SIGPLAN Notices

1975 September

A Note on Dynamic Rrrays in PRSCAL
B. J. MaclLennan
Computer Science Department
Purdue University

West Lafayette, Indiana 47907

PASCAL is frequently criticized for its
lack of any wvariety of dynamic array
facility. This lack 1is particularly
unfortunate for systems programs which
must manipulate activation records and
segments whose sizes are not known at
compile time.

PASCAL has been carefully designed so
that all structures (except files) are
static. This allows the compiler to
generate efficient code by determining all
offsets at compile time. Furthermore, 1t
eliminates many of the run time checks
that would otherwise be necessary to
accomodate PASCAL's "strong" type system.
It is claimed that the extension to PRSCAL
proposed below will not contradict these
goals and is 1in general consistent with
the spirit of the language. It 1is hoped

that it will generate lively discussion.
The wvariant record type. in PARSCAL
already has some of the dynamic

—haracteristics we require. Consider the
;clarations:

type vrec = record
head: char;
case n: 1..3 of
1: (rv: real);
2: (cv: char);
3: (iv: integer) end;
v: vrec; p: Tvrec;

var
The wvariable v will have to be allocated
enough storage for any value of type wvrec,
i.e. there must be space for the largest
variant. If a new cell of type vrec is to
be created, its reference can be assigned
to pointer p by

new (p, xJ);

where x has value 1, 2 or 3. The effect
is to create a cell of sufficient size to
hold a type x variant of vrec, which might
be considerably smaller than the maximum
possible vrec. In other words, the size
of the cell 1is determined at allocation
rather than compile time.

Consider the following wvariant record
declaration:

type vrec = record
head: char;
case n: 1..3 of
1: (R1: array [1..1] of char);
2: (R2: array [1..2] of char);
3: (R3: array [1..3] of

This declares a record with a constant
size "head" and a wariable length array
"tail". What we are proposing is that
this example be abbreviatable as:

type vrec = record
head: char;
case n: 1..3 of varying
R: array [1..3] of char end;

As before the variant record represents a

finite union of types which are
discriminated at run time by a "tag"
field.

As an additional example, consider this
declaration of strings (character
sequences) :

type string = record

case length: 0..1000000 of

varying val: array [1..1000000] of char
end;

Of course we would never want to declare a
variable to be of -type string - it would
consume an unreasonable amount of storage.
If p were of type Tstring (pointer to
strings) then

new. (p, 25);

would allocate storage for a string of
length 25. HAs expected, the length of

string P can be interrogated with
pT.length.
Specifically, it 1is being suggested

that PRSCAL admit record declarations of
the form:




SIGPLAN Notices

record <field-list>
case <var,>: <type;> of
varying <vary>: <typepy> end

where <type,> must be an array type whose
index type 1s a subrange of <type;>. In
all cases except allocation, <vary> will
act like a static array of type <types>.

As with other variant record types, it
is the programmer's rvesponsibility to
maintain the tag field. It will be
desirable 1in all cases to have a compiler
option which compiles code to check the
tag field for consistency at each
reference to the wvariant part of the
record.

In summary, this extension to PRSCAL
provides the facility of allocating .cells
whose sizes are determined at run time.
It does this with a minimal change to the
syntax and without invalidating PRASCAL's
strong type system. This last
characteristic results from the fact that
the proposed notation is little more than
a macro extension of the variant record
facility.

ko

1975 September



SIGPLAN Notices 37 1976 January

Comment on A Note on Dynamic Arrays in PASCAL

N. Wirth, ETH Zirich, Switzerland

In his recent contribution B.J. MacLennan hopes to generate a lively
discussion on a proposal to introduce dynamic arrays into the language
PASCAL [1] . As designer of this language I feel particularly
challenged to comment.

The absence of dynamic arrays is clearly the most frequently cited
shortcoming of PASCAL. Both disauvantages and benefits of this lack
have been expounded before and need not be discussed here [2,3]. It
is clear that a simple and cheap means of introducing dynamic arrays
when needed would be most welcome. Hence, Mr. MacLennan's attempt is.
certainly well motivated. It also tackles the problem - and the
language - at the one place that is most likely to yield success,
namely where dynamic allocation is provided. Yet, I must admit
reservation about the particular "solution" presented. It epitomizes
the art of language grafting, and with due respect for the cleverness
of the grafter I dare to point out some misconceptions underlying this
art.

The indicated solution to the array problem is natural, even evident,
to the professional PASCAL programmer, because he has learned to see
the implementation of the various facilities behind their facade.
However, to the programmer dealing exclusively with the language's
high-level abstractions, the proposed formulation appears as highly
artificial and unmotivated. To him the reason for this choice of
notation for dynamic arrays are obscure; the virtues of a high-level
language are tarnished and its purpose is compromised.

A second reservation against the proposed solution is that it suggests
generality where there is none. The variant record declaration offers
many more constructions than would be meaningful when declaring a
"varying" component. ‘

Perhaps most important is the fact that introduction of dynamic arrays
in the language PASCAL presents no problems at all; merely admit
expressions instead of constants only in the bound specifications of
array declarations. But what Mr. MaclLennan (and others) have tried

to achieve is the incorporation of dynamic arrays in their PASCAL
compiler in the cheapest possible way. Perhaps such solutions,
although valuable in the context of a particular project, should not
be considered as general extensions of a language, but rather as what
they are: fixes to achieve some desired effect in an expeditious way.

In order to end in a positive note, let me propose a compromise that
should satisfy the man in need and at the same time avoid deleterious
effects on the high-level character of the language.

it
H
4

I

e A ——-




SIGPLAN Notices 38 1976 January

1. Introduce a new construct that can be used in conjunction with
the definition of a pointer type only:
type T = trow of T0

2. Extend the procedure new such that it allows the specification
of a row length n for such types:
new(t,n)

3. Introduce the functions length applicable to such rows:
length(t)

4. Allow indexing of "rows":
t1[i] 1 <ign

(Evidently, one might introduce the two array index bounds instead of

the length; use of array instead of row would then be appropriate.)

The obvious representation of such a row would be as a record whose

first field contains the (unchangeable) length (or index bounds), and
whose second field represents the array with elements of type T_ .

This compromise shares with all other proposals the drawback &

that it extends rather than simplifies an already sufficiently complex
language. It should therefore be followed only after careful deliberation.

References

1. B.J. MacLennan, "A note on dynamic arrays in PASCAL",
SIGPLAN Notices 10, 9, 39-40 (Sept. 1975)

2. 0. Lecarme and P. Desjardins, "Reply to a paper by A.N. Habermann
on the programming language PASCAL", SIGPLAN Notices 9, 10,
21-27 (Oct. 1974)

3. N. Wirth, "An assessment of the programming language PASCAL",
IEEE TSE, 1, 2, 192-198 (June .375).



