
L From: EI{PIRICAL FOUNDATTONS OF TNFORMATTON
AND SOFTWARE SCIENCE

Edited by Jagdish C. Agrawal and pranas Zunde
(Plenum Publishing Corporation, l9B5)

OI'I THE VALIDATION OF COMPUTER SCIENCE THEORIES

B. J. Maclennan

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Abstract: We address normaEively the demarcation problem for Computer
Science: How can Computer Science research be conducted scientifically?
First we attempt to delindt the subject matter of Computer Science, and
conclude that it is not conputers but programs. Since programs are not
physical objecEs, it is difficult to see how they can be studied empiri-
ca1ly. The rest of the paper is devoted to an explanation of how this can
be done. This rnethod is first illusErated by a hyporhesis of oarro!, scope,
analogous to a physical law. NexE it is illustrated by a theory of wide
scope - the Turing Machine model of computers. The approach is summarized
in Ehe conclusions.

1. SUIIMARY

We claim that the most important theories underlying Computer Science
have never been.empirically verified. As an example we consider Turing
Machine Theory. l

It is well known that Turing Machines are used as models of real compu-
ters, and that theoretical results about Turing Machines, such as the impos-
Eibility of a decision procedure for the Halting prob1em,1,2 are considered
valid as assertions about real computers. However, we know that Turing Ma-
chines differ from real computers in several significant ways. For example,
Turing Machines have a potentially infinite (i.;., finite but unbounded)
memory, whereas real computers have a finite, bounded memory. These differ-
ences do not, per se, mean that the Turing Machine is an inadequate model of
real computers. For example, the poEentially infinite memory of the Turing
Machine could be considered an idealizalion or approximation of the large
but finite memory of real cornputers. This leads us to ask a crucial ques-
tion: Is the Turlng Maehlne an adequate model of real computers?

Since this question asks about the correspondence between an abstract
mathenatical mode1, the Turing Machine, and a real-world phenomenon, compu-
ters, it can be answered only by an empirical procedure. Our goal is to
show how empirical techniques can be used to confirm or refute the Turning
Machine model of computers. In the process we demonstrate the application
of empirical Eechniques to the validation of Computer Science theories in
general.

L

L 311



The basic approach is an adaptation of the hypothetico-decuc:r'''e meth-
o63,4,5,6 commonly used in the sciences. That is, we deduce pr=:l::ions
from Ehe hypothesis in question, and then investigate wheLher thes; :redic-
tions hold in fact. For example, a prediction made by Turing i'lachi::e Theory

is the irnpossibility of a decision procedure for the Halting Probie:' Noes

this prediction hold in facE, that is, for real computers'

There are several ways we can test this prediction. We might fry to r'-
fuEe it by trying to find a decision procedure for che Halting Probfem for
real computers. AlEernately, we might try to confirm it by showing that the
existence of such a decision procedure would contradict oLher empirically
validaled 1aws, such as the conservation of mass-energy. In both cases the
results of empirical investigation contribute to the confirmation or refuEa-
lion of the Turing Machine model of computers. In this paper we explore
boEh possibilities.

It is hoped that the systematic application of empirical techniques such
as these will elirninate some of the sterility characteristic of much of Ehe

theory of Computer Science.

2. INTRODUCTlON

It has been observed that discipines with the word "science" in their
names usually aren't. This leads us to pose the demarcalion proble'7'B fo'
Computer Science: Is CompuEer Science a science? Or is it something e1se,

",r.h 
." an art, engineering discipline, or pseudoscience? And further, if

Cornputer Science is a science, then what sort of science is it? Is it more

like the natural sciences or the mathematical sciences? 0r perhaps the
engineering sciences or the social sciences are a betler model'

hrhen we have answered Ehese descriptive questions, what Computer Science
is, we can turn to the normative questions, what Computer Science sfrould be'
6 particular, should Computer Science be a science? 0r shotrld it be an arE

or engineering disciplinei And if it should be a science, Ehen should it be \'-
patteined after physics' or mathematics, or linguistics; or should it fo1low
a paEtern all its own?

In Ehis paper we attempt to answer sone of these questions' 1n particu-
1ar, we aim to show rhe role of ernpirical methods in Corrrputer Science' We

do not claim any originality for the specific results presented herein; they
are used. so1e1y to illustraE.e t.he methodology. However, we do claim that
this methodology is distinctly different fron that which is usual in Compu-

ter Science.

3. SUBJECT I'IATTER OF COMPUTER SCIENCE

Contrary to ils name, the subject matter of Computer Science is not
computers, per se; that is more the subject of Computer Engineering, a

branch of S-lectrical Engineering. Computer Science is generally more con-
cerned with software (i.e., programs) than with hardware.v That is, it is
coneerned with the logical rather than the physical properties of computers'

It rniqht be (and has been) contended that Computer Science is an engi-
neering discipline.9 Certainly many computer scientists, especially in
industry, are engaged in Ehe production of hardware/software systems that
are intended to satisfy a need. To answer this objection it is useful to
distinguish an engineering discipline from a craft or art (in the feun
sense). Crafts and arts tend to be based on informal, often intuiEive'
knowledge and experience, whereas engineering disciplines are based on an

312



L
underlying science. That is, an engineering discipliners knowledge is sys-
tematized, formalized, and often quantified. Its hypolheses have been more
systematically validated. 0f course, we rarely find a discipline that is
purely craft or purely engineering - these are the extrema of a continuum,
with most discipllnes falling inbetween. Progress in a field is often mea-
sured by Ehe distance moved from the craft extremum tor^7ards the engineering
ext remum.

Thus, even if Computer Science were an engineering discipline (or even a
craft), we would want to seek for an underlying sclentific discipline. Ltrat
we address in this paper is an empirical approach to this underlying sci-
ence, thal is, to the scientific sfudy of software and of the logical prop-
erties of hardware.

4. DEMARCATION

,Is Computer Science a science? Our interest in the demarcation prob-
1em/,o for CompuEer Science is not "name cal1ingl" rather, i! is consEruc-
tive. If Computer Science is not a science, we r^rant to determine how to
xoake it one; if 1t is a science, we want to reinforce and exEend its use of
scientific method.

How can we determine if Computer Science is a science? First, we can
ask wheEher its theories and laws are scientific in form, that is empiri-
ca11y validatable. There are many criteria for deciding this, such as
empiricat contelt, operational definabiliEy, l0,I I,I2 r".i6iabi1ityI3 .n6
falsifiability.T,B,I4 Second, we can ask whether the theories and Iaws of
Computer Science have in fact been empirically validated. We will attempt
to answer these questions by invesligating several theories and laws of
Computer Science.

Lrhat would constitute a theory of Computer Science? When people talk
about Computer Science theories they usually mean computability theory,
formal language theory, automata theory, complexity theory, formal logic and
proof theory, parsing theory, programming language semanLics, numerical
analysis, eEc. Since these can all be considered mathematical theories, !/e
are 1ed to a common view: that Computer Science is a branch of mathe-
matics.9 The result of this view has been that the standard of validation
for these lheories has generally been that of nathematics , viz. deductive
consistency. However, if we wish to use computer science as a foundation
for sofEware engineering, lhen lhis standard will not do. For this purpose
we need to know that these theories apply to real computers and real soft.-
\,/are, EhaE their asserEions correspond to realiEy. Thus, Ehe mathemaEical
validity of these theories is not sufficient; we rnllst also consider their
empirical validity.

Have any Computer Science theories been validated empirically? Unfor-
tunaEely, we have to answer in the negative. Of course, many of them have
been validared informally, in the sense that practical systems based on them
work. However, to Ehe best of our knowledge, no one has actually attempled
a systemaLic ernpirical validation of any of lhese theories.* In many cases
this validation would not be too difficult, since the empirical data are
already available. What is required is a demonstration of how Ehese data
conflrm or refute the theories. In the following sections we outline two of
these demonstraEions.

*Some of these theories have come closer to empirlcal valldation than
others. For example, when a particular numerical algorithm behaves as
predlcled, it indirectly validates the numerical analysis upon which it
is based.

L

L
313



5. EI"IPIRICAL VALIDATION OF COMPUTER SClENCE HYPOTHESES

As an introduction to the empirical approach we consider the valiCation
of a very specific hypothesis, a hypothesis Ehat corresponds in scope to a

physical 1aw. Suppose our hypothesis is that a parEicular kind of sorting
algorithm takes n 1og n time (where n is the number of items to be sorted).
How can we validate this hypothesis?

A hypothesis of lhis sort is based on many approximations and idealiza-
lions which are conventionally assumed to be true. This hypothesis, and Ehe

assumpEions on which iE is based' can be tested by an experiment analogous
Eo those performed by physical scientists. We will implement the algorithn
and measure the time it takes to execute' while varying the conditions we

believe to be relevant (essentlally appLying Mi11rs l'lethod of Concomitant
Variations).15 In this case some of the porentially relevant condilions
are:

The number of items to be sorted (to determine the fixed overhead
of the algorithm;

The initial ordering of the iEems (!o determine their sensilivity
to the initial ord.er, and form a basis for sEatisticaL analysis);

r The computer andlor programming language used for impleruenting the
algorithm (Eo ensure Ehat these aren't relevant facEors as a result
of, e.g., fixed overhead, special optimizations, meiaory collisions).

This approach has several benefits. First, it serves Eo validate the hy-
pothesis. Second, it simultaneously helps to validate the assumptions upon
which the analysis i,ras based. Third, it gives us guidance in lhe practical
application of these analytical techniques.

Computer Science hypotheses of this kind are sometimes validaEed in pre-
cisely this manner. However, nore commonly compuler scientists fa11 into
one of two categories: practitioners, who make measurements without any
underlying theory, and theoreEicians, who donrt test their theoretical anal-
yses, because they have proved them mathematically. 0n one hand, the prac-
titioners fail to develop useful laws and theories thaE would help them to
predict the perforrnance of future software. 0n the other handr the theoret-
icians ignore al least two \,/ays in which they could be wrong: (1) they
might have made a rnistake in their mathematical analysis; and (2) their
zrnalysis might not be app11cable, that is, they might have ignored \^/hat was

not negligible. As in the other sciences, experimenEation guided by theory
seems the more reliable roethod.

6. EMPIRICAL VAIIDATION OF TURING MACHINE THEORY

The perforrnance of a particular algorithm, such as a sorting algorithm,
is a very narrow kind of hypothesis. Are there Computer Science hypotheses
of wider scope, comparable to the laws and theories of physics and chemis-
try? Many of the important theoretical results of Computer Science, such as
Ehe cornputability and uncomputability resulEs, are based on idealized rnodels
of compulation such as lhe iuring Machinel and the lambda calculus.16 The
applicability of these theoretical results to real compuEers depends on the
extent to which these idealized models are accurate descriptions of real
compuEers. We can staEe this hypothesis* more formally:

*This hypoEhesis is related to Churchrs Thesis (rea11y, Hypothesis), 16

which states that Turing cornputabiliry is a good model of effeclive
compuEabili ty.

!

314



{t

t'

The Computer = Turing Machine Hypothesis

The Turlng machine is a good model of real computers.

The staEement of this hypoEhesis is intentionally vague, since research is
required t.o determine its lirnitations and the extent of its applicability.
That is, we \^ranE to know Eo what degree and in what ways the Turing rnachine
is a good model of real computers. Since many of the theoretical resulEs of
CompuEer Science are based on the Turing machine mode1, much of the applica-
bility of uhis theory to practical problems depends on the truth and lirnita-
Eions of the above hypothesis. Thus, the investigation and validation of
this hypothesis should be an important problern for Ehe computer scientlst.

How can we confirm or refute Ehis hypothesis? At first inspection it
would seem that this hypothesis could not posslbly be true. Ihe Turing
machine is defined Eo have a finite buE unbounded (i.e., potentially infi-
nite) memory - something possessed by no real computer. Hot/ever, vre can
consider Ehe unboundedness of the Turing machiners memory to be an ideali-
zaiion (i.e., approxirnation) of the large memory capacity of real compuEers.
IE is analogous to the physicistrs use in analysis of an infinitely 1ong,
infinitely Ehin wire, or Ehe chemist's use of an infinitely divislble gas.
The question is, Is this a good approximation? _One way to answer Ehis ques-
tion (proceeding hypoEheuico-deductively)3,4,5r6 is Eo consider varlous
predictions made by the Turing machine mode1, and to ask whelher Ehey are
Erue of real compuEers.

One of the rDost important predictions of the Turing machine nodel is the
Halting Theorem,l which we nor{ explain. The Halting Piobleur for a particu-
1ar Turing machine and a particular input tape is the problem of decidlng
whether that Turing machine halts (i.e., produces an answer) when given that
tape as input. A decision procedure for Ehe Halting problern is a Turing
machine Ehat will decide the HalEing Problem for any given Turing machine/
lnput tape pair. The Halting Theorem states that there is no decision pro-
cedure for the Haltlng Problem. That is, there is no Turing machine Ehat
will decide, for an arbiErarily given Turing machine and input tape, whether
Ehe given Turing rnachlne will halt when run on Ehe given input tape. This
result has considerable practical importance when applied to real computers,
for it says that we can never write a program that will decide whether an-
other given progran w111 produce an output when run on a given input. An
extension of lhe theorem says Ehat mosE inEeresting properties of programs'are algorithmically undecidable.

The proof of che Halting Theory proceeds in much the same way as G6de1's
proofr/ of his famous incornpleteness Eheory: we assume the decision proce-
dure exisEs and use it to construcE a paradoxical self-referential Turlng
machine, which leads to a contradiction.2 The contradlction forces us to
reject our assumption of the existence of a decision procedure for the Halt-
ing Problem. Indeed, the same technique works to show Ehe nonexistence of a
decision procedure for most any property of interest of Turing machines.
Thus, the appllcability of che Turing machine model is a crucial question.
The nonexistence of these decision procedures are analogous in importance to
the physical results that assert the nonexistence of perpeEual moEion
machines.

There are several methods for validating empirically a hypothesis that
asserts nonexistence. One method is to conduct a scientific searchl8 fo.
the thing in question, in this case, a decision procedure for the Halting
Problem. Such searches, which are common in scientific investigation, are
effective to the extent that \r,e can enumerate the possible "places,'where
the sought object could be found, and then explore lhose "p1aces". Since
every compuEer scientist "knows" Ehat a decision procedure for the Haltlng

e
315



Problem 1s imposslble, few have ever looked for one. Thus this approach to
valldation of the Turing machine model: has not been seriously pursued. It
would probably not be very fruitful, anyway, due to the 1arge, irregular,
multidimensional space that \,Jould have Eo be searched.

Another method for validating a nonexistence hypothesls is to show that
Ehe existence of the Ehing in quesEioo would contradicE other empirically
validated hypotheses. That is, we can show that either we must accept Ehe
nonexistence of Ehe Ehing in question, or we must give up other (presumably
more strongly held) beliefs. That is, rrre accept the nonexistence results
because to deny it would requlre us to reject other hypoLheses, and in turn
find new explanaElons for the evidence by which those other hypotheses had
been validated. Ihis, of course, is a common process in science. It seems
a more promising approach to validating the Halting Theorem. Our problem is
to show that the existence of a decision procedure would contradict other
known 1aws.

One of the most obvious respecEs in which the Turlng machine model dlf-
fers frorn real computers is that the Turing nachine has a potentially infi-
nite memory, whereas real computers don't. Is this a significant differ-
ence? We can flnd out in exactly the same way a natural rrcientist would:
alter the property in question, i.e., apply Mi11's Method of Differences.15
In this case the property we are altering is Ehe finiteness of the Turing
machiners memory. We can then ask whether propert.ies of interest, such as
the Halting lheorem, sti1l hold under the conditions of a very large but
finlte memory. Tf they do, then we have justified our use of the Turing
machine approximation of real computers. However, if these properEies are
sensiEive to Ehis alteration of property, then we must consider the possi-
bility that the Turing machine nodel neglects signlficant characteristics of
real computers.

Hence we wlll formulate a bounded memory version of the Halting Problem.
Consider the class of all program-input pairs for some particular computer
with a finite, bounded memory. Since both Ehe program and its input must
fit in this bounded comput.er, the size of these program-input pairs is
bounded. Ilence, the program-inpur pairs are expressed in a finite, bounded
alphabet (usua11yr0'and'1'), the number of program-input palrs is a
fixed, finite numberl call it N. I^le are seeking a program H for a bounded
computer that will decide the HalEing Problero for each of these program-
inpuE pairs. That is, for each such prograrn-input pair, H will decide
wheEher that program will halt when given that input. Since H runs on a
finlte, bounded computer, it has a finite, bounded amount of memory avail-
able for its computations. Does such an H exist?

The answer is clearly "yes": an N-entry table can be used to decide the
Halting Problem by looking up a given program-input pair. For each program-
input pair we have a one-bit entry in the table, the bit indicating that the
pair does or doesnrt halt. In addit.ion we have a smal1 fixed number P of
bits conEaining the program to do the lookup. Hence the size of H is N + P

bits.

This solution to the Halting Problem for finite, bounded computers is
oot practical, as we can see by considering Ehe size of H. Suppose our
program-input pairs are all bounded by L (i.c.; ar€ at mosE L bit long).
Then the number of these pairs is:

N = 2L + 2L-l + 2L-2+ ... + Zl + Z0 = 2L+1 - I

The program H requires N bits in its tab1e. Hence, the size of H is an ex-
ponential function of the maxlmurn size of the program-lnput pairs that it
decides. For example, to decide the program-input pairs that would fit in a

316

,l



s
16 kilobyte = 105 bit personal comPuter would take a table of size

2(105) = 161051og2 ! 1g30103 6igg

This is more than the estimated number of particles 1n Ehe universe. Hence,
the solution of the Halting Problem by this method is impossible for even
relatively sma1l programs.

This leads to an obvious question: Is there a more efficient decision
procedure for the finire, bounded Halting Problem? Thus we must seek lower
bounds on the size of Ehe decision procedure. It is easy !o see that a

lower bound on tire length of the decision procedure must be close to L.
Por, if the length of H is even a 1itt1e less than L' then we can write a

program Q shorter than L that "halts if and only if it doeslrt ha1t" (in the
same way thaE this is done in Godel's and Turing's proofs).Z Since this is
a conEradiction, we must conclude either:

The computer lacks the necessary instructions to build Q from H1 or

The program Q is longer than L, and hence wonrt fit in the computer
for which we have a decision procedure.

Now we appeal to observation: all real computers* have the instructions
necessary to build Q from H (they are very sirnple). Hence, (f) is empiri-
cally refuted. Therefore, we must conclude (2): the lengEh of Q is greater
than L. But, it cao also be shown empirically that Q is just a little
longer than H, so we can conclude that a lower bound on the length of H is a

number nearly as big as L. That is, H is almos! too big to fit on the com-
puLer in question. Thus we have two (very loose) bounds on the size of the
decision procedure. They can probably be lightened, but we do nol know if
this has been done.

What do these resulis say about the empirical validity of the Halting
Theorem? We have found the following resulEs by combining theoretical
analysis with observation:

Certain finj-te, bounded computers can decide the Halting Problern
for olher finite, bounded computers.

If the decision procedure can fit in the object computer at all,
then it occupies most of the objecl computerts memory.

TighEer bounds on the size of the decision procedure probably exist, but we

are not aware of them. In any case, lhey are not relevant to our purposes
here, since we are concerned wlth the method, not the particular results.
Thus we consider the conclusions we would draw in each of two circumstances:

Suppose it were found that the lower bound on the size of H is
close to an exponential function of L. That is, it lakes a
very large cornputer to decide the Halting Program for a rouch
smaller computer.

In this case we would be justified in saying Ehat the Turlng
machine modeL is a good approximation to real computers (at least
wdth regard to the Halting Theorem). This is because, although

*As is often Ehe case when we fonaalize previously informal concepts, there
is an apparenE circularity in the definition of the concept. In this case,
we would not call a device a computer if it did not contain the requisite
ins tructions.

1

L

T

I

S

317



the Halting Problem is decidable in a nonempirical sense, it is
not decidable in fact, that is, in the real world. )1ore precisely,
it is not decidable for any but the smallesE computers.*

Suppose it were found that to solve the Haltlng Problen for a given
object computer it takes a computer of comparable size to the objecl
computer. For example, a size 2L computer might be adequate to
solve the Halting Problem for a size L computer.

In this case, since the Halting Problem can be solved with an
only moderately larger computer, the Turing machine model will have
been ca11ed into question. This reason is that the Turing nachine
model lgnores the very characterisEic of real computers that is
relevant - their finite Demorv.

In either case our empirical investigation has had two important benefits:
(1) It has given us more confidence in the applicabiliEy of our theory to
the real world; and (2) It has given us greater insights inlo the reasond
that an importanl result (i.e., the Halting Theorern) ho1ds.

] . CONCLUSIONS

Although Computer Science has a rich and well developed theory, there
have been few attempts to show ernpirically that thls cheory applies to real
compuEers and real programs" This lack can perhaps be attribuEed to the gap
that separates Computer Science Theory from Computer Science pracEice.

We have attempted to show how empirical methods can be used to validate
both specific laws (e.9., the performance of a particular algorithm) and
general theories (e.g., Turing machine theory). As in the other sciences, a
primary rnethod is the testlng of predictions by actual measuremenEs. A more
imporEaot method, at least at this stage of development of Computer Science,

\

2

is conceptual
tions (exp1ic,ations of inf ormaEion ideas. I
investigaled the validation of Turing machines as formal models of real com-
puters. We have shown that observations can be used to confirm or refute
thls mode1.

We hope that wider practice of this approach will make moot the question
of whether Computer Science is a science.

ACKNOWLEDGI{ENTS

The work reported herein was supported by the 0ffice of Naval Research
under contract number N000f 4-84-WR-24087.

REFERENCES

I. Alan M. Turing, On computable numbers, \,riEh an application Eo the

*The reader might quesEion the usefulness and precision of a model of
computers that doesntt apply to "small" computers. How big does a computer
have to be for the model to apply? This situation is not unusual in
science. For exampLe, Charles's and Boylets La\,rs do not apply to "very
sma11" r.o1umes of gases; stalistical mechanics does not apply fo "small"
numbers of particles.

validatlon that is, the vali dation of scienElfic formaliza-
9,20 To illusttate this we have

318

\t

i



L 2

En tscheidungs problem, Proc. London Math. Soc. 1936-7 , 42 (2), pp.
230-265; L937 43 (2), pp. 544-s46.

Bruce J. Maclennan, A Computer Science Version of G'6de1rs Theory, Naval
Postgraduate School Computer Science Department Technical Report
NPS52-83-0r0, 1 983.

R. B. Braithwaite, Scientific Explanation, Caurbridge Univ. Press,
Cambridge, Mass., 1953.

Pierre Duhem, The Aim and Structure of Physlcal T&qry, P. P. Wiener,
trans., Princeton, 1954.

Carl G. Hernpel and Paul Oppenheiur, Studies in the logic of explanation,
Phi1. of Science 1 948,

Car G. Hempe , AspecEs of

3

4

5

6

7

8

9

!1, pp. I35-175; also 1n reference 15.
Scientific Explanation, The Free Press, New

York,1965.
Karl R. Popper,

1963.
Karl R. Popper,

York,1968.

ConjecEures and Refutations , Harper & Row, New York,

The Logic of Scientific Discovery, Harper & Row, New

S. .trnarel, Conputer sclence, Encyc. Conputer Sclence, Flrst Edition ,A.
Ralston and C. L. Meel, eas., fEroclftlChartef, New York, 1976, p.
2r A

10. Carl G. Hempel, A logical appraisal of operationism, Ihe Validation of
Scientlfic Theories Philipp G. Frank, ed., Beacon Press, Boston,
1956.

11. Eenry Margenau, Interpretatlons and mlsinterpretatlons in operational-
ism, The Validatj.on of Scientific Theories Philipp G. Frank, ed.,
Beacon Press, Boston, 1956.

Percy W. Bridgman, The Logic of Modern Physlcs, Second Edition , New
York,1948.

Karl Pearson, The Grammar of Science, Walter Scott, Iondon; and Charles
Scribnerrs Sons, New York, 1892.

Imre Lakatos, The problen of appraising scientific theories: three
approaches, Mathematics, Sclence and Eplstemology, J. Worrall and G.
Currie, eds., Cambridge Univ. Press, Carnbridge, 1978.

15. John S. Mi1l, A System of Logic, Ratiocinative and lnductive, Being a

I Connected View of the Princlples of Evidence and the Methods of
Scientlfic Investigation, Eighth Edition, Longmans, Green, and Co.,
London, 1843.

Alonzo Church, An unsolvable oroblen of elementary number Eheory,
Atrer. J. Math. 1936, 58, pp. 345-363.

Kurt Gode1, 0n formally undecidable propositions of prlncipia math-
ematlca and related systems I, The Undecidable, Martin Davis, ed.,
E. Mendelson, Trans., Raven Press, Hewlett, New York, 1965.

E. Bright Wilson Jr., An Introduction to Sclentific Research McGraw-
Hi11, New York, 195

Bruce J. Maclennan, A Commentary on I"1111rs Logic Book I: 0f Names and
Propositions, Naval Postgraduate School Computer Science Department
Technical Report NPS52-83-013, 1983.

Rudolf Carnap, Logical Foundations of Probability, Second Editlon,
Univ. of Chicago Press, Chicago, 1962, pp. 1-18.

13.

t4.

16.

t7.

18.

19.

20.

L
319


