
SIGPLAN l.lotlces 39

Consider the fol I ouiing
decl aration:

type vrec = rccori
head: char;
case n: 1 . .3 of
-t r (nt r .r.il t1 ..11

2t (Fl2: array t1 . . 2l
3: (tr3: arrav t1 ..31

Fl: arrav tl . .31 of char

Fls before the variant record
finite union of types
discriminated at run time
f iel cl.

1975 September

variant record

char) ;
char) ;
char) end;

end;

represent:r a
uhiclr are

by a " tag"

Fl Note on Dynamie Flrrays in PFISCFil:
B. J. llacLennan

Computer Seience Department
Purdue University

Uest Lafayette, lndlana \7907

PRSCFIL is frequently criticized for its
I ack of ar.ry variety of dynamic array
facil ity. This I ack is particul arl y
unfortunate for systems programs tuhich
must manipul ate activation records and
Eetments trrhose si.zeg are not knotrn at
compi I e time.

PHSCtrL has been careful I y designed so
that al I strdctr-rres (except f i I es) are
static. This al I orus the conrpi I er to
generate ef f icient cr:de by deterrnining al I

of f eets at cornpil e tirne. Futrtherrnore, it
el iminates many of the run time checks
that u.roul d otheruise be necessary to
accomodate FFISCFIL's "strong" type system.
It is claimed that the extension to PFISCFL
proposed be I orl uri I I not cont radi ct t lrese
goals and is in.general cansistent tuith
the spirit of the I anguage. It is hoped
that it ui I I getrerate I ivel y discussion.

The variant record type in PFISCHL
al ready has sorne of the dynamic

- !-raracteristics ue require, Consider the
;cl aratione:

type vrec : record
head: char;
case n: 1 . .3 of--lT (..r, -re--T;2t (cv: char);

3: (iv: integ'er) end;
Var v: vrec; p: tvrec;

The variable v uril I h;rve to be al located
enough storage for any val ue of type vree,
i.e. there nrust be space for the largest
variant. If a neu cell of type vrec is to
be createcl, its reference can be assigned
to pointer p by

neu (p, x);

urhere x has value 1, 2 or 3. The effeat
is to create a cell of sufficierrt size to
hold a type x va.riant of vrec, uhich nright
be coniiderabl y smal I er than tlre maxj-rnum
possibl e vrec. In other ruorcls, tl're size
of the eell i.s deterrnined at al I ocation
rather thbn compile time.

This clecl ares a record rr.rith a constant
size "head" and a variable Iength array
" tai I " . ltJhat ue are proposing is that
this example be abbreviatable as:

type vrec : racord
head: char;
case n: 1..3 _of varying

of
of.
of

Fls an additional exampl e, consider this
decl aration of strings (character
sequenees) :

tyr'e- strinB = recorcl
case I ength: 0. . 1 000000 of
y-ar_y].!Lg val : arrav [1 . .1000000] of char

end;

Of course ure uoul d naver uant to decl are a
variabl e to be of .type string - it rrLoul d
eonsume an unreason.rbl e arnount of storege.
If p urere of type fstring (pointer to
strings) then

neu (p, 25) 1

uloul d al I ocate storage for a string of
I ength 25. Fls expected, the I ength of
string p can be interrogated uitlr
pt. I ength.

Speci fical I y, it
t hat PFISCFIL achni t
the form:

i s krei ng suggest ed
record decI arations of

SIGPLAN Notlces

reF!fd <fiel d-l lst>
case <var.'>: <type1> gl
varyinfl <vare>: (typea> end

tuhere <typea> must be an array type uhose
index type is a subrange of <typer>. In
al I cases except al I ocation, <vare> uri I I
act Iike a static array of type <typea>.

Rs u.rith other variant record typesr. lt
is the prograrrrrrer's responsibility to
maintain the tag fiel d. It uri I I be
desiral:le in all cases to have a compiler
option which comfriIes code to check the
tag fiel d lor consistency at each
reference to the variant part of the
record.

In summary, this extension to PBSCFil-
pr-ovides the faci I ity of al I ocating .cel I s
urlrose sizes are determined at run time.
It does this rlith a minimal change to the
Eyntax and urithout inval idating PtrSCFll-'s
strong typE system. This I ast
characteristie resul ts from the fact that
the propased notation is little more than
a macro extension of the variant record
faci I ity.

to 1975 Septembor

SIGPLAN Notices 1975 January

Comment on A Note on Dynamic Arrays in PASCAL

N. Wirth , ETH Zijrich , Switz erland

In his recent contribution B.J. MacLennan hopes to generate a liveJ.y
discussion on a proposal to introduce dynamic arrays into the language
PASCAL It] . As designer of this language I fee.L particularly
challenged to comment.

The absence of dynamic arrays is clearly the most frequently cited
shortcoming of PASCAL. Both disauvantages and benefits of this fack
have been expounded before and need not be discussed here lZ,l). It
is clear that a simple and cheap means of introducing dynamic arrays
when needed wouLd be most welcome. Hence, Mr. MacLennanrs attempt is
certainly welf motivated. It also tackLes the problem - and the
language - at the one place that is most likely to yield success,
namely where dynamic allocation is provided. Yet, I must admit
reservation about the particular rrsolutionI presented. It epitomizes
the art of language grafting, and with due respect for the cleverness
of the grafter I dare to point out some misconceptions underlying this
art.

The indicated solution to the array problem is natural, even evident,
to the professi-onaL PASCAL programmer, because he has Iearned to see
the implementation of the various facilities behind their facade.
However, to the programmer dealing excLusively with the languagers
high-Ieve1 abstractions, the proposed formulation appears as highly
artificial and unmotivated. To him the reason for this choice of
notation for dynamic arrays are obscure; the virtues of a high-Ievel
Ianguage are tarnished and its purpose is compromised.

A second reservation against the proposed sol.ution is that it suggests
generality where there is none. fhe variant record declaration offers
many more constructions than wouLd be meanitgful when declaring anvaryingrr component.

Perhaps most important is the fact that introduction of dynamic arrays
in the lan,ruaoe PASCAL presents no problems at all; merely admit
expressions instead of constants only in the bound specifications of
array declarations. But what Mr. MacLennan (and others) have tried
to achieve is the incorporation of dynamic arrays in their PASCAL
compirer in the cheapest possibre way. Perhaps such solutions,
although valuable in the context of a particular project, shoul.d not
be considered Es general extensions of a language, but rather as what
they are: fixes to achieve some desired effect in an.expeditious way.

In order to end in a positive note, let me propose a compromise that
should satisfy the man in need and at the same time avoid de-Leterious
effects on the high-l-eveI character of the Ianguage.

37

{l
rl

ii

il
ii
li
i
I

:

:

.

ll
t

a

Il
I
I

I

I

SIGPLAN NOtiCES 1976 January

l. Introduce a new construct that can be used in conjunction with
the definition of a pointer tyPe only:

tvpe T = lrow g[T
tr

2, Extend the procedure gglg such that it al.Lows the specif ication
of a row length n for such types:

new(trn)
3. Introduce the functions !ggg![applicable to such rowss

length (t)

4. Allow indexing of Irowsrr i
il[i] 1!i!n

(Evidently, one might introduce the two array index bounds instead of
the lengthi use of glgil. instead of J.g would then be appropriate.)

The obvious representation of such a row wou.Ld be as a record whose
first field contains the (unchangeable) Iength (or index bounds), and
whose second field represents the array with elements of type T^
This compromise shares with aIl other proposals the drawback u

that it extends rather than simplifies an already sufficiently complex
Ianguage. It should therefore be followed only after careful deliberation.

References

1. B.J. MacLennan, rrA note on dynamic arrays in PASCALTT,
5IGPLAN Notices l-9, 9, 39-40 (5ept. 1975)

2. 0. Lecarme and P. Desjardins, trReply to a paper by A.N. Habermann
on the programming Ianguage PASCALTt, SIGPLAN Notices 9, 10,
21-27 (0ct.1974)

3. N. Wirth, "An assessment of the programming Ianguage PASCALtt,
iEEE TSE, !, 2, 192-198 (June ,975).

38

