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Future computing paradigms and technologies will have to be more like the physical processes
by which they are realized, and because these processes are primarily continuous, post-Moore’s
law computing will involve an increased use of analog computation. Traditionally analog
computers have computed ordinary differential equations of time, but analog field computation
permits massively parallel temporal integration of partial differential equations. In principle
many different physical media — not just electronics — can be exploited to implement the basic
operations of analog computing, a small number of which are sufficient to approximate a
wide variety of analog computations, thus providing a basis for universal analog computation
and general-purpose analog computers. The contentious issue of the computational power of
analog computers is addressed best on its own terms, rather by asking it within the context of
Church-Turing computation, which distorts the relevant questions and their answers.

Keywords: analog computation; continuous computation; field computation; Moore’s law;
post-Moore’s law computation

1. Post-Moore’s law computing

Computing technology has benefitted from Moore’s law, which says that VLSI density doubles
approximately every two years (Moore 1965). However, Moore’s law is not a law of nature, but
a consequence of decreasing the linear dimension of VLSI circuit elements and their operating
voltages (Frank 2005). The energy to change a bit is given by E = CV?Z, where V is voltage
and C is capacitance, which is proportional to area, i.e. linear dimension squared. However, there
are practical limits to the continuation of Moore’s law. Charge cannot be less than one electron;
device dimensions cannot be less than one atomic diameter. Also, operation becomes unreliable
if E is much less than 10kT, where k is Boltzmann’s constant and 7 is the temperature of the
computing environment (Frank 2005). This minimum energy is about 2.6 electron-volts at room
temperature.

During the reign of Moore’s law we have had the luxury of multiple hierarchical levels to
implement conveniently programmable von Neumann architectures. For example, real numbers
are represented by floating-point numbers, comprising dozens of bits, each implemented by mul-
tiple semiconductor devices, each controlling large numbers of electrons. Likewise, elementary
operations, such as division, are implemented by sequential algorithms, in turn implemented
by sequential digital logic, in which each binary operation involves the saturation of a physical
quantity (such as a charge or voltage). As we approach the limits of Moore’s law, we cannot afford
these deep hierarchical representations. Rather, in post-Moore’s law computing, our computational
processes and the physical processes by which they are implemented must become more alike.
Since the laws of physics are what they are, we conclude that in the post-Moore’s law regime,
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computational processes will be more like the physical processes by which they are realized.
Since most physical laws are continuous (i.e. differential equations), this implies an increasing
role for analog computing in the future.

2. Meaning of analog computing

The term “analog compution” is usually explained in terms of an analogy existing between
physical quantities in the computer and quantities in the primary system (the system being
modelled, analysed or controlled by the computer). For example voltage in the computer might
be used to represent water pressure in the primary system. In fact, in most analog computers
the computational and primary quantities have been related by a simple proportion, so that
computational operations correspond directly to physical processes. More generally, quantities
can be represented less directly (e.g. logarithmically), as long as there is a systematic (quantitative)
analogy between the computational and primary systems. According to this definition, however,
ordinary digital computers are also analog computers, because there is a systematic relationship
between internal representations and processes in the computer and those in the primary system.
It just so happens that the relationship is much more complicated than a simple proportion.

Therefore, the essential characteristic of analog computing, as generally understood, is not
the existence of an analogy between the computational and primary processes, since digital
computation also has this characteristic. Rather, the defining characteristic of analog computing
is its use of continuous representations, as opposed to digital computation, which uses discrete
representations. This has become the common understanding of these terms, as for example when
we contrast digital and analog clocks or analog and digital music recording.

I have argued that post-Moore’s law computing will require computing processes to be more
like the physical processes that realize them. In particular since most of the laws of physics are
continuous, we will have to make greater use of analog computation. Therefore we will have to
leave our technological comfort zone (binary electronics) and explore a wider range of physical
processes that can be exploited for computation.

Our goal in computation is to use abstract or mathematical relationships to model, analyse
or control some primary system. Since computation is a physical process, this is accomplished
by using a physical system (the computer) to implement or physically instantiate these abstract
relationships. More precisely, we can say that there must be an approximate homomorphism from
the physical system to the abstract system (MacLennan 1994, 2003, 2004). It is a homomorphism
because the physical system has at least the structure of the abstract system, but also has additional,
irrelevant structure. The homomorphism is approximate since a physical system cannot usually
exactly realize the intended abstract system. For example, the mathematical system might be
linear, but its realization might be linear in only a restricted range or linear only within a specified
tolerance.

3. Topology of computation

I have argued, in agreement with common usage, that the essential difference between digital and
analog computation is between discrete and continuous representations. Therefore the distinction
is effectively topological, and so it will be useful to look at computation in topological terms.

3.1. State space

First we can classify computation in terms of its state space, that is, the space in which information
is represented.
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Digital computation makes use of a discrete space, in topological terms, a space in which
there are only two fundamental distances: 0 and 1. The distance of a discrete point from itself is O
and its distance from any other discrete point is 1. That is, the metric tells you if the points are the
same or different. This is the foundation of binary representation; the essential property of 0 and 1
is that they can be mechanically and reliably distinguished. The larger alphabets used in other
models of digital computation, such as Turing machines and the lambda calculus, also belong to
a discrete topology: their essential property is the identity or difference of the symbol types. Of
course, for computational purposes we can define additional metrics over discrete spaces, as when
we arrange bits to implement integers or floating point numbers, but this additional structure is
not inherent in these spaces of discrete symbols.

Traditionally, analog computation is computation over real variables. More generally, the
state space of an analog computation is a topological continuum, which is non-empty connected
compact metric space. For example, closed intervals of the reals, with the usual topologies, are
continua. Analog computation is sometimes defined over complex variables or complex-valued
fields (continuous spatial distributions of continuous quantity). Non-trivial analog computations
operate on multiple continua (e.g. multiple real variables), but finite (and countably infinite) arrays
of continua form continua under the product topology. In summary, the state spaces of analog
computations are topological continua.

Since hybrid analog — digital computation is useful for some purposes, an interesting question
is whether there is a more general model of computation that subsumes analog and digital
computation as special cases. Elsewhere I have argued that second-countable Hausdorff spaces
are a reasonable topology for models of hybrid computation over both discrete and continuous
state spaces (MacLennan 2010).

3.2. Processes

Computations take place in time, but traditional analog computations evolve continuously in time
whereas discrete computations proceed by discrete steps. Therefore, we need to consider the
temporal topologies of computation.

Ordinary digital computation takes place in sequential time (van Gelder 1997); that is, there is
a sequence of computational steps of unspecified, but finite duration. In practical terms, of course,
we expect the operations to be rapid, but in the theory of digital computation, we require only that
the individual steps be finite.

It is also possible to do analog computation in sequential time: at each step in the computation
some analog operation is applied to continuous quantities to yield a continuous quantity. For
example, two real numbers might be fetched, multiplied by analog circuitry and the product
stored in a real variable.

Computation in discrete steps — whether analog or digital — need not be purely sequential.
More generally we can have a partial order over a discrete set of steps, thus allowing parallel
computation.

Sequential-time computation should not be confused with discrete-time computation, which is
a special case in which the computational steps occur at some definite time interval. Discrete-time
computation is in effect computation over the natural numbers, whereas sequential computation
is over a discrete total order (or, in the parallel case, a discrete partial order). Discrete-time
computations can be analog or digital, and are often used to approximate continuous-time analog
computation.

Traditionally analog computers operate in continuous time, that is, in accord with differential
equations. Typically, time in the computation is proportional to time in the primary system (either
slower, faster or identical, as required by the application), but in principle other continuous,
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monotonic relationships could be used. In this article I will focus on continuous-time analog
computation, since it is the more common and more general case.

4. Precision and accuracy

In discussing analog computation it is important to distinguish accuracy and precision. Accuracy
refers to the mathematical correctness of the operations, for example, the closeness between
a mathematical model and the primary system it models or between the intended and actual
behaviour of a controlled system. Accuracy depends on many factors, including the completeness
of the model and the approximations used in the algorithms. One of these factors is precision,
which refers to the quality of representations and of computations on them; it depends primarily
on two factors: resolution (fineness of representation) and stability (absence of drift or decay).
The precision of a device is usually expressed as a fraction or percentage of full-scale variation,
that is, of the maximum representable range of values (e.g. a precision of 0.01% or 10™%).

One of the advantages of digital computation is the incremental cost of improving precision.
For example, doubling the precision of a number requires adding only one additional bit to
a register. On the other hand, doubling the precision of an analog device may require much
more expensive materials and manufacturing techniques. Analog cost tends to be exponential in
precision, whereas digital is linear or at worst quadratic. This is because digital representations
use multiple low-precision (i.e. binary) devices to represent a single quantity, whereas analog
computation makes use of a single high-precision device.

The relatively greater cost of analog precision was one factor in the spread of digital technology
in the late twentieth century, but recently analog technology has been regaining its advantage, at
least for some applications. First, as discussed in Section 1, post-Moore’s law computing does not
permit us the luxury of using many low-precision devices to represent a single quantity; that wastes
space and energy. Second, high precision is not required in many important applications of analog
computation, such as signal processing and control. Furthermore, some approaches to analog
computation, such as artificial neural networks, do not require high precision representation or
computation in order to produce accurate results. Low-precision devices can represent quantities
with high precision through coarse coding (Rumelhart, McClelland, and the PDP Research Group
1986, 91-96; Sanger 1996). That is, high precision is achieved through a population of low-
precision devices. (Indeed, individual neurons seem to operate with less than 10% precision.)
Finally, some contemporary analog technologies can achieve quite high precision. For example,
there are analog/digital converters with 24 bits of precision, and analog computation with 1% to
0.1% precision is easy to achieve with modest power requirements.

5. Analog computing operations

In this Section 1 will discuss some common primitive operations for analog computing. It will be
apparent in most cases that they have relatively straight-forward physical realizations.

The simplest analog computation operations combine real or complex values algebraically:
u) =v@) £ w(),ul) =vE)wt), u(t) = v(t)/w(t). (In the latter case, division, the range of
the output must be limited.) Other common algebraic operations include constant multiplication,
u(t) = cv(t), inversion, u(t) = —v(t), and magnitude, u(t) = |v(¢)|. Analog devices can
often implement special functions efficiently, for example, u(r) = Inv(¢), u(t) = expv(t),
u(t) = cos v(t). Integration is one of the most useful analog computations: u(t) = uo-+ fé v(t)dr;
it can be realized straight-forwardly by many physical processes. Differentiation, u () = v(t), is
also easy to implement, but it must be used with caution, since noise tends to be high frequency
and therefore differentiation amplifies noise. In practice a low-pass filter can be applied before
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differentiation. Some analog computers provide tunable bandpass filters, which can be used to
measure a signal’s power in a set of bands and therefore to compute a discrete Fourier transform
of the signal. Others provide programmable analog matrix-vector multipliers, which can be used
to implement linear operators, such as filters.

Sometimes it is necessary to compute a function u(¢) = F[v(¢)], where the function F' might
have no known closed form. For example, F might be an empirical function resulting from the
measurement of some phenomena (e.g. physiological or psychological responses). Or it might be
that F is simply too complex to compute in terms of basic operations. In this case analog computers
can use a continuous version of table lookup. In effect the function’s graph can be “drawn” (plotted)
in a special medium that computes F directly (Truitt and Rogers 1960, 1-72-81, 2-154-156). In
some cases arbitrary functions can be computed by analog interpolation based on finite samples
(vk, F(vk)). There have been analog devices capable of computing arbitrary functions of two
variables, u(t) = F[v(t), w(¢)] defined by their graphs or by samples, uy = F (v, wg).

The foregoing is a sample of basic analog computing operations, but any physical process
that is mathematically describable may be used to model processes with that same description.
For example, an operation that adds noise to a signal, u(¢) = v(t) + v(¢), can be used to model
stochastic processes in the primary system (Howe 1961, ch. 7). Noise (randomness) is also useful
in some algorithms, such as stochastic resonance and simulated annealing (Benzi et al. 1982;
Kirkpatrick, Gellat, and Vecchi 1983). Another useful operation is a delay, u(t) = v(t — T),
which can be used to model delays in the primary system or to approximate time derivatives:
v(t) ~ [v(t) — v(t — Ar)]/At. Future progress will include the exploitation of additional physical
processes that can be applied to analog computation.

In any given analog computing technology, some operations will be easy and efficient to
implement, and others less so, which raises the question of whether there is a minimal set of
operations that are universal for analog computing. In fact, for many purposes, addition, scalar
multiplication, integration and functon generation are sufficient, as explained in more detail below
(Section 7.1).

6. Field computation
6.1. Definition

Historically, most analog computers have been used to integrate ordinary differential equations
(ODEjs) in which time is the independent variable. However, there have also been analog computers
that can integrate, with respect to time, partial differential equations (PDEs) defined over one or two
spatial dimensions. This has been called the field analogy method (Kirchhoff 1845). Computational
devices made use of physical continua or spatially discrete approximations to them. There is a
long history of optical field computation (Ambs 2010), and more recently Jonathan Mills has
investigated the use of physical continua for analog computation (Mills 1996; Mills et al. 2006).

We define a phenomenological field to be a spatially continuous distribution of continuous
quantity (typically real or complex) or a discrete distribution that can be usefully treated as though
continuous. A phenomenological field is described mathematically by a bounded continuous
function ¢ : 2 — K. The domain 2 is a closed and bounded continuum (the space over which
the field is defined); physical realizability normally limits it to a region in 1-, 2- or 3-dimensional
Euclidean space, although there are techniques for computing over higher dimensional fields
(MacLennan 2009b). The codomain K is typically a space of real or complex scalars, vectors or
tensors. We write ¢, for ¢ (p), the value of ¢ at a point p € €2, and time-varying fields are notated
(1), ¢p(1), etc. when we want to make the time dependence explicit. ® g (£2) is the space of all
K -valued fields over domain €2 and we omit K when it is the reals.
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Mathematically, fields are functions, and so @k (£2) is a function space, and it is convenient
to treat it as a Hilbert space. This requires that fields be “finite energy” (square-integrable), which
is reasonable for physically realizable fields. This also requires that the space be complete, which
implies that it contains physically unrealizable but mathematically useful limit fields, such as step
functions and unit impulses (Dirac delta functions).

6.2. Pointwise operations

The simplest field computation operations are simply pointwise field extensions of scalar opera-
tions. For example, ¥ = ¢ % x, which means the pointwise computation v/, (t) = ¢, (t) £ x, (1).
Likewise we have v = ¢ X x, ¥ = ¢/x (suitably limited), ¥ = u¢ (scalar multiplication),
Y = In¢, ¥ = exp¢, etc. We also have pointwise integration with respect to time, ¥, (t) =
vy + fé ¢,(t)d7, and differentiation with respect to time, ¥/, (t) = ¢, (¢). For vector and tensor
fields, we have pointwise inner, outer and cross-products, which may be implemented in terms
of scalar field operations. Other operations are specific to fields. For example, a field can be
converted to a scalar by definite integration over space, defint ¢ (1) = f o Pp(t)dp, which can be
used for computing the average value of a field.

6.3. Spatial operations

One especially useful operation, which has efficient analog realizations, is spatial convolution,
¢*y, where (9p* V), = [, ¢p—q¥ydq. Closely related is the spatial cross-correlation operation,
¢ * Y, which is defined (¢ x V), = fQ ¢;; ¥ p+qdg, where we include the complex conjugate
operation “*” in case the fields are complex.

The gradient operation, ¥ = V¢, returns a vector field, which can be represented directly by
a physical vector field or by a finite array of physical scalar fields. It can be used in many useful
computations, such as optimization or learning by gradient ascent or descent.

Another useful field operation is the Laplacian, ¥/ = VZ2¢, which can be approximated by
convolving with an appropriate kernel (e.g. a derivative-of-Gaussian field) or more directly in
some realizations by diffusion in the computational medium. It is especially useful in reaction—
diffusion computing, which combines diffusion (often implemented directly by physical diffusion)
with non-linear pointwise reactions; for example,

¢ = kid* /¥ — koo + d1 V9,
U = k3g? — kayr + 2 VY

leads to the self-organization of Turing patterns (Turing 1952). The operations are pointwise
(local), except for the Laplacian. Reaction—diffusion computation has been applied to a variety
of problems (Adamatzky, De Lacy Costello, and Asai 2005).

Just as vector and matrix products are useful for computing in finite-dimensional spaces, there
are analogous products on fields. Consider two fields, ¥ € ®(Q' x ) and ¢ € ®(R2), analogous
to a matrix and a vector. We define the field product W ¢ € ® (') by the Hilbert-Schmidt integral
operator:

(Vo) =/ \pxy¢de~
Q

The field W is called the kernel of the linear operator L(¢) = W¢. This operation is the analogue
of a matrix-vector product; the analogues of vector-matrix and matrix-matrix products are defined
in the obvious way. We also define products among more than two fields, so long as they have
compatible domains. For example, V¢ = (¥p)y for ¥ € ®(Q” x Q' x Q), ¢ € ©(R), and
e d(Q).
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Analogous to the outer product of finite-dimensional vectors, we have a field outer product. For
¢ € ©(Q)and ¥ € ©(Q'), the outer product p Ay € O (2 x Q') is defined (¢ AY)(x,y) = ¥y
for x € Q and y € Q. The outer product is useful for neural network-style learning algorithms
and for computing Taylor series approximations to field transformations. (It is closely related
both to the Dirac outer product or dyad, |¢) (/| and to the tensor product |¢) ® |v) familiar from
quantum mechanics.)

6.4. Orthonormal basis fields

An important property of Hilbert spaces is that they have countable bases, which are spanning
sets of orthonormal fields, B1, B, . ... Indeed, physically realizable fields have finite bases; they
are finite-dimensional. Any field in the space can be represented uniquely as a linear combination
of basis fields, ¢ = ), cx k. For working with bases it is convenient to have an inner product
operation on fields, for which we use Dirac’s bracket notation:

@1 v) = /chz;x/fpdp,

where we include the complex conjugate “*” in case the fields are complex. As usual, ¢ and ¥
are orthogonal fields if (¢ | ¥) = 0, and the norm of a field is defined by ||¢|| = /(¢ | ). An
orthonormal set of fields {B} satisfies || S|l = 1 and (B; | Br) = O for j # k. Any field can be
expanded as a generalized Fourier series in terms of a basis, ¢ = )", cx Bk, where the generalized
Fourier coefficients are ¢y = (B | ¢). The Fourier series for realizable fields have a finite number
of terms, so in many analog computations field operations can be replaced by operations on a
finite set of scalar variables.

Linear field operators can be computed in terms of their Fourier coefficients. Suppose that
L : ®(Q) — P(Q) and that {Bi} is a basis for () and {«;} is a basis for ®(2'). Let
ck = (Br | ¢) be the Fourier coefficients of the input ¢ € ®(£2). Then the Fourier coefficients
dj = (aj | L¢) of the output L¢p € P(Q') can be computed by an analog matrix-vector
multiplication d = Me, where the matrix elements are given by M jx = (o | LBy).

Fields defined over more than two or three spatial dimensions may be physically unrealizable,
but they can be represented as one-dimensional fields by means of their generalized Fourier
coefficients. Let {8} be a basis for ®(2) and {&} a basis for ® ([0, 1]). Then H = Zk E A ,3;‘
will encode a field over Q2 as a field over [0, 1]. Likewise, if {«;} is basis for ® (), then
e = Zj o A S;f will decode a representation over [0, 1] into a field over Q'. If K € ® (' x Q)
is the kernel of a linear operator, then it can be replaced by a two-dimensional field L € ® ([0, 1]?)
by K = ®LH.

6.5. Non-linear computation via topographic maps

In many regions the brain represents information topographically; that is, there is systematic
relationship between the value to be encoded and the location in the cortex where it is represented
(Knudsen, du Lac, and Esterly 1987). These topographic representations provide an efficient way
to compute non-linear operations while encoding ancillary pragmatic factors, which is easily
accomplished through analog field computation (MacLennan 1997, 2009b). Suppose S is a space
to be encoded (e.g. pitch of sound, orientation and location of visual edges) in a field defined
over 2. We represent the encoding by a map i : S — Q. Then a particular value s € S will be
represented by a field a[u(s)] € ®(£2) with its amplitude concentrated around p(s). (In the ideal
case, it is a Dirac delta function, o[ (s)] = 8[p — u(s)].)

Likewise, the result of a function f : S — T can be represented by amap v : T — '. Our
goal is that a function value f(s) € T will be represented by a field B(v[f(s)]) € (') with
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its amplitude concentrated around v[ f (s)]. The function can be computed topographically by a
linear operator whose kernel is:

K = /S,B(v[f(s)]) Aafp(s)]ds € D(Q' x Q).

This is effectively a blurred graph of f. The effect of applying the linear operator K to the
representation a[w(s")] of a value s’ € § is:

Kalu(sH] = fsﬂ(v[f(S)]) (alp()] [ elusH]) ds.

That is, the overlaps between the «[u(s)] and the input representation o[ (s”)] weight the
corresponding output representations B(v[ f(s)]).

Since the location of activity w(s) represents the input value s € S, the amplitude of the field
canrepresent ancillary, pragmatic information p, such as the importance or probability of the input,
which weights the corresponding outputs: K (pa[u(s)]) = p(Ka[u(s)]). Likewise, because the
computation is linear, topographic computation can transform a superposition of inputs into a
superposition of outputs, K (pa[u(s)] + ga[u(s)]) = p(Ka[u(s)]) + g(Kalu(s")]).

7. General-purpose analog computers

The notion of a general-purpose computer or universal machine has both practical and theoretical
importance. In the realm of digital computing we have the theoretical Turing machine and its
equivalents as well as the practical programmable computers we all use. Likewise, in analog
computing there have been general-purpose analog computers (GPACs) both as practical instru-
ments and as objects of theoretical investigation. Practical GPACs of the past include Vanevar
Bush’s mechanical differential analyser (1930) and the Rockefeller Differential Analyser (1947)
and a number of commercial electronic GPACs, which emerged in the 1950s (Small 2001, 42-5,
72-3). GPACs are mostly of theoretical interest now — for determining the limits and fundamental
requirements for analog computation — but practical GPACs may become important in the future
in situations where special purpose analog hardware or digital simulation are not feasible.

How should universal analog computing be defined? In the theory of digital computation, the
Church-Turing Hypothesis asserts that our intuitive notion of effective calculability corresponds
to Turing computability. The credibility of this hypothesis rests upon the fact that multiple
independent attempts to formalize effective calculability all arrived at equivalents to Turing
computability. At this time, however, we have no corresponding agreed upon notion of analog
computability. Nevertheless, there are theoretical results useful for the design of GPACs.

7.1. Shannon’s analysis of the differential analyser

Claude Shannon studied the theoretical power of the differential analyser, but his results are also
applicable to other GPACs (Shannon 1941, 1993). (I will informally summarize his conclusions;
see the original paper for details.) He assumed a GPAC capable of addition, constant multiplication,
integration and function generation (for functions with a finite number of finite discontinuities),
with one source of drive (which limits interconnection), and proved that it would be capable
of computing a function if and only if it was not hypertranscendental (therefore, including all
algebraic transcendental functions). This is a very large class of functions, but does not include
the Riemann zeta function or Euler’s gamma function, for example. The non-hypertrancendental
functions provide a basis for computing a large number of additional functions, which can be
derived from the former by composition, inversion, differentiation, integration, etc. Functions of
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multiple variables can be computed if they can be defined in terms of computable functions by
means of partial differentiation or inversion with respect to any one variable. These results were
extended to show that a finite number of adders and integrators could approximate the computation
of any multivariable function that is continuous over a closed region of space. Shannon also showed
that his GPAC was capable of solving any system of ordinary differential equations definable in
terms of non-hypertranscendental functions.

Shannon’s proofs were incomplete, but they were later refined and corrected by (Pour-El
1974) and (Lipshitz and Rubel 1987). For example, the Shannon-Pour-El Thesis states that the
GPAC can solve initial-value problems for algebraic differential equations: equations of the form
Plu, v(u),v'(u), v (), ..., v w)] = 0, in which P is a polynomial that is not identically
vanishing in any of its variables (Rubel 1985). However, Rubel (1988) showed that it could not
solve the Dirichlet problem for Laplace’s equation on the disk.

7.2. Rubel’s extended analog computer

Motivated in part by his view of the brain as an analog computer (Rubel 1985), Rubel has
developed an extension of the GPAC, a conceptual machine that he calls the Extended Analog
Computer or EAC (Rubel 1993). For example, whereas the GPAC integrates only over time, the
EAC is able to integrate over any finite number of real variables. It has a series of levels, each of
which uses operations such as adders, multipliers, differentiators, inverters, function composers
and analytical continuation devices to solve equations defined over the functions computed by
the layer below. The lowest level provides for real polynomials and implements the differentially
algebraic functions (like the differential analyser). The EAC is not restricted to initial-value
problems, but has an analog device capable of solving ODE and PDE boundary-value problems.
Powerful analog computation devices of this sort might seem infeasible, so it is important to
recall, as Rubel notes, that they can be implemented by physical processes that obey the same
ODE:s or PDEs, as was done in the old field analogy method. Jonathan Mills has demonstrated
analog field computation devices (Mills 1995, 1996; Mills et al. 2006).

7.3. Universal approximation theorems

Another, quite practical approach to general-purpose analog computation makes use of various
universal approximation theorems (Haykin 1999, Sections 4.13, 5.3, 5.5, 5.6 and 5.10). For exam-
ple, any continuous function F(vy, ..., v,) on bounded variables vy, . .., v, can be approximated
arbitrarily closely by an expression of the form:

n

m
F(vy,...,v,) :Zaio Zw,'jvj +b; 1,
i=1

j=1

where a;, b; and w;; are fixed coefficients (dependant on F') and o is any non-constant, monotone
increasing, bounded, continuous function. Typically it is a sigmoid function, such as the logistic
sigmoid, o (x) = [1 4+ exp(—x)]~'. In analog computing, such functions often come “for free”
(e.g. as a side-effect of saturation in the underlying physical processes). Of course, such an
approximation is equivalent to a two-layer artificial neural network with interconnection weights
a; and w;; and biases (inverse thresholds) b;. The coefficients can be determined by a simple
least-squares minimization (Haykin 1999, Sections 5.3, 5.5-5.6 and 5.10). The same approach
can be used for approximating arbitrary field transformations:
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m n
Fpro....¢n) =Y i x| > wijx¢j+bi|.

i=1 j=1
where the o;, w;; and B; are fixed fields, “x” represents pointwise multiplication of two fields and &
is pointwise application of the sigmoid function o . Useful special cases arising from interpolation
theory include approximations of the form: F(¢) = Y -, ajo ({(w; | ¢) + Bi), where the o,
w; and B; are fixed fields. This is the field equivalent of an artificial neural network. Another
useful approximation for field transformations has the form: F(¢) = Zf"zl a;ir(|l¢ —n;ll), where
the «; and »; are fixed fields and r : R — R is a monotonically decreasing function. Thus the
r(|l¢ — n;l|) are radial basis functions (Haykin 1999, 264-265). The fixed fields for these approx-
imations can be determined by least-squares minimization (MacLennan 2009b).

Another approach to universal field computation makes use of Taylor’s theorem on Hilbert
spaces, which allows a field transformation to be expanded as a sum of field products (MacLennan
1987, 2009b). This allows a field transformation F : ®(Q2) — ® (') to be expanded around a
fixed field ¢ € ®(2) by Horner’s rule: F (¢ + o) =~ T(¢) + Q1(¢, o), where

1
k¢, a) = Dr(¢) + k—Qk+1(¢, aa  (k=1),

+1
where Dy (¢) is the kernel of the kth functional derivative of F at ¢.! Dy € ®(Q' x €F), but
these higher dimensional fields can be avoided by representing them by generalized Fourier series
(Section 6.4). This shows that a large class of field transformations can be approximated by means
of the field product (Hilbert—Schmidt integral), pointwise addition and scalar multiplication. More
generally, it illustrates a kind of polynomial approximation of field transformations.

8. Theoretical power of analog computing

A perennial question is the theoretical power of analog computation compared to the Turing
machine; are analog computers capable of computing “beyond the Turing limit”? On the one hand,
itis easy to show that analog computers’ ability to use real numbers (with infinite precision) confers
super-Turing power. On the other, analog computers are routinely simulated on ordinary digital
computers, which suggest that analog computation in no more powerful than Turing computation.
More careful analyses only deepen the paradox; representative examples include Blum et al.
(1998), Bournez and Cosnard (1996), Bournez et al. (2006), Branicky (1994), Davis (2006),
Franklin and Garzon (1990), Garzon and Franklin (1990), Maass and Sontag (1999), Orponen
(1997), Orponen and Matamala (1996), Moore (1996), Omohundro (1984), Pour-El and Richards
(1979, 1982), Siegelmann (1999), Siegelmann and Sontag (1994), Stannett (1990), Wolpert and
MacLennan (1993).

The root of the paradox is that the Turing machine is a model of computation and like all
models it makes simplifying or idealizing assumptions. Any model has an associated frame of
relevance, which is the domain of questions that it is suited to answer and which depends on its
simplifying assumptions (MacLennan 2004). We must remember that the Church-Turing model
of computation was invented as a way of studying effective calculability and formal derivation in
mathematics, which dictated many of its simplifying assumptions, in particular, the use of finite
discrete alphabets and discrete sequential steps. In addition, it is generally assumed that symbols
and states are perfectly distinguishable and that operation of the machine is flawless. Performance
is analysed in terms of the number of sequential steps or atomic symbols used by a computation.

In general, these simplifying assumptions are inappropriate for analog computing and many of
the interesting questions about analog computing lie outside of the frame of relevance of Church-
Turing computation. Variables are continuous and (often) vary continuously in time; noise is
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always present and computational precision is limited. Often, analog computation is applied to
control problems, for which realtime response is important and asymptotic complexity is largely
irrelevant. Therefore, the Church-Turing model of computation is not, in general, a useful model
for studying analog computation and its capabilities.

Moreover, when a model is applied to questions outside of its frame of relelvance, or even
near the boundaries of its frame, it is likely to produce misleading answers, because in these cases
its simplifying assumptions are no longer good assumptions. Often the conclusions reached are
more a reflection of the simplifying assumptions of the model than of the system being modelled.
This is the reason that analyses of the power of analog computation in the context of Church-
Turing computation often yield contradictory conclusions. They may, for example, depend on
assumptions irrelevant to analog computing, such as whether all the standard real numbers exist
or only the Turing-computable reals.

The question of whether analog computation is super-Turing computation or not is therefore
not a fruitful question, because it is asked in the context of the Church-Turing model, which
is not an accurate model of analog computation and does not include the relevant questions
within its frame of relevance. It is more productive to view analog computation as a form of
non-Turing computation, about which we make different assumptions and ask different sorts of
questions (MacLennan 2009c¢). These include questions about general-purpose analog computing
(Section 7), real-time response relative to the time constants of the underlying physical processes,
stability, robustness (in the face of to noise, errors and defects) and so forth.

9. Analog computing hardware

A comprehensive review of present and future analog computing hardware is beyond the scope
of this article; a brief discussion of electronic and non-electronic realizations must suffice. For
historical information, see (Small 2001), summarized in (MacLennan 2009a).

Carver Mead’s Analog VLSI and Neural Systems (Mead 1989) signalled a rebirth of interest in
electronic analog computing. It illustrated a number of VLSI devices inspired by neural systems,
which, he observed, are typically non-linear and analog. Example devices included a “silicon
retina” and an “electronic cochlea” (Mead 1989, Chapters 15-16). Analog VLSI is especially
suited for post-Moore’s law computing because fewer devices are typically required for analog
than for digital computation. For example, a four-quadrant adder can be implemented with just
four transistors and a four-quadrant multiplier with 9 to 17 transistors, depending on the required
operation range (Mead 1989, 87-96). Apparently more complex operations can be implemented
with fewer devices: two transistors for In and exp, three for square root and five for tanh, which
is frequently used as a sigmoid function in neural computation (Mead 1989, 70-71, 97-99).

For general-purpose analog computing there are now field-programmable analog arrays
(FPAAs), which are the analog equivalents of the field-programmable gate arrays (FPGAs) used for
rapid implementation of digital systems (Basu et al. 2010). A typical FPAA comprises a number of
computational analog blocks (CABs), each providing a number of analog computational elements,
such as operational transconductance amplifiers, whose gain is controlled by a bias current.
These operational amplifiers can be used to implement various functions including integration,
differentiation and amplification. CABs might also include tunable bandpass filters, which can be
used for Fourier transforms, and small analog matrix-vector multipliers for implementing linear
operators. The precision of FPAA computation is about 1073 (0.1%) of full-scale variation.

Typical FPAAs use floating-gate transistors, in which the gate has no direct-current connection
to other circuit elements and therefore can hold a charge for an indefinite time, which is how
analog values are stored. The charge can be increased by electron tunnelling and decreased by hot
electron injection. Floating-gate transistors are used as switches in switching matrices that control
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the connections between the analog computing elements within and between CABs, which allows
analog circuits to be programmed.

Although electronics is the most popular computing technology at this time, the demands
of post-Moore’s law computing will require us to explore other possibilities. One advantage of
analog computing is that the majority of physical processes are continuous — that is, defined by
differential equations —and so they are immediately candidates for analog computing technologies.
Some are especially suitable for massively parallel analog field computation. I will mention a few
possibilities. First is optics, in particular non-linear optics, which can realize many basic analog
computation operations (Ambs 2010). Another potential technology is chemical computing, in
which analog quantities are represented by chemical concentrations (e.g. Dittrich and Fenizio
2007). For example, reaction—diffusion equations implement a kind of chemical field computation.
Finally there is quantum computing. Although the well-known approach to quantum computing is
thought of as digital, because it operates on discrete qubits, itis really a form of analog computation
because it manipulates complex amplitudes, which are continuous. Likewise, quantum annealing
and adiabatic quantum computing exploit continuous evolution of the quantum state to solve
optimization problems (Das and Chakrabarti 2008; Santoro and Tosatti 2006). Furthermore, there
is the relatively unexplored field of continuous-value quantum computation, which is a direct
approach to quantum analog computing (Lloyd and Braunstein 1999).

10. Conclusions

I have argued that future computing paradigms and technologies will have to be more like
the physical processes by which they are realized, but because these processes are primarily
continuous, post-Moore’s law computing will require an increased use of analog computation.
Traditionally analog computers have computed ordinary differential equations of time, but analog
field computation permits massively parallel temporal integration of partial differential equations.
In principle many different physical media — not just electronics — can be exploited to implement
the basic operations of analog computing, a small number of which are sufficient to approximate
a wide variety of analog computations, thus providing a basis for universal analog computation
and general-purpose analog computers. The contentious issue of the computational power of
analog computers is addressed best on its own terms, rather by asking it within the context of
Church-Turing computation, which distorts the relevant questions and their answers.

Note

1. Fréchet and Gateaux derivatives are the same for field transformations; see (MacLennan 2009b).
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