an oracle for the halting problem).
The computational process may be deterministic (if in a given state at most one

operation is possible) or non-deterministic (if more than one is possible); that is, there
are syntactic (formal) constraints on the applicable operations, and these constraints
may limit the operations to one, or more than one, at each step. (The absence of any
applicable operation is often taken to signal the termination of the computation.) Thus,
in the general, possibly non-deterministic framework, we can see that the steps of a
computation are de3ned by a relation between the schemata of the new and old states
(e.g., in the context of formal logic, the relation is “immediate derivability”).
Finally, the termination of a computation is de3nite; that is, we can determine reliably

whether or not it is 3nished computing. Two common ways of signaling termination

2 For simplicity I will restrict my attention to processes without external input. External input is not
relevant to the present discussion, and in any case it can be incorporated into the present framework, for
example, by making the input text part of the initial state.

120 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

of a computation are by generating a text conforming to a class of terminal schemata,
or by the absence of any applicable operations (as previously remarked).

2.2.3. Algorithms and programs
Because of the foregoing assumptions, a computational process in a calculus can

always be represented in a 3nite number of discrete, 3nite rules, that is, in a program.
This is because a 3nite-energy operation can inspect only a 3nite number of tokens
and elementary schemata; similarly, it can directly aEect only a 3nite number of them.
Therefore the preconditions and eEects of an operation can be expressed in a 3nite rule,
that is, by a schema constructed of types and elementary schemata akin to those in
the original calculus. Thus, computational processes (algorithms) can be represented in
physical texts or formulas. This 3nite, physical representation of computational process
allows the construction of universal machines, such as the Universal TM and general-
purpose digital computers.

3. De�ning computation

3.1. Digital and analog computation

I will be arguing that natural computation, such as occurs in neural networks, requires
non-Turing models of computation, but it may be objected that these processes are not,
strictly speaking, computation, which is de3ned in terms of the Turing machine. That
is, it might be argued that “computation,” a previously vague concept, was 3rst de3ned
precisely by Turing, and that this is the essential import of the Church–Turing Thesis
(as discussed by Copeland and Sylvan [5,6]). This would imply that “non-Turing model
of computation” is a contradiction in terms. Therefore, it is necessary to start with a
discussion of the de3nition of “computation.” The best de3nition is far from obvious.
Indeed an entire issue of the journal Minds and Machines (4, 4; 1994) was devoted
to the question, “What is Computation?”
Certainly “computation” may be de3ned narrowly or broadly, and the theoretical suc-

cess of the Turing-machine model and the practical success of digital computers have
encouraged a narrower de3nition. Indeed, many authors have advocated, or assumed,
that computation is equivalent to Turing-computation (see quotations in Copeland and
Sylvan [5,6]). Although this de3nition has the obvious advantage of precision, it also
has less-obvious disadvantages.
First, “computation” has traditionally included both digital (or discrete) and analog

(or continuous) computation. In the era of manual computation we 3nd both digital de-
vices (e.g., abaci, desk calculators) and analog devices (e.g., nomographs, pantographs);
the slide rule is hybrid: analog computation with digital readout.
The constructions of traditional (i.e., compass and straight-edge) Euclidean geometry

are early examples of continuous computation. Consider, for example, such “problems”
as: “to divide a given straight line into two parts, so that the rectangle contained by
the whole and one of the parts shall be equal to the square of the other part” (Euclid
II.51), “to 3nd a mean proportional between two given straight lines” (VI.13), “to cut a

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 121

given straight line in extreme and mean ratio” (VI.30). These constructions are actually
hybrid algorithms comprising discrete steps making use of continuous operations.
Similarly, throughout most of the era of automatic computation, there have been ana-

log computers, from Bush’s diEerential analyzer, through electronic analog computers,
to modern analog VLSI devices [32].

3.2. A functional de9nition

In the mid-20th century many scientists embraced computation and information pro-
cessing as ways of understanding phenomena in their own disciplines. A notable exam-
ple is the use of computational models in cognitive science, but linguistics, sociology,
genetics, and evolutionary biology may also be mentioned. Especially when we are
dealing with natural systems such as these, computation is better viewed as a matter
of what is being accomplished rather than how it is accomplished.
For example, it now appears that primary visual cortex (area V1) does a Gabor-

wavelet transform [7–10]. That is, it implements a particular mathematical operation,
and that seems to be its purpose in the visual system. It is natural and informative
to say that it computes a Gabor-wavelet transform. However, to apply the narrower
de3nition of computation, we would have to understand the actual mechanism in the
brain before we could say this. If we found a discrete process 3tting the assumptions
of the Church–Turing thesis, we could call it a computation, otherwise we would have
to call it something else (a “pseudo-computation”?). But this seems to be perverse.
Surely it is more informative and accurate to say that V1 is computing a Gabor-wavelet
transform, regardless of whether the underlying technology is “digital” or “analog.”
These considerations have motivated the following functional (i.e., purpose based)

de3nition of computation [22,24,28]:

De�nition 1. Computation is a physical process the purpose of which is the abstract
manipulation of abstract objects.

By an “abstract object” I mean an object de3ned by its formal properties. This in-
cludes the various kinds of numbers, of course, but also such objects as sequences,
sets, relations, functions, curves, Booleans (truth values), trees, strings, and so forth.
Similarly, “abstract manipulation” includes the application of functions to their argu-
ments (e.g., square root, Fourier transform), as well processes evolving in abstract time
(e.g., Newton’s algorithm, formal deduction, gradient descent).
However, because abstract objects do not exist physically, the manipulations must be

accomplished indirectly, by physical manipulation of physical surrogates. Thus integers
may be represented by the beads of an abacus or the bits of a digital computer, and
real numbers may be represented by the position of the slide and stock of a slide rule
or by electrical current in an analog computer. That is, abstract formal processes are
represented by concrete physical processes. (Even mental arithmetic takes place in the
physical brain.)
There is an issue that we must address before we consider the relation of the abstract

process to its physical realization in computation, and that is the problematic use of

122 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

“purpose” in the preceding de3nition. Scientists are justi3ably wary of teleological def-
initions, which appeal to purpose or function. Nevertheless, I think it is unproblematic
in this case, for in two domains—biology and technology—attributions of purpose can
be made in an objective way.
It is an objective issue (decidable, for example, by appeal to the designers) whether

or not a device has been designed for purposes of computation (i.e., abstract ma-
nipulation of abstract objects), and so we can objectively aKrm that your laptop is
computing, as also did slide rules. Establishing purpose or function in a biological
context is more diKcult, but scientists routinely draw such conclusions; so, they make
objective determinations of the function of the stomach, heart, immune system, and so
forth. (The major danger here is oversimpli3cation, since the biological systems often
serve multiple functions: evolution is opportunistic. Thus, although there are certainly
purely computational systems in the brain, we should not be surprised to 3nd systems
that serve other purposes while they compute.)
What about other physical systems? Can we say (to take a classic example) that

the solar system is computing Kepler’s laws? The answer is No. Where there is no
objective basis for attributing purpose (e.g., the motion of the planets), there is little
to be gained by viewing a process as computation. No doubt there are borderline cases
(e.g. in very simple organisms, populations, simple arti3cial devices), but they do not
destroy the general utility of the de3nition.
Since the purpose of a computational system is abstract manipulation of abstract ob-

jects, we have an operational test of whether or not a particular natural system is com-
putational [24]. If the purpose or function of that system would be ful3lled as well by
another system using diEerent physical surrogates with the same formal properties, then
the system is computational. That is, since its function is accomplished independently
of its concrete physical instantiation, its purpose is abstract, formal, computational. This
is multiple instantiability, which is a familiar property of digital computation, but holds
as well for analog. Thus, for example, if the same abstract (dimensionless) quantities
can be represented by electrical voltages or Duidic pressures, or by any other concrete
physical quantities with the same formal properties, without loss of function, then the
system is computational. In contrast, the digestive system is not computational, since
it will not ful3ll its function if, for example, enzyme concentrations are replaced by
other quantities (e.g., electrical charge density), having the same formal properties.

3.3. Autonomy

It will be worthwhile to make a few remarks about diEering degrees of autonomy
in computational processes, since the TM model takes a somewhat limited view. Au-
tonomy refers to the degree to which a process proceeds independently of any input. 3

(Here I am referring to computational input to an information-processing module; see
“Transduction” below on input/output interactions with the physical environment.)

3 This notion of autonomy, which comes from control theory, is unrelated to that used in arti3cial intel-
ligence and robotics, which refers to the system behaving intelligently without external guidance.

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 123

We may think of the input and state of a process as the independent and de-
pendent variables of the computation. That is, the external inputs are independent
of the computation in question (although perhaps they are outputs of other com-
putational processes). The internal state, however, is completely (but perhaps non-
deterministically) dependent on the external inputs and previous internal state. (Out-
put is most easily treated as a projection of the state, as will be explained in more
detail later.)
The most autonomous computation has a speci3ed initial state and proceeds inde-

pendently of external input. Simple examples include the computation of a speci3c
number such as

√
2 or e. When the computation is complete, the output is projected

from the state in any of several possible ways.
A more common situation, which is only slightly less autonomous, accepts input

once, at the beginning of the computation, and then proceeds autonomously until com-
pletion, when the result may be projected from the state. (Alternately, the input may
become the initial state of the computation. Also, a sequence of outputs might be
projected from intermediate internal states.) A simple example of such a computation
would be the computation of ln x, for a given number x, by integration of

∫ x
1 (1=u) du.

Another would be the computation of the Fourier transform of a given input image.
Clearly, a computation of this sort is computing some function f(x) for an arbitrary
unspeci3ed input x. It is worth observing that this is the paradigm case in the tradi-
tional theory of computation, which de3nes computational power in terms of classes
of functions.
In the next lower degree of autonomy, the process depends on its input throughout

the computation; that is, it depends on a (discretely or continuously) varying input
signal. There are two broad subclasses: the output may be projected from the state
once at the end of the computation, or it may be projected from intermediate states
at various times during the computation. An example in which a time-varying input
signal leads to a single output would be a classi3er for an auditory signal, such as a
spoken word recognition system. For examples in which a (discretely or continuously)
varying output signal is generated, we may take any control systems (e.g., feedback
control systems for sensorimotor coordination or industrial process control).
Perhaps the least autonomous computation is one in which the internal state (and

hence also the output) depends only on the current external input; such a memoryless
process is completely reactive.
These ideas are easy to express mathematically; for simplicity I will restrict my at-

tention to deterministic processes. Let the internal state space � and the external input
space � be any given spaces, and let T be an appropriate (discrete or continuous)
time domain. Then the state transition function P : �×�→� de3nes the state at
the next instant of time: (t′)=P[(t); �(t)], for time-varying internal state :T →�
and time-varying input � : T →�. For discrete-time processes t′= t + 1 (represent-
ing the next step); for continuous-time we may take (informally, for the time being)
t′= t + dt.
Then, a completely autonomous process, which depends on no external input, has

the form P(; �)=P0() where (0)= 0, the 3xed initial state (taking, without loss
of generality, t=0 as the initial time). For a process that depends only on the initial

124 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

input, P(; �)=P1[; �(0)]. For a completely non-autonomous, reactive process, we
have P(; �)=P2(�). This should be suKcient to illustrate the approach.

3.4. Transduction

Before leaving the de3nition of computation, it is necessary to say a few words about
transduction. Transduction is the process that converts a signal in a speci3c physical
form into the implementation-independent representation suitable for computation, or
vice versa. For example we may have a transduction that converts an external optical
signal into the internal computational media (e.g., electrical signals in a computer or
brain), or which converts from the computational media to mechanical forces applied
by output eEectors (e.g., muscles or mechanical actuators). Although computation is by
de3nition physically instantiated, it is generically instantiated, and so formal. However,
in transduction, if the physical realization of the peripheral variable is changed (say,
from voltage to Duid pressure), the transduction cannot be expected to serve its purpose
in the system; it is speci9cally instantiated. Transduction brings formal computation
into interaction with the physical world, and therefore it is a critical issue in situated
intelligence and the symbol grounding problem [12,13,21].
We may divide the relations that govern the behavior of a situated computational

system into formal relations and material relations, which govern computation and
transduction, respectively. In the formal relations, all that is relevant to the computa-
tion is the form of the representations. Although these forms must be instantiated in
some physical quantities, the speci3c physical instantiation is irrelevant to the compu-
tational purpose. Thus, a computer may make use of electrical representations in some
places and optical representations in others. So also in the brain, both electrical and
chemical representations are used. Since the physical quantities are irrelevant, the for-
mal relations are eEectively dimensionless. The material relations, on the other hand,
deal with physical quantities in an essential way, otherwise they will not serve their
purpose. For example, material relations that relate light intensity to computational in-
puts will not serve their purpose (in an organism or a robot) if they are altered to relate
some other physical quantity (say, pressure). Therefore, at least some of the variables
in the material relations carry physical dimensions. Speci3cally, an input transduction
has dimensionless outputs, but physically dimensioned input; the opposite holds for an
output transduction.
From another perspective we can think of information representations in terms of

their form and their matter (by which I mean the “stuE”—be it physical matter or
energy—constituting the representations). Pure computation deals with the form of
representations; their matter is irrelevant to the computation. On the other hand, a pure
transduction changes the matter of a representation without altering its form. Thus
an optical signal might be converted to an electrical representation. Pure transductions
typically remove the physical dimensions of input quantities or add them to output
quantities, in eEect scaling the variables. Thus the material relations of a pure trans-
duction may have a very simple form (e.g., “e= v=10 mv” relates an input voltage v
to a dimensionless real number e). Pure transduction is actually quite rare; it is more
common to change the form along with the matter of the representation. For example,

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 125

a continuous physical quantity might be categorized and discretized by an analog-to-
digital converter. Conversely, an output device might interpolate continuously between
its discrete inputs, as in a digital-to-analog converter. Even transductions that do not
convert between discrete and continuous quantities typically alter the form of the infor-
mation. For example, a photodiode implements an “impure” transduction since it 3lters
the analog signal as well as converting it from an optical to an electrical representation.
As previously remarked, such combination of function is especially common in natural
systems.

3.5. Classi9cation of computational processes

Hitherto, so far as possible, I have dealt with computation in “topology-neutral
terms,” so that the discussion applies equally well to discrete- and continuous-time
processes. Now, however, we must distinguish three diEerent classes of processes char-
acterized by the topologies of their state and (computational) input spaces and by the
topology of time [28]. There are three important classes: 4

C: A continuous-time process over continuous state-space,
CD: A discrete-time process over continuous state-space,
D: A discrete-time process over a discrete state-space.
For examples of class D we may take conventional digital computer programs. Exam-

ples of class CD include Newton’s algorithm and some formulations of computation
over the reals [2]; they are closely related to topological algorithms and other sys-
tems studied by Burgin [3,4]. Systems of diEerential equations are obvious examples
of class C.
In the most common cases time is linear. Thus discrete time is a well-ordered discrete

set, typically homeomorphic to the integers (or a subset thereof). Continuous time
is homeomorphic to the reals [0;∞) or a closed interval thereof. More generally, a
computational time domain may be de3ned as a partial order on an appropriate discrete
set or continuum of “instants.”
Although the continuous/discrete distinctions are mathematical and precise, hybrid

computations are possible. For purposes of this classi3cation, if any component of the
state or any of the input spaces are discrete, then the process must be considered class
D or (if some are continuous) CD.

3.6. Realization as homomorphism

The physical realization of an abstract computational process can be expressed more
precisely by putting it into mathematical form. The abstract process that a computational
system implements has some mathematical structure; for example, it might be a function
on the integers or a system of diEerential equations. The purpose of the computational
system is to physically instantiate or realize this abstract structure; thus the system has
the generic structure common to all realizations of that abstract computation. However,
the realizing physical system always has additional speci3c properties irrelevant to the

4 Class DC, continuous-time processes over discrete state-spaces, is excluded by the laws of physics.

126 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

computation. (For example, an electronic AND gate radiates heat and electromagnetic
noise, but these properties are not relevant to the computation of logical conjunction.)
Therefore, in an ideal case, there is a homomorphism from the realizing system to the
abstract system, a mapping that loses irrelevant physical structure while preserving the
relevant (computational) structure.
More formally, consider a computational process �:�×�→� on abstract state

space � and abstract input space �. There will be a corresponding (discrete or contin-
uous) time domain T and a monotonically increasing function �: T→T that gives the
next “instant” of abstract time (as before, this is informal for continuous processes).
The state and input are functions of time, : T→� and �: T→�, satisfying the ab-
stract process equation:

 [�(�)] = �[(�); �(�)] for � ∈ T:
Similarly, an intended physical realization is a function P : S ×X →X on physical
state space S and physical input space X . This process will take place in real-time
R¿0 = [0;∞) at (discrete or continuous) instants of time given by monotonically in-
creasing n : [0;∞)→ [0;∞). The states s : [0;∞)→ S and inputs x : [0;∞)→X are
functions of time satisfying the concrete process equation:

s[n(t)] = P[s(t); x(t)] for t ∈ [0;∞):

Further, suppose we have functions mapping the physical representations to their ab-
stract correspondents: Hs : S →�, Hi : X →�, and Ht : [0;∞)→T. The latter func-
tion de3nes a correspondence between time in the abstract and physical systems:

�(Ht{t}) =Ht{n(t)}:
(If Ht is an identity function, we have a real-time system; that is, abstract time is
physical time.) The physical process realizes the abstract process provided that these
functions commute under the state and input mappings:

Hs{s[n(t)]} = �[Hs{s(t)};Hi{x(t)}]:

3.7. Approximate realization

Most realizations are imperfect. That is, some of the abstract structure may not be
supported by the physical implementation. For example, integer arithmetic on a digital
computer may overDow and depth of recursion may be limited; analog computation is
subject to noise. To put it diEerently, an explanation of a physical system as imple-
menting a particular abstract computational process is a model of that physical system,
and typically an idealization of the real system.
It is also important to observe that an approximate realization can be of a diEer-

ent type to the realized system. To take a familiar example, a system of diEerential
equations may be realized approximately by a digital computer program (manipulating
discrete Doating point numbers in discrete steps). Conversely, although perhaps less
obviously, a continuous physical system can approximately realize a discrete compu-
tational or formal system. For example, in every digital computer binary logic devices

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 127

are implemented approximately by electronic circuits obeying continuous diEerential
equations. So also, the mathematician scribbling on a blackboard is an approximate
continuous realization of formal logic and mathematics.
I must digress to forestall a possible misunderstanding. When we classify an abstract

process as C, CD, or D, the classi3cation is precise, because we are dealing with
a mathematical classi3cation of mathematical objects (i.e., their topology). However,
when we classify physical realizations as continuous or discrete, we must treat them
at the relevant level of abstraction. For example, for most circuits it is reasonable to
treat electrical charge as a continuous quantity. However, for very small devices we
must take account of the fact that charge is quantized in terms of electron charges.
At even smaller scales we must treat electrons as continuously distributed probability
amplitudes. What they are ultimately (supposing we can ever know) is irrelevant; what
we want is a model appropriate to the scale at which we are working. Thus, when we
classify a physical process as C or D, for example, we mean that is a good model for
the purposes at hand.

4. Natural computation

4.1. Natural computation de9ned

The reader may agree that the TM grew out of a particular set of concerns somewhat
removed from modern computation, but see no reason to doubt its eKcacy as a general
model of computation. Therefore, in this section I will discuss “natural computation”
[e.g., 1] as an important area of computer application to which the TM model is
especially unsuited (see MacLennan [30] for a fuller discussion).

De�nition 2. Natural computation is computation occurring in nature or inspired by
that in nature.

Examples of computation occurring in nature include information processing in the
brain, in the immune system, and through evolution by natural selection; indeed, the
entire discipline of cognitive science is oriented around computational models. In all of
these cases (and more) scientists have found it fruitful to understand natural processes
in terms of computation. Therefore, natural computation is an important discipline for
its contribution of theories, models, and metaphors to the other sciences.
Examples of computation inspired by nature include arti3cial neural nets, genetic

algorithms, simulated immune systems, ant colony optimization, particle swarm opti-
mization, and simulated annealing. Their considerable actual and potential importance
in many applications has illustrated the technological value of understanding compu-
tation in nature. These non-traditional computational paradigms are most relevant in
those applications that are most similar to natural systems, for example, autonomous
robotics, real-time control systems, and distributed intelligent systems. Therefore, in
order to understand the models of computation most relevant to natural computation,
we will need to keep in mind these kinds of applications as well as natural systems in
which computation plays a role.

128 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

4.2. Relevant issues

I will begin by reviewing some of the issues that are most relevant in natural com-
putation, and therefore which should be addressed in suitable models of computation.
One of the most obvious requirements of natural computational systems is real-time
response. For example, generally an animal must respond to a sensory stimulus within
a fraction of a second; similarly, sensorimotor coordination takes place in real-time.
Thus the speed of the basic operations is critical; also, the absolute number of steps
from input to output in a discrete-time process and the rate of a continuous-time pro-
cess must be such as to deliver usable results in prescribed real-time bounds. Fur-
ther, algorithms that yield progressively closer approximations to an answer will be
more useful than those in which intermediate results are useless, since the former will
permit the use of premature results, if so required by real-time considerations. Such
algorithms also facilitate anticipatory processes, which prepare for a response before
its initiation.
Analysis of algorithms based on the traditional (TM) model of computation is ori-

ented toward asymptotic complexity, that is, how utilization of some resource (typically
time or space) grows with the size of the input. Such analysis is less relevant in the
context of natural computation, since the size of the input is generally 3xed (e.g., by
the structure or anatomy of a sensory system). For example, our optic nerves have ap-
proximately one million nerve 3bers delivering impulses at several hundred hertz. That
is the magnitude of input with which our visual systems must deal. If it can deliver
its results in the required real-time constraints, it does not matter how its algorithms
would perform with 10 times the number of inputs or 10 times the impulse rate.
Certainly algorithms in natural computation can be compared, but the criteria of

merit are diEerent. One of these criteria is speed of response. Although the sizes of
the inputs and outputs are 3xed, one algorithm may be better than another if it can
deliver a result in less real-time. Another criterion of merit is generality of response.
That is, while the input and output dimensions and the real-time response limits are
3xed, a natural computation may be improved by increasing the range of inputs to
which it responds well.
A related criterion is =exibility in response to novelty. That is, still within the

bounds of its input/output spaces, one computational system may be better able to
respond appropriately to novel inputs than can another. A novel input is one that an
arti3cial algorithm was not designed to handle, or that was outside of the environment
of evolutionary adaptedness that led to the evolution of a naturally occurring algorithm.
Related to this is the issue of adaptability. Since the natural environment is un-

predictable and ever-changing, an important issue in natural computation is whether
a system can adapt to a changing environment, and how quickly it can do so, while
retaining existing competence. Thus we are concerned with computational processes
that can change their dynamics on various timescales. Therefore, natural computation
systems can be compared with respect to the quality and speed of their adaptation
as well as the stability of their learning. This does not imply that all natural compu-
tation algorithms are adaptive, but that models of natural computation should easily
accommodate adaptation.

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 129

Further, since we assume the presence of noise and other sources of uncertainty,
gradual adaptability is generally preferable to precipitous change. Thus the gradual
adaptation exhibited by, for example, neural networks and genetic algorithms, is more
appropriate than the discrete addition and deletion of rules typical of learning algorithms
based on calculi (traditional discrete formal systems).
Tolerance to noise, error, faults, and damage is also important in natural computa-

tion. The natural world is messy, so animals and autonomous robots, for example, must
be able to make use of inputs that are very noisy. Furthermore, natural computation
itself is noisy and imprecise: biological devices such as neurons have many sources of
noise and their computation is inaccurate. For example, neural signaling has perhaps
one digit of precision. Analog computational devices have similar properties.
Finally, since the natural world is dangerous and often hostile, natural computation

systems may be damaged, and so their behavior should be robust in the presence of
faults or other sources of error. Therefore natural computation systems must operate in
such a way as to be immune to noise, errors, faults, and damage, or even to exploit
them (as, for example, noise is exploited in stochastic resonance).

4.3. Relevant assumptions

Based on these considerations, it is possible to outline some of the assumptions
that are appropriate for a model of natural computation. First, a natural computation
system must be physically realizable, and so its use of matter and energy must be
9nite; all physically instantiated quantities must be 3nite. Furthermore, noise and other
characteristics inherent in physical instantiation may dictate other sorts of 3niteness
(e.g., bandwidth, rates of variation). For example, noise is often high-frequency, which
limits bandwidth on the high-frequency end. Also, spatially distributed information may
have an underlying “graininess,” which is equivalent to high-frequency noise. Real-time
response requirements and physical size may limit frequency (temporal or spatial) on
the low end.
It is reasonable to suppose that natural computation exhibits a kind of syntactic for-

mality, by which I mean that the computation is governed by the physical aspects of
representations, not by any meanings that they may be supposed to have. (Here I am
not using syntax in any precise linguistic sense, but by analogy with formal languages
and to indicate the physical form of a signal as opposed to its semantics or meaning.)
In this sense we can speak of a continuous formal system [25]. There are at least two
reasons for this assumption. First, a principal reason for using computational models in
the natural sciences is to banish the “ghost in the machine” from our scienti3c expla-
nations. If we can account for some behavior or cognitive capacity, for example, by a
purely mechanical process, then we are con3dent that we are not falling into a circu-
lar argument and assuming what we are trying to explain. Second, in order to design
autonomous, intelligent machines, we have to be able to reduce natural computation to
purely mechanical processes, that is, to systems that we can design and build.
Natural computation systems, insofar as they are purely computational, also exhibit

abstract formality, that is, a dependence on the abstract forms of representations and
their formal relationships, rather than on their substance. Of course, as previously

130 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

explained, we cannot assume that naturally occurring information processing systems
will be purely computational, since nature often combines functions. Indeed, as we
apply natural computation in arti3cial systems, we too may 3nd it advantageous to
combine function. Nevertheless, natural computation qua computation is characterized
by abstract formality.
As previously discussed, real-time response is generally important in natural com-

putation. Therefore the notion of an abstract sequence of (albeit 3nite) computational
steps is of limited use in natural computation. Instead, regardless of whether we are
dealing with discrete- or continuous-time processes, we will generally want, at least in
principle, to be able to relate these to real-time. That is, we will be concerned with
the rates of continuous-time processes and with absolute bounds on the duration of the
steps of discrete-time processes.
Since the laws of physics are continuous (especially at the typically relevant scales),

often input, output, and state spaces should be assumed to be continua, and information
processing should be assumed to be continuous in real-time. Therefore, continuous
models are often better matches to the relevant phenomena than discrete models.
Natural computation assumes that noise, uncertainty, error, and indeterminacy are

always present (in both information representation and processing). For each “correct”
representation there will be others that are arbitrarily close, so representational spaces
are best treated as continua. Hence robustness is important: small errors should lead
to small eEects. Therefore it is generally appropriate to assume that functions and
processes are continuous. Discontinuous processes can lead to brittle response, which
is typical of conventional computation, but undesirable in natural computation.
On other hand, input, output and other representations are assumed to be of 9xed

“size” (e.g., dimension, physical extent, bandwidth), as opposed to the “3nite but un-
bounded” representations typical of TM computation.
The ability to adapt gradually to novelty implies that physical representations of

natural computational processes are at least partially continuous (as opposed to digital
computer programs, which are 3nite, discrete structures, which, if they adapt at all,
must do so in discrete steps).
In the most characteristic cases, natural computation is non-terminating. That is,

a natural computation system is in continuous interaction with its environment, and
that interaction terminates only when the system (e.g., organism, population) ceases
to exist. Thus it is not usually useful to think of natural computation as computing a
function (essentially a model more appropriate to old-fashioned “batch” computing).
Rather, most natural computation systems are better viewed as real-time control sys-
tems. Therefore we assume that, in the general case, useful natural computation may
be non-terminating.

5. Motivation for continuous computation

5.1. Principle of continuity

The preceding discussion of natural computation makes no commitment as to whether
discrete or continuous models are preferable. This is an empirical issue, and no doubt

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 131

diEerent instances of natural computation will require diEerent sorts of models. Nev-
ertheless, for a number of reasons in the remainder of this paper I will focus on
continuous models, and in particular on 9eld computation. First, discrete models are
already familiar, and so there is little need to discuss them further here. Second, con-
tinuous computation, and in particular 3eld computation, will serve as an example of
an alternative model to the TM, which is more relevant to natural computation in the
brain. It is also relevant to large arti3cial neural networks and to massively parallel
analog computers (optical computers, KirkhoE machines, etc.). Furthermore, continuity
avoids brittleness and enhances robustness and Dexibility. Small changes have small
eEects. Hence continuous information representation and processing is especially suited
to natural computation. Therefore, in order to keep our attention focused on this alter-
native model, in the remainder of this paper I shall adopt a Principle of Continuity,
which constrains our models to be continuous; in particular, information representation
and processing are assumed to be continuous.

5.2. Continuous information representation

We focus on continuous information representation for a variety of reasons. First,
there is considerable evidence for the use of continuous representations in the brain.
One should not be misled by the “all or nothing” generation of a neural impulse,
for (1) the impulse is a continuous waveform de3ned by diEerential equations (the
Hodgkin–Huxley equations), (2) information is encoded in the continuously variable
rate and phase of impulses, and (3) impulses in dendrites are graded and interact spa-
tiotemporally according to diEerential equations (the cable equations). Further, (4) the
synaptic eKcacies, which—so far as we know—encode memory, are complex functions
of the spatial distribution of (albeit discrete) receptors. Similarly, most arti3cial neural
net models are, at least partially, continuous. Although they are often implemented on
digital computers, they are most naturally described by continuous mathematics (real
numbers, linear algebra, derivatives, diEerential equations, etc.).
Therefore, in accord with our Principle of Continuity, we assume that all information

representations are continuous (i.e., they are drawn from continuous spaces). Naturally,
continuous quantities can be approximated by discrete quantities, but we must beware
of modeling artifacts resulting from the process of approximation, especially when we
are investigating fundamental properties of computation. The more direct—and safer!—
approach is to use continuous models from the beginning. A discrete approximation is
adequate only if it does not alter the phenomena of interest.
How, then, is information represented continuously? Certainly 3nite-dimensional vec-

tor spaces are appropriate for many purposes, and they are a common medium of rep-
resentation in both natural and arti3cial neural systems. However, for many purposes
in9nite-dimensional vector spaces (i.e., Hilbert spaces) are more useful. In particular,
in modeling the activity of the nervous system it is often useful to treat an informa-
tion representation as a 9eld, that is, a spatially extended continuum of continuous
quantity.
Thus, sensory images are naturally described as 3elds; consider a static visual scene:

intensity (of various wavelengths) varies continuously over the optical 3eld. Similarly

132 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

in an auditory image the sound pressure varies continuously with time. Indeed, visual
images are also time-varying, so they are continuous functions of space and time. We
should not be misled by the fact that, for example, the retina comprises a 3nite number
of discrete receptors, for the number is so large (108) that it is mathematically more
transparent to treat it as a continuum. Motor images are also naturally modeled as
3elds, since they represent the continuous motion of the body in space [26].
Cortical maps, in which signi3cant information in represented by spatially distributed

activity in a patch of cortex, have suKciently many elements to be treated as 3elds.
There are at least 150 thousand neurons in each square millimeter of cortex, and so
even the smallest cortical maps have hundreds of thousands of neurons, enough to be
treated mathematically as a continuum. As a consequence, 3eld-oriented models have
been useful in explaining the operation of cortical maps (citations given elsewhere
[26,27]).
It is worth observing that 3elds contradict many of the assumptions underlying cal-

culi. First, whereas formulas are built up from tokens, 3elds do not have atomic com-
ponents in any useful sense. Certainly we can think of the (uncountable) in3nity of
in3nitesimal points, such as the light intensity of a particular wavelength at an in-
3nitesimal point in space and time, but this is far indeed from the concrete tokens of
a calculus.
In fact, whereas the fundamental operations in a calculus operate on tokens, and

more complex operations result from combinations of these, in 3eld computation the
3eld is treated as a whole. We may analyze what happens to individual points (e.g.,
ray tracing in optics), but that is for our cognitive convenience. In nature, the 3eld
is processed as a whole in parallel. Think of the processing of a visual image by the
retina and through the visual system, or of the sensation of touch distributed over the
skin, or of the motor output to the muscles of a gymnast or dancer.
Certainly, the sensory system analyzes images to extract information from them, and

the motor system synthesizes a total motor image from subimages, but in neither case
is the decomposition given and canonical, as in the formulas of a calculus. Indeed,
learning an appropriate decomposition is often a critical problem for a sensory system.
Although there is evidence that the nervous system makes use of mathematical de-

compositions of 3elds, such as Fourier transforms and wavelet decompositions [e.g.,
7–10,18], these operations are continuous and holistic. Even when a 3nite discrete set
of (continuous!) coeKcients is extracted, as in a generalized Fourier series,

� =
N∑

k=0

ck�k ;

the coeKcients are computed by inner products over the entire image (or over extended
parts of it, as in some windowed Fourier transforms). That is, to compute from image
� the coeKcient ck corresponding to basis function �k , we integrate over whole images:

ck = 〈�k ; �〉 =
∫

�
�k(x)�(x) dx:

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 133

Thus, in continuous representations, the orientation is on analysis rather than on syn-
thesis (or construction), as it is in discrete representations.

5.3. Continuous information processing

Given that information representation in the brain is continuous, information process-
ing might be either continuous-time or discrete-time (i.e., class C or CD). In addition
to the Continuity Principle, there are several reasons for focusing on continuous infor-
mation processing.
First, the underlying physical processes in the brain are continuous at the relevant

level of abstraction; for example, electrical propagation and chemical diEusion pro-
cesses are de3ned by diEerential equations. Certainly, abrupt events may occur, such
as the 3ring of a neuron, but these are best treated as continuous processes that are only
approximately discrete. (And indeed the 3ring of a neuron is described by a diEerential
equation, the Hodgkin–Huxley equation.) Similarly, information processing in analog
computers is de3ned by diEerential equations. Even when arti3cial neural networks are
simulated on digital computers, the program is often performing a discrete-time ap-
proximation to a continuous mathematical process (as when a learning algorithm, such
as back-propagation, approximates gradient descent by taking discrete, 3nite steps).
Second, the bulk of the information processing in animals is continuous. For ex-

ample, sensorimotor coordination is a continuous, real-time process. Even many higher
cognitive processes are accomplished by continuous manipulation of mental images. For
example, Shepard [47,48] has shown that mental rotation of three-dimensional objects
is a continuous process (see additional citations elsewhere [16]).

5.4. Apparently rule-like behavior

A cognitive domain in which discrete representations and processes might seem to be
required includes language, verbal reasoning, propositional knowledge representation,
and other apparently rule-based behavior. And this may be so. However, we think that
even here continuous models have much to contribute, especially in explaining the
Dexibility and adaptability of human rule-like behavior, including, in particular, formal
methods as applied by mathematicians [11,16]. Understanding these mechanisms could
give arti3cial systems some of these same advantages.
For example, we can sketch the following model of rule-like behavior in a continuous

system [25,29]. First observe that a rule-based system categorizes a situation into one
of a 3nite number of classes, each of which is handled by an applicable rule. Then an
applicable rule extracts from the situation certain low-dimensional index information
(represented by the variables in the rule), which particularizes the situation. The actions
performed by the rule depend only on this index information and the content of the
rule. So if it creates a complex representation, all of the information must come either
from the rule itself or from the particulars selected by the low-dimensional index
information.
From the perspective of continuous computation, a rule projects a complex image

through a low-dimensional subspace. Further, any function that can be decomposed

134 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

into a 3nite set of such projections will act as though it is obeying a 3nite set of
rules even if the actual intermediate space is not physically represented. That is, if a
function F : �→� between high-dimensional spaces � and �, can be decomposed,
F =

⋃N
k=1 Qk◦Pk , where Pk : �→ Ik and Qk : Ik →�, for low-dimensional intermediate

spaces Ik , then the system will appear to be following rules, even if the physical
computation is not structured in this way. That is, a system may appear to be following
rules even though it is not; in eEect the rules are illusory.
This continuous model of rule-like behavior has several advantages. First, if a func-

tion is approximately decomposable in this way, then its behavior will be correspond-
ingly approximately rule-like. Thus we have an approach to dealing with exceptions in
rule-like behavior. In eEect, although intermediate information may be generally con-
3ned to the low-dimensional spaces Ik , it may occasionally (exceptionally) be outside
this space, although still in a larger, higher-dimensional intermediate space. That is,
we are assuming that a more accurate decomposition is represented by Pk : �→Xk

and Qk : Xk →�, where Ik ⊂Xk and Xk is high dimensional. Therefore the diEerence
between exactly and only approximately rule-like behavior is the diEerence between
the range of Pk being entirely or only mostly con3ned to a low-dimensional Ik .
More importantly, this model shows how rule-like behavior may be gradually adap-

tive. In a discrete computational system that is actually following rules, fundamental
adaptation requires the deletion or addition of rules, which will result in abrupt changes
of behavior. In a continuous system, however, through gradual adaptation, the ranges
of some or all of the projections may 3rst expand from the small subspaces Ik to
larger subsets of the Xk and then contract to diEerent low-dimensional spaces I ′

k . From
the perspective of the observer, the system will have evolved from rule-like behavior,
through an intermediate non-rule-like phase, into a new phase that appears to be fol-
lowing diEerent rules. Apparently, the rules gradually dissolve and then resolidify as
diEerent rules.

6. Foundations of continuous computation

6.1. Information representation

With this introduction to some of the advantages we hope to obtain from an un-
derstanding of continuous information representation and processing, we can turn to
a more precise account of its properties. Certainly, there have been a number of ap-
proaches to continuous and topological computation [2,4,39,42,44–46]. However, in the
following I will postulate certain properties that we expect to hold for any continu-
ous computational system. This in eEect de3nes a kind of continuous formal system,
which we term a simulacrum, and, as a possible foundation for continuous information
processing, is the continuous analog of a calculus, or discrete formal system, in its
role as the foundation of TM computation [19,23,25]. Since simulacra are intended to
be physically realizable—as they must be as a model of natural computation—these
postulates will be constrained by what seems to be physically possible in the most
general terms.

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 135

6.1.1. Topology of images
Through a phenomenological analysis of the invariants encountered in continuous

information representation and processing systems, we have proposed a set of common
characteristics of simulacra [23], which are summarized here.
We begin by characterizing image spaces, that is, the spaces from which images,

or continuous representations, are drawn. (Images correspond to the formulas of a
calculus.) Our analysis suggests that similarity of images can be quanti3ed and that
such quanti3cation has the mathematical properties of a metric. Further, what de3nes
an image space as a single space is that any image can be continuously transformed
into any other in the space. Thus:

Postulate 1. Image spaces are path-connected metric spaces.

Therefore, image spaces have at least the cardinality of the real numbers [14, p. 175].
For various technical reasons it is reasonable to assume two additional properties of

images spaces:

Postulate 2. Image spaces are separable and complete.

A space is complete if all its Cauchy sequences have limits in the space, and it is
separable if it has a countable dense subset. The practical implications of this postulate
are that there is a countable set of images in the space that can be used to approximate
any image by a sequence of increasingly similar images, and conversely that all such
sequences have limits in the space. Completeness and separability are in eEect the
conditions that permit the description of continuous spaces in our discrete mathematical
language; they bridge the continuous and discrete.
In support of this postulate we may observe that a continuum is often de3ned as

a non-trivial connected compact metric space [40, p. 158], and that a compact metric
space is both separable and complete. Furthermore, a theorem of Urysohn shows that
a metric space with a countable base, such as a continuum, is homeomorphic (topo-
logically equivalent) to a subset of the Hilbert space L2(R) [41, p. 324]. As we have
seen, Hilbert spaces are natural mathematical models of many image spaces and are
widely used in natural computation. It is also the basis of 9eld computation, which is
computation over Hilbert spaces [15,17,20,26,27].

6.1.2. Images and their forms
Physical realizability places additional constraints on images. First observe that im-

ages are extended over some physical continuum (which, in the simplest case, may be a
single point). That is, the domain � of an image (considered as a function � : �→K)
is a topological continuum (connected compact metric space). Certain physical quanti-
ties, the values of the image �(!), !∈�, vary continuously over its extent. That is,
the image de3nes a continuous function � : �→K of the domain �. Further, since �
is compact we know that � must be uniformly continuous [33, p. 178].
A 3eld’s domain is bounded (3nite in extent), which means that it occupies a

3nite amount of “space” (whatever concept of space is appropriate to the physical

136 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

representation, as represented in the metric). Note that for the typical case in which
�⊂Rn the Heine–Borel theorem guarantees that the compact domain � is closed and
bounded. This 3niteness requirement must be modi3ed slightly for temporal images,
that is, images varying in time. In these cases the domain is given by �=" ×R¿0,
where R¿0 represents time (from process initiation) and " is a bounded continuum
(the signal’s non-temporal extent). Thus �(#; t) is the value of the 3eld at location
#∈" and time t.
The codomain K of an image is also a continuum, and since the range of a 3eld’s

variation is 3nite, the codomain K is bounded continuum. Typically, K ⊂Rn, a closed
and bounded subset of a 3nite-dimensional vector space. In summary:

Postulate 3. An image is a uniformly continuous function over a bounded continuum
(which may, however, be unbounded in the positive time dimension).

As previously remarked, it is often appropriate to assume in addition that the vari-
ation is band-limited; that is, if the image is expanded in an ordinary Fourier series,
then all the coeKcients are zero beyond some point.
Subject to the preceding restrictions, we assume that it is possible to construct an

image with any pattern of variation over its extent (that is, all bounded continuous
functions are possible images). Also, in accord with the principle of abstract formality,
only the pattern of variation (the form) of the image is relevant to computation, not
its substance. Finally, in accord with the Principle of Continuity, we stipulate:

Postulate 4. Maps between images spaces are continuous.

This postulate has many important consequences for classi3cation and categorization
in image spaces, which are discussed elsewhere [19, 23]. Another consequence of the
Continuity Principle is:

Postulate 5. Interpretations of simulacra are continuous.

Since a continuous image of a compact path-connected metric space is a compact
path-connected metric space, the interpretations of images constitute an image space.
That is, for image space � and continuous f, the range f[�] is an image space.

6.2. Information processing

6.2.1. States and processes
A process has a complete state, comprising a 3nite number of internal state images,

and a 3nite number (possibly zero) of (external) input images. All these images vary
continuously in time (if they vary at all). The instantaneous con9guration of a process
comprises the forms of its internal state and external input images. This con3guration
governs (not necessarily deterministically) the continuous change of (internal) state
through time, and such government depends continuously on the con3guration.
For non-deterministic processes, there is a continuous probability density function de-

3ned over possible computational trajectories. Therefore, there is a continuum between

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 137

possible trajectories and impossible trajectories, and thus there are soft constraints on
the admissibility of trajectories.
Instead of asking whether a continuous process terminates, it is generally more mean-

ingful to determine whether it is asymptotically stable. Such processes converge con-
tinuously toward their results, so if an agent must act before an optimal answer has
been obtained, it will still have a relatively good result. (Of course, such equilibria
are only temporary, since natural computation never stops; typically, the equilibrium
will be destabilized by a change of input, which then enables a new equilibrium to be
achieved.)

6.2.2. Topological de9nition of process
In topological terms, a deterministic autonomous process is a continuous function

P : �×R→� (where � is the complete state space) that de3nes the state at a future
time in terms of the current state: t+Vt =P(t ;Vt). Clearly, such processes satisfy the
group properties:

P(; 0) = ;

P[P(; t1); t2] = P(; t1 + t2):

More generally, for non-autonomous as well as autonomous processes, the Principle of
Continuity requires:

Postulate 6. Formal processes in simulacra are continuous functions of time, input
images, and process-state images.

We have seen that image spaces are homeomorphic to subsets of Hilbert spaces,
and since Hilbert spaces are Banach spaces, we can de3ne the derivative of a process.
Note that

 ̇ t = lim
�→0

 t+� − t
�

=
d
d�

P(t ; �)
∣∣∣∣
�=0

:

Therefore, if P is diEerentiable, we can write a deterministic autonomous process as a
diEerential equation ̇ =Q() where Q()= (d=d�)P(; �)|�=0. A similar approach can
be used for non-autonomous processes.

6.2.3. Potential descent
Hill-descending processes illustrate many of these ideas. Suppose V () is a bounded

scalar-valued potential function de3ned over states ∈�. Then gradient descent is a
simple deterministic continuous autonomous process: ̇ = − r∇V (), where r is the
rate of descent.
For non-deterministic descent, we can de3ne, for example, the probability density

P(; ̇) of change ̇ (t) to state (t) by a soft constraint such as this:

P(; ̇) =
[−∇V () · ̇]+
‖∇V ()‖ · ‖ ̇ ‖ ;

138 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

where x+ represents the non-negative part of x (of course, a smooth, sigmoidal func-
tion could be used instead). The eEect of this is to make the probability density of
a state change equal to the non-negative part of the cosine of the angle between the
negative gradient and the direction of state change. Therefore, descent along the nega-
tive gradient will be most probable, but other potential-decreasing directions will also
be allowed, with their probability decreasing to zero as they approach orthogonality to
the gradient. Then P{ ; a; b}, the probability of following trajectory from time a to
time b, can be expressed:

P{ ; a; b} = exp
∫ b

a
log P[(t); ̇ (t)] dt:

6.3. Process representation

Finally, it will be worthwhile to consider the form that programs may take in the
context of continuous computation. This is important theoretically, for its relevance to
universal computation, and practically, as a foundation of general-purpose continuous
computers.

6.3.1. Discrete formulas
Of course, many continuous processes can be de3ned by diEerential equations or

other mathematical formulas. In these cases we are using static discrete structures (the
formulas) to de3ne continuous-time processes. Similarly, researchers from Shannon
onward have designed general-purpose analog computers on the base of interconnecting
discrete computational elements from a 3nite set [15,17,27,39,42,44–46].
Even in this familiar case, however, there are some subtleties that we should notice.

Consider the simple diEerential equation, y′= ry. If r is a rational number, then this
equation can be written down, that is to say, it can be represented in a 3nite, dis-
crete structure. If r is not rational, we cannot write it down (represent it discretely and
3nitely), but if r is a computable real number, then we can at least provide a 3nite pro-
cedure for generating progressively better rational approximations. That is, we have a
3nite, discrete structure (a digital computer program) p such that limk → ∞ p(k)= r. In
eEect, our 3nite, discrete representation is y′= [limk → ∞ p(k)]y. Notice, however, that
the set of computable real numbers is denumerable, so most real numbers are non-
computable. Therefore, most continuous processes obeying an equation of the form
y′= ry will not be 3nitely describable in discrete symbols, either directly (by giving
a 3nite formula for rational r) or indirectly (by giving a 3nite algorithm for approxi-
mating computable r). In general, we can see that most continuous processes cannot
be expressed or even approximated arbitrarily closely by a 3nite, discrete structure.
In contrast, an analog computer has no such limitation. If we have an analog com-

puter programmed to integrate y′= ry for a given rate r, then this input can be provided
directly as a continuous quantity (e.g., a voltage or light intensity); there is no need
to express it discretely (e.g., as a string of digits or an approximating digital com-
puter program). The equation y′= ry can be 3nite in size, provided we are allowed to

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 139

represent r directly by a continuous magnitude rather than a 3nite, discrete formula.
That is, r must be represented by an image rather than a formula.
It is important to avoid several traps into which we may be drawn by our discrete

thinking habits. For example, it may be argued that the continuous output of an analog
computation has to be measured, which converts it to a rational number. Conversely,
to input a quantity, it is argued, it must be typed as a number or selected from a
3nite set, which means that the set of possible inputs is denumerable. However, both
of these objections arise from the incorrect assumption that a continuous computation
is interfacing with a discrete environment (such as a human user typing in numbers or
viewing a digital readout).
First, even if a human is using an analog computer, inputs and outputs may be

continuous: input can be gestural or through a joystick or slider; output can be a dial-
less pointer or a visual image. Further, in the context of natural computation (which
is our focus here), there is generally no “user” providing inputs or consuming outputs.
Typically, an organism is responding to continuous inputs from its environment by
making continuous actions in its environment. Input, processing, output: they are all
continuous, and there need not be discrete computing anywhere. The simplest and most
appropriate model is to assume that all the quantities and processes are continuous, as
they are normally assumed to be in physics.

6.3.2. Guiding images
We have seen that there are limits to expressing continuous computational processes

in 3nite, discrete formulas (“programs”), therefore we might ask if there is some alter-
native more appropriate to continuous computation. We have already seen one possible
extension: the inclusion of continuous quantities in an otherwise discrete representation.
This suggests that, just as discrete computational processes are most naturally repre-
sented by 3nite, discrete formulas (programs), so continuous computational processes
might be represented by 3nite, continuous images. We call these continuous analogues
of programs guiding images.
For a concrete example, consider a potential surface V () de3ned over states ∈�.

This can serve as a simple guiding image for a continuous computation: for a deter-
ministic computation, start in an initial state 0 and follow the gradient downward,
 ̇ = − r∇V (), until an equilibrium (a minimum or saddle-point) is reached. (An
asymptotic equilibrium must exist due to the boundedness of images.) The same guid-
ing image can also govern a non-deterministic descent, as was explained in Section
6.2.3.
But where do we get the guiding image for a continuous computation without de-

scribing it discretely? Just as a human can write a digital computer program, so a
human can “sculpt” (or “paint” or “dance”) the guiding image of a continuous pro-
cess. More likely, perhaps, a human may be in an interactive continuous feedback loop
with a continuous computation system that is creating a guiding image. Finally, just
as a rule-based system can be constructed by a learning algorithm, so also a guiding
image may be sculpted by a continuous adaptive algorithm. (This is, in eEect, what
many neural net learning algorithms do.) In nervous systems, the guiding images are

140 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

created by continuous developmental processes and experiential learning. This is the
origin of many of the guiding images encoded in cortical maps.

7. Ubiquity of calcular assumptions

I have argued that the TM model acquires many of its characteristics from the
context in which it developed: problems in formal logic and mathematics. I have also
argued that a diEerent, equally important set of concerns, those involved in natural
computation, suggests a diEerent set of assumptions and consequently diEerent models
of computation, including continuous computation. Nevertheless, I would like now to
come full circle and consider some issues in the epistemology of mathematics raised
by our broadened idea of computation.
Although I have pointed out that many speci3c continuous computations are inex-

pressible in 3nite, discrete formulas, it will be apparent that I have made full use of the
tools of mathematics—including topology and functional analysis—to discuss continu-
ous computation. This may seem odd, given that I have stated my intention to adopt
the Continuity Principle and eschew discrete representations and processes. The rea-
son, of course, is that I want to attain some precision in my statements and arguments.
Nevertheless, the reader may be left with the impression that discrete representations
and processes are somehow more fundamental than continuous. To explore this issue,
it will be necessary to consider some developments in the history of mathematics.
Recall that in Euclid’s Elements continuous magnitudes and discrete numbers are

separately axiomatized; in eEect they are taken to be equally fundamental. Neverthe-
less, mathematicians were more comfortable with the integers, perhaps because of trou-
blesome issues of irrationality and in3nity associated with the continuum. In any case,
the “arithmetization of geometry” became a project in the development of mathematics,
which was eventually declared solved as a consequence of the late-19th century con-
structions of Dedekind, Weierstrass, Cantor, and others. Therefore, we now routinely
accept that the (continuous) real numbers are constructed in some way from the (dis-
crete) rationals. The integers, from which the rationals are constructed, are considered
most fundamental. Hence the historical importance of the recursive construction of the
integers (e.g., by the Peano axioms) and of computation de3ned in terms of functions
on the integers.
The reasons for this preference lie very deep, historically and psychologically, and

are outside of the scope of this article. Nevertheless, it is relevant to indicate some of
the issues involved. As is well known, the ancient Pythagoreans made use of 3gured
numbers, that is, arrangements of identical tokens, to discover and prove theorems in
number theory. Thus, square numbers were literally square 3gures, and so forth for
triangular numbers, pentagonal numbers, etc. Typically the tokens were pebbles (Greek
psêphoi, Latin calculi), and from the manipulation of these we get our words calculus,
calculate, etc. These are the historical roots of the theory of discrete formal systems
and of the TM model of computation.
A preference for the integers is just one aspect of a tendency to analyze com-

plex phenomena into parts or units that are simple, elementary, atomic (literally,

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 141

“indivisible”), and nearly featureless (having only the simplest features, preferably
quantized), but that have a de3nite identity (each unit is absolutely identical to it-
self and absolutely diEerent from each other unit). Here also we may see the roots of
modern particle physics (which traces its ancestry to the century after Pythagoras) and
of genetics. There is much to recommend this view of the world (witness the success
of modern science and technology), but it has less obvious limitations when applied
to the complexity of the natural, especially the biological, world [e.g., 43].
It may be argued that mathematics has advanced far beyond the 3gured numbers

of the Pythagoreans, or the crude axioms of Euclid, and that topology, for example,
is able to describe spaces with varied and rich structures. But observe: mathematical
topology is point-set topology. Topology is built on the concept of a space as set of
points: self-identical and featureless, but each absolutely distinct from all other points
(although, of course, they may be nearer or farther in some metric sense). Conceptually,
continua are sets of points, functions and relations are sets of point pairs, and so forth.
Mathematical points, indivisible tokens, conceptual atoms: they are all psychologically
the same.
It may seem that there is no alternative, but that is because the point set approach

to mathematics has been so successful. A function does not have to be viewed as a set
of point pairs; at one time it was more common to understand it as a continuous curve
or graph, and category theory treats functions and sets more holistically. Certainly the
point-set approach is a triumph of generality, but it comes with a price, a fundamental
atomic bias.
The point-set approach has not been accepted without criticism [34]; for example

Karl Menger [35] provides a useful survey of various approaches to “topology without
points” [36–38, 49–51]. His own approach begins with lumps, which are “closer to the
physicist’s concept of space” than are idealized points. Nevertheless, he concludes that
even the introduction of points as nested sequences of lumps somehow transcends
what can be observed in nature. For, by a lump, we mean something with a well
de3ned boundary. But well-de3ned boundaries are themselves results of limiting
processes rather than objects of direct observation. Thus, instead of lumps, we
might use at the start something still more vague—something perhaps which has
various degrees of density or at least admits a gradual transition to its complement.
[35]

But let us dig deeper. Set theory is de3ned by some axiom system such as the Zermelo–
Fraenkel axioms, which are typically expressed in a formal language such as 3rst-order
predicate logic with equality (FOPLE), in which equality is axiomatized with its fa-
miliar properties (reDexivity, symmetry, transitivity). As a consequence, the objects
described by the Zermelo–Fraenkel axioms (be they interpreted as sets, functions, rela-
tions, numbers, or anything else) have the character of self-identical, mutually distinct
atomic units.
It may be supposed that the equality axioms are the source of this character, but

they only manifest it most clearly. In any consistent formal logical system, we will
have some well-formed formulas that are provable and others that are not, and there-
fore induced relations of identity and non-identity in any valid domain of interpretation
(model). (Indeed, the domain of interpretation is itself taken to be a mathematically

142 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

well-de3ned domain, which means that the identity of its objects will be de3nite.) The
distinctness and de3niteness of the tokens, types, and syntactic relations in our formal
languages are inherently connected with the distinctness and de3niteness of the math-
ematical objects (points, etc.) about which they can speak (express true propositions).
This is, I think, the implication of the LJowenheim–Skolem Theorem, which says

that any consistent formal axiom system must have a countable model (valid domain
of interpretation). (Such a model is constructed from the formal language and axiom
system itself.) Thus a discrete formal system cannot escape de3nitively and absolutely
from the discrete realm. In particular, the real continuum cannot be uniquely character-
ized in a discrete formal language. (In this sense, the historical project of arithmetizing
geometry has failed.)
Now, my purpose is not to criticize mathematics, which is as important a tool in

natural computation as in other scienti3c and engineering disciplines. Rather, I am
trying to call attention to the fact that when we put on the spectacles of modern
mathematics we are apt to see discreteness—“points”—even in continua, and we are
apt to suppose that such continua, and the continuous processes operating on them, are
completely and adequately describable by discrete formal systems.
Of course, mathematics is intended to be a language of precision, but the LJowenheim–

Skolem Theorem and similar results hint that the very discreteness of formal syntax
and inference may limit what it can express. However, one of the lessons of natural
computation is that in many natural systems precision may be unnecessary and even
detrimental. More generally, there are many kinds of information that are useful to
organisms, and many ways of processing it; mathematics is just one kind, of limited
applicability, primarily useful to a relatively small subset (scientists, etc.) of one species
(Homo sapiens). That is, while the discrete formal language of mathematics may be
useful for talking about natural computation, there is good reason for doubting that it
is anything like the medium of natural computation.

8. Conclusions

We have seen that models are relative to a context of concerns; although they may be
applicable outside of their historical context of origin, they cannot be assumed to be so.
Further, using a model outside of its appropriate (but often indeterminate) domain runs
the risk of deceiving us with incorrect results. Therefore we must expose the idealizing
assumptions of a model and determine the extent to which they are applicable in any
intended domain of application.
In particular, I have argued that the TM model owes its idealizing assumptions

to issues in the formalist program in mathematics. Nevertheless, in part because the
earliest digital computers were designed by scientists educated in this same background,
the TM has proved reasonably successful as a model of traditional (especially batch-
processing) digital computing.
However, as we have tried to apply computational models to nature, and as we

have sought to design algorithms, computers, and robots inspired by biological sys-
tems, natural computation has emerged as an important area of concern, which asks

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 143

diEerent questions and addresses diEerent issues from the traditional theory of com-
putation. In particular, the real-time response, Dexibility, robustness, and adaptability
of natural computation make continuous models of computation attractive. Therefore
I have argued for a broadened de3nition of computation, which includes continuous
representations and processes, on the basis that computation is a matter of what is be-
ing accomplished (manipulation of abstract form independently of material substrate),
rather than of how it is accomplished (digital or analog technology). Continuous com-
putation, in fact, contradicts many of the assumptions of the TM model; moreover it
is better suited to addressing the issues of natural computation.
Finally, I indicated brieDy that the contrast between discrete and continuous formal

systems is related to deeper issues in epistemology and the foundations of mathematics.

Acknowledgements

I am grateful to Mark Burgin for directing me to Menger’s very informative “Topol-
ogy without points” [35].

References

[1] D.H. Ballard, An Introduction to Natural Computation, MIT Press, Cambridge, MA, 1997.
[2] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP

completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. 21 (1988) 1–46.
[3] M. Burgin, Universal limit Turing machines, Notices Russian Acad. Sci. 325 (1992) 654–658 (translated

from Russian).
[4] M. Burgin, Topological algorithms, in: Proc. ISCA 16th Internat Conf.: Computers and their

Applications, ISCA, Seattle, 2001, pp. 61–64.
[5] B.J. Copeland, The Church-Turing thesis, in: J. Perry, E. Zalta (Eds.), The Stanford Encyclopedia of

Philosophy, http://plato.stanford.edu, 1996.
[6] B.J. Copeland, R. Sylvan, Beyond the universal Turing machine, Austral. J. Philos. 77 (1999) 46–67.
[7] J.G. Daugman, Spatial visual channels in the Fourier plane, Vision Res. 24 (1984) 891–910.
[8] J.G. Daugman, An information-theoretic view of analog representation in striate cortex, in: E.L. Schwartz

(Ed.), Computational Neuroscience, MIT Press, Cambridge, MA, 1985, pp. 403–423.
[9] J.G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized

by two-dimensional visual cortical 3lters, J. Opt. Soc. Amer. A 2 (1985) 1160–1169.
[10] J.G. Daugman, Complete 2-D Gabor transforms by neural networks for image analysis and compression,

IEEE Trans. Acoust. Speech Signal Process. 16 (1988) 1169–1179.
[11] H. Dreyfus, S. Dreyfus, Mind Over Machine, Macmillan, New York, 1986.
[12] S. Harnad, The symbol grounding problem, Physica D 42 (1990) 335–346.
[13] S. Harnad, Grounding symbols in the analog world, Think 2 (1993) 12–78.
[14] F. HausdorE, Set Theory, Chelsea, New York, 1957 (transl. J.R. Aumann).
[15] B.J. MacLennan, Technology-independent design of neurocomputers: the universal 3eld computer, in:

M. Caudill, C. Butler (Eds.), Proc. IEEE 1 Internat. Conf, Neural Networks, Vol. 3, IEEE Press, New
York, 1987, pp. 39–49.

[16] B.J. MacLennan, Logic for the new AI, in: J.H. Fetzer (Ed.), Aspects of Arti3cial Intelligence, Kluwer,
Dordrecht, 1988, pp. 163–192.

[17] B.J. MacLennan, Field computation: a theoretical framework for massively parallel analog computation,
Parts I–IV, Tech. Report CS-90-100, Department Computer Science University of Tennessee, Knoxville,
1990. http://www.cs.utk.edu/∼mclennan.

http://plato.stanford.edu
http://www.cs.utk.edu/~mclennan

144 B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145

[18] B.J. MacLennan, Gabor representations of spatiotemporal visual images, Tech. Report CS-91-144, Dept.
Comp. Sci., Univ. Tennessee, Knoxville, 1991. http://www.cs.utk.edu/∼mclennan.

[19] B.J. MacLennan, Characteristics of connectionist knowledge representation, Inform. Sci. 70 (1993)
119–143, http://www.cs.utk.edu/∼mclennan.

[20] B.J. MacLennan, Field computation in the brain, in: K.H. Pribram (Ed.), Rethinking Neural
Networks: Quantum Fields and Biological Data, Lawrence Erlbaum, Hillsdale, 1993, pp. 199–232,
http://www.cs.utk.edu/∼mclennan.

[21] B.J. MacLennan, Grounding analog computers, Think 2 (1993) 48–51, http://www.cs.utk.edu/∼mclennan
or cogprints.soton.ac.uk/abs/comp/199906003.

[22] B.J. MacLennan, Continuous computation and the emergence of the discrete, in: K.H. Pribram (Ed.),
Origins: Brain & Self-Organization, Lawrence Erlbaum, Hillsdale, 1994, pp. 121–151, http://www.cs.utk.
edu/∼mclennan or cogprints.soton.ac.uk/abs/comp/199906001.

[23] B.J. MacLennan, Continuous symbol systems: the logic of connectionism, in: D.S. Levine, M. Aparicio
IV (Eds.), Neural Networks for Knowledge Representation and Inference, Lawrence Erlbaum, Hillsdale,
1994, pp. 83–120, www.cs.utk.edu/∼mclennan.

[24] B.J. MacLennan, Words lie in our way, Minds Mach. 4 (1994) 421–437, http://www.cs.utk.
edu/∼mclennan or cogprints.soton.ac.uk/abs/phil/199906001.

[25] B.J. MacLennan, Continuous formal systems: a unifying model in language and cognition,
in: Proc. IEEE Workshop on Architectures for Semiotic Modeling and Situation Analysis in
Large Complex Systems, Monterey, CA, 1995, pp. 161–172. http://www.cs.utk.edu/∼mclennan or
cogprints.soton.ac.uk/abs/comp/199906002.

[26] B.J. MacLennan, Field computation in motor control, in: P.G. Morasso, V. Sanguineti (Eds.),
Self-Organization, Computational Maps and Motor Control, Elsevier, Amsterdam, 1997, pp. 37–73,
http://www.cs.utk.edu/∼mclennan.

[27] B.J. MacLennan, Field computation in natural and arti3cial intelligence, Inform. Sci. 119 (1999)
73–89, http://www.cs.utk.edu/∼mclennan.

[28] B.J. MacLennan, Can diEerential equations compute?, Tech. Report UT-CS-01-459, Department of
Computer Science, University of Tennessee, Knoxville, 2001. http://www.cs.utk.edu/∼mclennan.

[29] B.J. MacLennan, Continuous information representation and processing in natural and arti3cial neural
networks, Tech. Report UT-CS-03-508, Department of Computer Science, University of Tennessee,
Knoxville, 2003. http://www.cs.utk.edu/∼mclennan.

[30] B.J. MacLennan, Transcending Turing computability, Minds Mach. 13 (2003) 3–22, http://www.cs.utk.
edu/∼mclennan.

[31] A.A. Markov, Theory of Algorithms, transl. by J.J. Schorr-Kon, PST StaE, Israel Prog. Sci. Transl. US
Department Comm. Ofc. Tech. Service OTS 60-51085, Jerusalem, 1961. (Transl. of Teoriya Algorifmov,
Acad. Sci. USSR, Moscow, 1954).

[32] C. Mead, Analog VLSI and Neural Systems, Addison-Wesley, Reading, MA, 1989.
[33] B. Mendelson, Introduction to Topology, 2nd ed., Dover, New York, 1990.
[34] K. Menger, Dimensionstheorie, Teubner, Leipzig, 1928.
[35] K. Menger, Topology without points, Rice Inst. Pamphlet 27 (1940) 80–107.
[36] A.N. Milgram, Partially ordered sets, separating systems and inductiveness, Rep. Math. Colloq. Notre

Dame Ind. 2 Ser. 1 (1939) 18–30.
[37] A.N. Milgram, Partially ordered sets and topology, Rep. Math. Colloq. Notre Dame, Ind. 2nd Ser. 1

(1940) 3–9.
[38] A.N. Milgram, Partially ordered sets and topology, Proc. Natl. Acad. Sci. USA 26 (1940) 291–293.
[39] C. Moore, Recursion theory on the reals and continuous-time computation, Theoret. Comput. Sci. 162

(1996) 23–44.
[40] T.O. Moore, Elementary General Topology, Prentice-Hall, Englewood CliEs, NJ, 1964.
[41] V.V. Nemytskii, V.V. Stepanov, Qualitative Theory of DiEerential Equations, Dover, New York, 1989.
[42] M.B. Pour-El, Abstract computability and its relation to the general purpose analog computer (Some

connections between logic, diEerential equations and analog computers), Trans. Amer. Math. Soc 199
(1974) 1–29.

http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan
http://www.cs.utk.edu/~mclennan

B.J. MacLennan / Theoretical Computer Science 317 (2004) 115–145 145

[43] T. Roszak, The Gendered Atom: ReDections on the Sexual Psychology of Science, Conari Press,
Berkeley, CA, 1999.

[44] L.A. Rubel, A universal diEerential equation, Bull. (NS) Amer. Math. Soc. 4 (1981) 345–349.
[45] L.A. Rubel, The extended analog computer, Adv. Appl. Math. 14 (1993) 39–50.
[46] C.E. Shannon, Mathematical theory of the diEerential analyzer, J. Math. Phys. MIT 20 (1941)

337–354.
[47] R.N. Shepard, Form, formation, and transformation of internal representations, in: R.L. Solso (Ed.),

Information Processing in Cognition: The Loyola Symposium, Lawrence Erlbaum, Hillsdale, 1975.
[48] R.N. Shepard, J. Metzler, Mental rotation of three-dimensional objects, Science 171 (1971) 701–703.
[49] M.H. Stone, The theory of representation for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936)

37–111.
[50] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc.

41 (1937) 375–481.
[51] H. Wallman, Lattices and topological spaces, Ann. Math. (Ser. 2) 39 (1938) 112–126.

	Natural computation and non-Turing modelsof computation
	Introduction
	The Turing-machine model
	Historical context
	Assumptions
	Information representation
	Information processing
	Algorithms and programs

	Defining computation
	Digital and analog computation
	A functional definition
	Autonomy
	Transduction
	Classification of computational processes
	Realization as homomorphism
	Approximate realization

	Natural computation
	Natural computation defined
	Relevant issues
	Relevant assumptions

	Motivation for continuous computation
	Principle of continuity
	Continuous information representation
	Continuous information processing
	Apparently rule-like behavior

	Foundations of continuous computation
	Information representation
	Topology of images
	Images and their forms

	Information processing
	States and processes
	Topological definition of process
	Potential descent

	Process representation
	Discrete formulas
	Guiding images

	Ubiquity of calcular assumptions
	Conclusions
	Acknowledgements
	References

