
UNCLASS I FIED
SECuRITY CLASSI TION CF THIS FACE (r/h6 D.t.

EOtTION OF I HOV 65 rS O€SOLETe

s.'N 0 I 02- LF. 0 i r- 660 r
UNCLA]SS I FI ED

SECUiITY CLASSIFICATION OF THI! PACt flli.a D.t. rrtt*.d)

REPORT DOCUIIENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

]. RECIFIENf'5 CATALOG NUMAER12.

I
I

I. REPORT HUMBgR GOVT ACCESSION NO.

NPS52-81-017
5. TYPE OF REP6R? & PERIOO COVEREO

Technical Report

4. TrTLE (ud Subtltla)

Overview of Relational Prograrnming
6. PERFORI'IIiG ORC. REPOET XUMBER

r. cor{TRAcT oR 6RANT NUMBER(|)7. aUTHORfT)

Bruce J. Maclennan

IO. PFIOGRAM ELEMENT, PROJECT. TASK
AREA A WOiK UNIT NUMBERS

51152N; RRO00-0I-10
N000 1482WR2004 3

9. PERFOfIMING OROANIZATION NAME ANO AOONESS

Naval Postgraduate School
Monterey, CA 93940

I2, REPORT OATE

November 1981
I3. I.IU}IBEF OF PAGES

I I. CCNTROLLING OFFICE NAME ANO AOORESS

l,laval Postgraduate School
Monterey, CA 93940

f 5. SECURIIY CLASS. (o{ thl. r.?ort)

UNCLASSIFIED

i(U attlotqt lto6 Co arolllaa Ottlc.)

I 5.. o€cLAsst Ft cAtloNr oowN GRAorNc
sCHEDULE

iporil

Approved for public release; distribution unlimited

(ot tha .brlr.ca antarrd li Elock 20, U dltlot.'tl lta Rt,.otl)5T7. DrST

relational programming, functional programming, relational algebra, relations
relational calculus, appl icative languages, combinators, very-high-level
ianguages, logic programming

noc....t7 Jd ld.aatly by bloch n6!.t)K wo od trvatta

This report provides a brief overview of the method of programming in a re-
lational calculus. This is a styie of programming in which entire relations
are manipulated as data, and in which the program jtself is representecj as a
relation. This report describes the use of the relational operators to manipu-
late both data and functions, and introduces an improved notation for relation-
al progr anrni ng.

nacc..aty ad

DD ,1:ii3 1473

I8. SUPPLEMENIARY NOTES

,1

I

r-J

OVERVIEW OF RELATIONAL PROGRAMMINGiI

B. J. MacLennan

Naval Postgraduate School

Monterey, CA 93940

lJovember I0, 1981

1. Introciuction

!S]_q!:_U_1i prcgrarnming is a me'r"hod of programning based on the

use cf a relaticnal ea1culus. i,/e begin by expLaining why we have

chosen Lc investiqaie relaticnai programming.

t^ie began investigating relaticns to r-rY tc a find a high

leve1 way cf nanipulating compl-ex oala struct,ures. Languages

such as APL are very successful- in Lhe manipulation of vectors

anC matrices, and languages sucn as Snobol are useful in ihe

nanlpulation of strings. Unfortunately, these are bolh examples

cf linear data structures, and nany problems in computer science

reoui-re non-11near Cata structures, such as trees and networks.

ProDose.j extensicns tc APL and Snobo.l- to hanCl e ncn-iinear data

sLruetures have not been verY suecessft-t1 .

It is well known that a-r nost any riata structure can be

.ieseri'leC rv a relation. in ef fect, then, ?oy cperatron on rela-

Lions can tre thouqht of as an oDeraticn on data structures.
Therefore, ii .seemed t,har, the hieh level reialicnal operaf,crs

--*-ile- wort reDort-ed her^ein was suoporr,ecl by the ioundalion
Research Prcqran of r-he rlaval. PcstqraCuale SchooI with funds
nrcrri:ie4 brz the Chief of lla.ral Research.

1

,/rovided by a relational calculus might provide a source of high

leveI operations for manipulating non-linear daLa structures.

This has proved io be the case.

Backus [1] has Cescribed the advantages of programming with

funclionals, that is, wibh functions which operaLe on other func-

tions. Funclionals a1l-cw the high level combination of programs

r4vr!r .,-,J progl'arns. liow nolice, since every function is a

relaticn, every rel-alional operaLcr is in effect a funetional.

Therefore, the sarne set of operatcrs thaL are used for manipulaf-

ing da!a can also be used for manipulating programs. The result

is great economy of Iinguistic necnanism in eombination with

powerful means of manipulating both code and dafa.

A final goal in t,he develcpment, of relational programming

has been lhe altempt to f lnd a' r:neans of programming thaf per^mi bs

practrcal proofs of real programs. The facl that relations are

mathernatically tractable, and that, there is an weIl-deveioped

theory of relaf,ions, has encouraged t,his study.

?. Background

Relational programming has been based on naive sei theor)r. This

is the= set.- iheory that most peopl-e are exposed io i:i ereiy

mathematics class from freshman calcuius on. il is hoped that by

basins fhis programming nethod on a simpJ-e and weil-known

mathematical basis, i*" will be rnore understandable to people

wiNhout an extensive nnaLhematical background.

I

?

There are three sonts of objects with which relational pro-

grams deal:

* Individuals
It Sets

* BinArv Relationsu+ r. q. J

The indirridual-s are the indivisible data 'raiues with which we

compute. Typically they will include integers, real numbers,

characters, and Boolean vaLues. Both the sets and lhe relatlons

may 'oe eiLlrer f inite or inf init,e; the latter being represented on

a finite computer r.rsing intensionai mefhods (discussed lat,er).

Both t,he sets and relations are t:rpeless, which means ihat there

are no restrictions on what sets or relations can be rnembers of

other sets and relations. Axicmar-LZaticns cf set iheory often

included intricate type systems (such as Russeli's "RamifieC Type

Theory") tc prevent contradictions. Hor.rever, as 1s discussed in

[-?] , r-here ere other mef hods of preventing contradictions that do

not deoend on elabora'"e type systems. Some of ihe f acf;ors thal:

have convinced us thaf a bypeless systenn is more appropriate tc

programming are discussed in t3l.

We use the notaLion x € S to mean bhat x is a ,rember of f he

set S, and xRy to mean that fhe pair (x,Y) is a nernber of the

relation R. The functional notation Fx denotes the unique y (if

it exists) such thal xFy. In general-lspaces and t,he case of

letters wili be used to improve readability. Parentheses are

used for grouping in the usual way.

in fhls

stigate severai r

The relative product operation on :^elations perfcrms lhe

of funetions. That,

f(g(x))

We will sometirne s also write t,his

This is

functional- inte

i.e., a functional.

elational operators

rpretations.

o fien

a\

ic

,ioinains, ihe crCereC

erlaying

xE

? Relations and Functions

3. t Funetionals

f ;g (x) s(f(x))

f .g (x)

{
L

f Ig (x)

f /g (:t)

rI x ts

.ia ., 2
II b

dom f

dom g

r(x),
g(x),

{ g(x),

4

That is, the pairs in f supercede the corresponding pairs in g

The converse of a reLation, when applied to a function, Fro-

function. That is,

1x = f -'(y) iff y = f(x)

duces the inverse

i'lotice that fhis operation is always defined since a relaticn

always has a ccnverse. 0f course, the inverse of a function will

be a function only i f t,he original f unction i./as one-tc-one.

I'leverlheless, because the converse is always def ined it satisfies

sinpler properties.

The r stri tions are useful cperations on

define subrelations ci the given relation whose

given property. When applied to functions ,

operaticns Iimit the Cornain, range, or both t,he

of a function. They are defined:

relati.ons; their

reembers satisiy a

che restricticn

domain and range

J-

J-

f<>s

where s is
operations

s rf (x)

f f s (x)

-(drfl-<

III

iff

f(x)
f(x)

and

and

wFc

y€s
J

v

any

are

set.

cflen

As will be shown 1ater, the restriction

useful for constructing condifionals.

The image operation, when applied to a function, gives -the

imase of a set under that funclion. This is defined:

img f (S) { y i Jx€S: y I(x,) j

)

\

The parallel applieation operation applies functions to

The Cual application or construction operation applies several

functions to one argument, returning a sequence of 1:he results:

i!!s (x)

a functicn.
,lafi nari'

The Lransitive and non-transiti're cl-osures are

,6f

f+

where fn means lhe composition of f with:-ise1f n

tne resul-t of f*(x) is whichever of f l (*) ,

ciefined. (If more lhan one are defined we can use b

t j.on operations f,o pick lhe one we want ')

Thus

2?A

raqrrl n-

3 .2 Control- Struelures

So far rn the de,relopment of r elational programming ihere has

been no need to intoduce control sf,ructures in the conventional

sense. This is because the relational operators are adequate tc

express most control ilow situations. For example, suppose we

lhis is

correspondina elements of a sequence: 1

(f \t c 'r\\r/\t-:\/

This is equivalent to Backus' construction cperaLion, If,g].

f
)
J

f llg (x,y) (f x, g y)

If0 1

21f I f I

6
I

effeetively a conditional construction. It, can be written this
way using the relational operators:

srf/g

This is equivalent to

(s) f) i (non s) g)

('non s' returns the complement of t,he set s.) In other words,

the domain of f is restricted to those lhings ihaf Co satisfy s

and the domain o f g is resf,ricted to those things that dcn!t

-^L.: ^lr., ^ 'TrLrdurD! y r. .'1is can be diagramed like this:

5

5

The s and s ean be thought cf as filters on r'he inputs cf f and

g. Since they are mutuaily exclusive, if is guaranteed ihat al

nost one value wiil be produced fcr each value put in.

The relational equivalent of loops are eonstructecj from

cLosure and restriction operators. Consider lhis funclion:

Lhe

The applieation of s 9 f will be j.terated one or more times,

which means that f will be applied one or more tir:es, as long as

(s+f)+ <- non s

its

onl y

input, satisfies s. An cutput from

if it doesn't safisfy s. We can

r this process is allowed

diagram thls funciion:

S

This is the equival-ent

1ar expressions loop

1oop.

cf a "repeat until'' loop in

zera or nore limes, tike a

Pascal. Simi-

Pascal "whi1e"

ReLat- ons Cbe Si 1e Laws

Cne cf lhe reasons we harre invesiigated relaticnal programming is

t,hat, it simplifies reasoning aboul prcgrams. This is because

relations obey many simple 1aws. For exarnple,
^)

(f .g) - 1

-ts I

is true for all
cne-tc-one.

3.4 MuLti Ie-Valued Functi NS

A rel-ation can i:e ihor"rght of as a multiple-va ued function. lhat,

is, there may be several y such that xF3r. FunctionaL approaches

to prograrnming often excluCe multlple-valued functions and non-

deterministic functions, even t,hough these are off,en benign.

Relaticnal programming deals naf,ura1ly wit,h muI',-iple,ralued func-

tions. For example, suppose that g(x) is multiple-valued, o.g. ,

a

??

-1

there are three values, a, b, and c, such that xBsr xgb, and xgc.

Further suppose that fhe function f has the same value, y, on

eaeh of a, b, c. That is, y = f(a), y = f(b), and y = f(e).
Then it is perfectly meaningful to write

even though g 1s not single-valued at x. This can be visuaiizeo:

lr Relations anC Dala

u. i Finite Functions

We will now turn to lhe representation of data by relations and

t,he high-1evel data rnanipulation functions provided by Lhe rela-

lional operators. Allhough there are several ways fhaf data can

'oe represenLed by relations, one of ihe simpLest is by linile

functions, i.€., functions containing a finit,e number of pairs.

This represent,ation is part,ieularly suitable for arrays and

records. For exampie,

A(i)

is lhe application of an array A to its index i. SimiJ-arly,

q f

v - c(no\4\r v/

-l

:/ : f.g (x)

Y

is analogous to a field selection operation z.re, but in rela-

9

The'ua1ue of rriewing data in fhis

structures amenable to the relational operators.

the converse operaLor inverts a structure.

it rnakes data

For exampJ-e,

returns the index

occurs severaL

geL a set of ali
-li'ng A '(x).

A.P is ihe

a1 so be used

'address' is

corresponci ing permutat,ion o f A.

for "cascading" dafa structures.

a table such ihat

of the array element whose value is x.
-1tinnes in A t,hen A is mul-ti-pie-va1ueC.

the indiees where x oeours by taking r"he

The relative pJ oduct or composition operablon

for many purposes, such as pernuting arrays. If

tion function (a bi;ection frcm fhe inciex sel

This

For

means Uhat a is the address of the variable named n, and 'value'

r-s a tabLe such that

means that v is the value contained

'value.address' is a cascaded tabte such

by Iccation

fhat

1

'de c an

imroo'

a = address(n)

v = value(a)

- 10

value.address (n)

means that v is the value of the variable named n.

The restriction o peraiion can be useC to Cefine

a finite
substrLlc-

functiontures. For example, suppose thal M i s

representinq a two-dinensional natrix:

M /i i\LI \5'Jl

That is, i,l is a functicn that takes pairs of integers into the

corresDond inq 4rat,rix elements . If I and ,.1 are index sets , the

subrnatrix of l,l corresoonCing to these index values is just

(I X i) + rl. since t,his restricts the f irst and second indices of/)
M t,o be in I and ,J respectively.

The union operat:-on can be used to combine data structures.
tror exampl-e, if S and T are tables, then SIT is a table that con-

tains ihe entries cf bot,h S anC T. Aiso, if U and I/ are two

arravs with consecuti.ve index sets (whlch i s not hard to

arranee\, t,hen UllI is the catenat,ion of tJ and V.

The overLayinq oDeration u/\| updates an array V according to

Lhe pairs in U. That is, if r-t/tf(i) = U(i) 1f t](i) is defined,

and tl/\l(L\ ='tI(i) otherwise.

tri na'l I rr - the irnage operation can be used fcr mass sel-ec-{1t9.,4,/

'

ticns. tror exa4rp]-e, if A is an arra:/ and S is a set of indices,
r.hen i"ns A (-q) is the set of all elernenls cf A selected by

indices in S.

'1
1

lt)

Sequences and lists have a straighf-forward representation as

relations. If we draw the sequence of elements (a,b,c,d) like

l

lhen you can

lhat relaLes

Thrl i q
rv t

. sequence.

oniy 1I x>y.

that ihis can be represenf,ed

to y jusl when there is an

by the reiation

arrow from x

see

of the relaticnal operators on such a

1

where yS 'x if and

The ef fect is to reverse the arror./s:

so il can be seen thal S

r-ion.

from one element of t,he sequence to anolher, e.g

of as a fr-lnc-

fol1ow an arrow

0f course,

s(b)

)

q - [1e h) ah n\ (o ,t)]u - (\qtvl, \vrul, \ur\f /)

-

a0co

-i

-

abcd

- 1t

Z

and so forlh.

The restriction operaiion can be used to define subsequences

of a given sequence. For example, S<>P defines the subsequence

of S aIl- of whose eLements satisfy the predicate P. That is, if

P is the set cfl positive numbers, then lhis restriction has just,

lhe positive rnembers o f S.

The union operation can be used in various ways to ccmbine

seeuences. For example, tc catenate t,he sequences S and T we can

write

S I (Last S, first T) i T

This combines S and T with a ihird relation'.rhich is a sequence

from the last element of S t,o the first element of T.

F'ina11y, we can use f he doqrain functicns to f ind dis-

tinguished elements of a sequence. For example, the]nitial
nembers of a sequence (cf which there is exactly one) are those

rrnernbers that have an ai'row leaving t'hem, but not pointing at

them. In other words lhe initial members are the elements of the

domain bhat are not in the range:

ri. -? Ceneral Data StrucLures

Since bhe manipulation of non-linear data strucLures was a najor

1)rJ

\

d-q. -2(b) and b /A\

r ir l- u \ J / dom(S) - dom(S
a

reason for investigating relalions, we would expect to find that'

the relat'iona1 operalors are useful. The same approaeh is used

as fcr sequences. For exampJ-e, the graph

T

j.s represented bY the reLation

T = {(a,b), (a,c), (b,d), (b,e), (c,e), (c,f), (c,c)}

Then, ib is easy tc see fhat t,he roots of this structure are jusb

its initial members, init(T), and the leaves are the inilial

:nembers of the converse nelation, init(t-1)' The ratter are

r.:sua11y ca llaA t-Iluq erminai nernbers.

Notice that T(n) follcws an arrow from node i'!, which may be

mul-tiple-vaIued. For exampJ-e, T(b) could be ci or e ' Therefore,

it is better io ask for all t-he descendents of a node n, which is

just the image of T aPPlied to n:

descendenr,s (T)

). nr her evels o Abslr ri

The relational programming style is open ended and easil-y admif,s

even higher level-s of absLraetion. 0bserve that f he relat,ional

1

e

I

A

h

I

operators are themselves functions (in parficular , functionals) .

Therefore, these functions can be rnanipulated and combined by the

relational operators. Therefore, hlgher level cperators can be

buil-i without the use of a "fcrmaL" (i.e., Cata based) represen-

tation, such as that used in LISP or Backus's FFP system t 1 I '

This is a natural outgrowth of the facf Lhat reiational program-

ming Ceals with a single kind of entities, relaticns, anC uses

lhem for all purposes. Second and higher Ievel functionals have

nof, been seriously investigated Yet, although t,hey seern to arise

natural.iy from the attempi to eliminate variables.

5. Status

In lhis seclion we summarize fhe current status of our invesiiga-

tlon into relational prcgramming.

The operalors are undergcing a continuing refinenenL. We

began with the operatcrs defined by Russell and l{hitehead t7l and

Carnap l-2). As the requirements of using a relationai ealculus

for prograrnming have emerged, we have nodified lhe meaning of

several cf their operators, dropped some, and acided others.

The notalion is undergoing a continul-ng evolution, as is

apparent in any comparison with our earlier reports [4, 5]' The

notaiion used in this paper is more in conformit-y with tnalhemati-

cal- custom and is easier to read and type. We anllcipaue fhat

t,his evolution wilI continue; it would be premature to freeze it

at this lime.

1f
- t)

In an attempt to betLer

gramming r we have begun

applications. 0ne of these

editor and generaLor of the

relational prograrn is about

a future technical reoort.

access the value of rel-ational pro-

the implementation of severaL tria]
is a table-driven synt,ax-direcNed-

fype described in t6 l. The resulting

a page long. it r^r111- be Cescribed in

of some rela-
relaticns sat,isfy

Ue have consciorrsly avoided aliowing implemenLation con-

siderations fo influence the early developrnent of rel-ational pro-

gramming. This is because we did not want f,o prejudice lhe sLuciy

by particular assurnptions abouL machine architecf,ure. Raf;her, we

have hoped that the invesligation of rel-ational programming will

guide us r.c the machines we should be buil-d1ng. Recently, how-

ever, we have begun the investigation of some possible represen-

tations of relaticns aiong wiLh an analysl-s cf the complexify of

the corresponding algorithrns. This wiIl be reported in a forth-

coming thesis frorn the NavaL Postgraduate School.

We have been att,enpting the practical proof

lional programs. This simple prcperties tihich

makes this a feasible undertaking.

FinaIly, we have- begun the implementation of sirnpla exten-

sional and intensional representaticns and implementations of the

relat,ional operators. The goal here is to provide a system fo

a11ow "hands-on" experience with relational programming. Thls is
a necessary part of the evaluation of any new programining style.

)
4L

- lU

- 7. References

t 1 I Backus , J. Can programming be Iiberated f rom the von l{eu-

mann style? A functional slyJ-e and its algebra of pro-

grams, CACM 21 , $ (August 1 978) , 613-6u1 .

t2l Carnap,

tions,

R. Introduction to Symbolic i.cgic and its Appl ica-

Dover, 1958.

t 3 I l''lac Lenn an ,

senantic s ,

B. J. Fen - an

CACM 16 8 (August

axiomatic basis for

1973), 468-471.

pr o g r'am

t lt I MacLennan , B. J. Programming wit,h a Relational CalcuLus,

Computer Science Departrnent Teehnical Report NPS52-81 -01 3,

|Java1 Postgraduate School , September 1981 .

[5] MacLennan, B, J.

Directed Editors,

Report NPS52-8 1 -0 1 4,

1981 '

L71 Whiiehead, A. 1\. and Russell, B

*56, Cambridge , 197J .

Introduction to relaticnal
A Cit! Con fer en c e on Functional

Principr a i"lachematica Lo

t5l MacLennan, B. J.

Proceedings of

programming,

Programming

Languages and Computer Architecture , Cc tober 1B-22, 1 98 1 .

The Automatic Generation of Syntax

Computer Science Department, Techn ical

llaval Postgraduate SchooI, 0ctober

- r1

APPENDIX: RELATIONAL CALCULUS - REVISED NOTATION

- 1g

I

)

rnem: R

R!

i:x

1-
R

j

D
IT

01d Nolat,ion Name New Notation

x€C class membership xtC

xc n r?

relation membership

function application

^nhtr6FQA

r:R

lem:R

Im'Q

domain

codomain dom. inv RRFtm

Pm.

member s

image

unit class

unif class seleetor

unit image

unit coimage

right restrict-icn

left restriction
restr ict,ion

intersection
un ion

d i ffer enc e

complement

addition

subtr ac tion

mem R

img R

unx

the C

un img R

unimg. inv R

R<-S

S?R

R<>S

.R& S

ptc
IIIU

non R

x+y

x-y

xRy

Fx
R

inv R

dom R

l!

!?

rlrt

l
- 19

division

fu11 elass

Cartesj-an product

relative produel

funct,ional composlticn

iCentity
in:tial nembers

terninai members

first member

last menber

final members

initial members

n2I r

Curr y

nrrnh
o. u y..

parallei application

construction

binary operator

left binding

right binding

Id

init R

inib.inv R

first R

first . inv R

ilnar ft

inv . final . inv R

rnin

mtY

ai1, non

CXD

p,<
S

term : R

Q-: R

imum

It/x\
\:/

Curry: C

{
Curry : R

r=

-lt
sl

(ll)

(xn)

(ny)
tt

R

il

I

.)

I

^+tl

n

0

transilive closure

relabion power

meta-application

i sornorphic image

overi aying

subset

empby reJ-ation

fu11 relaLion

cioseC interval
cross product
explicit relation
e aten ate

sequenc e

reduction

R*, trac R

^nn

r..B

f$R

!/ 6

RES

DrQ
11 := rJ

6X6

ai1 X aIl
(unimg)) m & (uni.mg () n

graph(C X D)

l^.^ I I rr.z\
\d.!, I ... I J.Li

Jt/

(a,b,.".r2)

f d1

CXD
/ V\
t3:::;7
s^t

l-. ry\
,V, . t . , Ll

i

\d

t0

l{ote ! The rna jor dif ference between the new and c1d notations is

fhat v=Fx now means xFy, whereas previousl-y it meant yFx. This

means that separate operators are now needed for relative pro-

duet and composition. These are related by R. S : S; R. This

effecfs lhe interpretalion of several other relatlons and

elasses. For example, functions are now the right-univalent
(run) relatlons, whereas previously t,hey were r"he left-univaient
(1un) relaticns. Also, the domain of a function is ils left
nembers, rather than its right rnembers.

aa
- Z-I

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93940

0ffice of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chajrman, Code 52Bz
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. Maclennan, Code 52Ml
Department of Computer Science
Navaj Postgraduate School
i'lonterey, CA 93940

Mr. Jim Bowery
Viewdata Corporation of America, inc.
i444 Bjscayne Boulevard, Suite 305
Miami, Florida 33132

Dr. Mehdi Jazayeri
Synapse Computer Corporation
801 Buckeye Court
Mi I pitas, CA 95035

Dr. M. Sintzoff
Phil jps Research Laboratory
2 av. Van Becel aere
i170 Brussel s
Be1 gi um

Pro.fessor Harvey Abramson
Department of Computer Science
The University of British Columbia
2075 t.lestbrook Mal I
Vancouver, B.C. Canada
V6T 1l,J5

Dr. Charles D. Marshall
Department K51
IBM Research
5600 Cottl e Road
San Jose, CA 95193

12

i

i

-z?-

2

2

1

40

1

1

1

-)

