
iF ED
SECURITY CLASSIFICATION OF THls PAGE (lrh.a D...

EDlTlottl OF t llOV Cl lt OTSOLE?E
Sz'N 0102. LF.0l4- 6601

UNCLASS IFIED
3ECUnITY CLASllFlCATlOll oF tHt! FAC! (rtrm D.l. En,t d)

READ INSTRUCTIONS
BEFORE COMPLETING FORMREPORT DOCUT{ENTATION PAGE

3. RECIFIENf,S gATALOG NUMAERT:-E-EFoFf-NEMEEil
NPS52-82-009 1'

5. TYPE OF REPORT & PERIOO COVERED

Techincal Report
6. PERFORMING ORG. REPORT NUTIEER

A Simple, Natural Notation for Applicative
Languages

ll. TITLE (.ad Sslrrtr.)

8. CONTRACT OR 6RANT NUMaERf.),f-^uTHoR(.Jl-
Bruce J. MacLennan

tO, PROGRAT{ ELEI{ENT, PROJECT, TASK
AREA C WOfIK UNIT NUMBERS

61152N: RR000-01--10
N0001482wR20043

9. PEBFORMIN6 ORGANIZATION NAME ANO AODRESS

Naval Postgraduate School
Monterey, CA 93940

I2. REPORT OAYE

September 1982
I3. NUMBER OF PAGES

't5

I I. CONTROLLIT{G OFFICE NAME AHD AOORESS

Naval Postgraduate School
Monterey, CA 93940

ta?otl)(otffia A6oREss(r, dltlcrca,, ttoal coatrolltna olllc.)

Chief of Naval Research
Arlington, Virginia 22217

Approved for public release; distribution unlimited
G. orsrarEuttoN STATEMENT (o, rhr! R.port)

l?, olSTRlBUT|ON STATEMENT (o, th. .b.,trct aatc?cd ln Erock 20, ll drtlctna kffi RaPora)

t8. SUPPLEUENTARY NOTES

@rcvriiitdi tt naco.stty ztd td.dllo by block nuab;t)
Notation, Appl icative Languages, Functional Programming, Rel ational
Programming, Logic Programning, PROLOG, Relational Databases, LISP.

t.!at....ldc rl d.cer.qtallsts are tntl Gd ldanalla
mi dated

ry
pe
la ti

A20.
S mae i!

L Ica nra foce mos tpeaap
i tca VCi i 1fu tnc onat and VE h i ve Iah SI 1pp s re rt e snt ag ang resuage po p

1 eI no 1tat on t tha sha unan nt1 mi 1
.Imp da t n na ratu 1 u ae anr ance thadg ang ag peap

be adan ato aV er"i o If an Thepted d nemo tLS ar ste tsir Su ae aS nty guages pa
I rnate re 1FPB kuac sP OGROLL SPIte fortax 0nat amrnir re aIand,tsyn tro9 ngp
it na0 da1 tab Iase eretri va S Th e rramma aS 1 roduct 1 on S can be h 1and edg ght p byi e1 rsrecu V'l Se-de tcen rsermp pa

DD ,::I% 1173

60vT AcCESSION NO,

UNCLASSIFIED
lS.. OECLASSI FICATION/ OOWNGRAOINC

SCH EOU LE

I I Th
1

il

-)

D

A SIMPLE, NATURAL NOTATION FOR APPLICATIVE LANGUAGESIT

B. J. MacLennan

Computer Sclence Department

Naval Postgraduate School

Monterey, CA 93940

1. Introduetion

Many non-specialists are intimidated by fhe mathemat,lcal appear-

ance of most applicative and very-high-leveI languages.
Mathemat,ical notations have distinct manipulative advantages,
some of which I have discussed in MacLennan (1 979) . Unfor-
tunately the widespread use of advanced Ianguages may be Iimited
by their excessive use of rnathematical notations. This paper

presents a simple notation that has an unintimidating, natural-
language appearance and that can be adapted to a variety of
1 anguages .

I must stress t,hat I am not suggesting that thls notation
constitutes natural language programming. This notaiion is very
f ar indeed from being even a subset of English, or any other'
natural language. However , the reader r+i1I see that with a

proper choice of vocabulary the notation can be quile readabie.

I must also stress that this notation is not in iiself a

programming language. It is more accurate to describe it as a

-,rl".k descrlbed in this report was supported in part by theOffice of NavaI Research under contract number N00014-82-i^JR-
2C1 62.

1

syntaetie framework that can be adapted to a number of specific
eontexts by a proper ehoice of voeabulary. The figures in this
paper demonstrate its use as an alternate syntax for LISP, Iogic
programming, functional programming, relational programming, and

relational database operations.

2. Syntax

A natural, readable notatlon results from combining non-symbolic
operator names with a right-associative infix syntax, and eomma

and colon rules that suppress many parentheses. 0f course, some

of the manipulative advantages of a mathematical notation are
''l ncf

BriefIy, the syntax is as follows : A11 identifiers are
d ivided into three classes: niladic (x , V t z, in the following
examples)r monadic (f, g), and dyadic (p, Qr r). Monadic appti-
cations, whether functions or predicates, are written rrf X,t, Itf g

xtr, etc. These associate to the right, hence ?tf g xrr means trf (g

x)". DyaCic applications, whether functions or relaticns, are
writt-en wlth a right-assoeialive, infix syntax. That is, r?x p y

q ztt meansrrx p (y q z)u. Monadic applications are more binding
than dyadlc applieations; henee, "f x p g y'r means "(f x) p (g
y)'r. Operatlons that aceept more than two operands are expressed
by using a list building (or argument combining) operatlon. For
example, if the operation ,ry with zn produces the pair {y rz),
then t,he t,riadic operation p can be applied by nx p y with zn.

I

I

Commas and colons can be used to elimlnate many parentheses.
A comma is equivalent to a right parenthesis. The corresponding
Ieft parenthesis is at the nearest preceding colon, or at the
beginning of the expression, if there is no preceding colon.
Hence, ttx p yr q ztt means tt(x p y) q ztt and rrx p: y q z, r wrr

means t'x p (y q z) r wrt, which by right-associativity means rfx p

((y q z) r w)rf .

Since t,he parsing of expressions is determined by the clas-
sification of identifiers into niladic, monadie, and dyadic, it
is not posslble to directly use a monadic or dyadic identifier as

the argument to another application. To do this it is necessary
t,o convert the monadic or dyadic identifier into a niladic iden-
t,lfier by quoting it. For example, the inverse of the dyadic
identifier plus must be writt,en

inverse t plus t

The formal grammar for thj-s notation is in the appendix.

Figure 1 shows the natural notalion adapted to LISp. The

particular vocabulary choices shown are typical. The following
two figures show a program ln conventional LISP notatlon and in
t,he natural notation. The remaining figures compare other
mathematical and symbolic notations to the natural notation.

References

t 1 I MacLennan, B. J. 0bservalions on the Differences Between

3

Formulas and Sentences and lheir Application to
Language Design , SIGPLAN Not,ices 1 4, 7 , (Ju1 y

51 -61 .

Append i x : Grammar for Natural Notation.

Programming

1979), pp. I

sen tenc e

elause

pred ic ate

phr a se

simpl e-phr a se

term

infix

prefix

+

+

+

+

+

+

+

+

+

+

+

cI ause .

term I pred icate]

phrase, predieate
infix Lerm Ipredicate]
infix: clause
simpl e-phr ase

phrase, infix simple-phrase
term Iinfix simple-phrase]
nilad
il(r? c1ause rr)il

prefix term
tmonad t

rdyad t

constant
d yad

rr{rr clause rr}il

prefix infix
monad

r[il CIaUSe r]il

I

-)

4

Natural l,lotation

rrx F Y with Ztt means B

nX F Ytt means B

tr F Xrt mean s B

C if B, else D

ItXtt means Y, below B

first X

rest X

second X

third X

X with Y

X is Y

atom X

null X

number X

X append Y

X search Y

LIS P

(defun F (X Y Z) B)

(defun F (X Y) B)

(defun F (X) B)

(cond (B C) (T D))

(tet ((x Y)) B)

(car X)

(cdr X)

(cadr X)

(caddr X)

(cons x Y)

(eq x Y)

(atom X)

(nu11 X)

(numberp X)

(append X Y)

(assoc X Y)

Flgure 1. Comparison of Natural Notation and LISP

-5

-)

I

(defun eql
(or (and

(and

(x y)

(atom x) (atom y) (eq x y))
(not (atom x)) (not (atom y))
(eql (car x) (car y))
(eql (cdr x) (cdr y)))))

)

Figure 2. Equal Function in LISP

rrX equals Yrr means:

atom X and atom Y and X is Y, or
not atom X and not alom Y and:
first X equals first Y, and

rest X equals rest Y.

Figure 3. Equal Function in NaEural Notation

Isa (John, human).

Gives (John, book, Mary).
Gives (John, book, x) + Likes (John, x).
Likes (w,x) <- Gives(w,y,x), Likes(w,y).

Figure 4. Logic Program in Usual Notation

John isa human.

iohn gives book to Mary.

John gives book to one., i f John l ikes one .

One likes another, if :

one gives gift to another, and one likes gift.

Figure 5. Logic Program in Nabural Notation

I

I
6

Def IP :
Def MM =

(/+)'(cc X)'trans.
(ce e IP)'(e distl)'[1, trans'2]

Figure 6. Functional Program in Backus Notation

lnner-producf means

transpose then repeat times then reduce-by pIus.

Matrix-muItipIy means :

first combine second then transpose,
then repeat distribute-1eft
then repeat repeat inner-product.

Figure 7. Functional Program in Natural Notation

f$R f -1 .R.f

-1rightslb = T $(Idil(+1))

nexL : ilov¤.tota1 [wh11e(non.dom right,sib, parent); rightsib]

prev : rnoVe.total
Iwhi1e(non.dom rlghtslb -1 1parent); rightsib l

remove(L) = L t= subtree N; excise
subtree(n) : (mlmXints) +T

where m:subnodesn
reach = (img T).(X ints)

1excise N, N, NT N)

replace(L) T ITI .- \r N:firstLiL)/T

Figure 8. Part of Syntax Directed Editor in Reiational Notation

7

frFunction map structurert means

function then structure then inverse function.
tr Right-sibl ingtt means

inverse tree map identity parallel something plus 1.

rfMove-next" means parent do-while non domain right-sibling,
then right,-sibIing, apply total fhen move.

rrMove-previoustr means

parent do-while non domain inverse right-sib1ing,
then inverse right-sib1ing, apply toLal then move.

rf Remove-from buf fertt means:

buffer becomes subtree of current-node, then excise.
tr Sub tr ee a-nod err mean s :

tree if-in the-subnodes cornbine the-subnodes cross integers,
where the-subnodes rneans subnodes of a-node.

'rReachI means: something cross integers, Liren image tree.

ilExeisett means tree becomes

tree restrict non subnodes of current-node
combine: current-node apply inverse tree,
connect current-node connect non-term of current-node.

frReplace-from buffertt means tree becomes:

current-node apply inverse tree, maps-to first buffer,
combine buffer, extend tree.

Figure 9. Part of Syntax Directed Edrtor in Natural Notat,ion

^)

B

{(F.coMPANY): F¤ FORESTS n F'SIZE>1000}

{ (T.COMPANY,F.FOREST) : F E FORESTS n F'L0C='CALIF0RNIAT }

t (F. STZE,F. LOC) : F ¤ FORESTS n
3 T E TREE (T. sPECTES=rcEDARr A T. FoREST = F ' FOREST)]

{(F.STZE,T.TREEI..iUM): F¤FORESTS N T¤TREE N

T.FOREST = F.FOREST n T'SPECIES - 'CEDARI]

Figure 10. Relational Database Retrievals in Conventional

Notation

Company F whenever: F in fcrests, and size F > 100C'

Company F with forest F, whenever:

F in forests, and location F is rrCaliforniarr'

Size F with location F, whenever: F in fcrests,
and : T in trees, exists:

species T istrcedst.tt, and forest T is fcrest F'

Size F with tree-number F, whenever:

F in forests, and T in trees, and

forest T is forest F, and species T is Icedarft'

Figure 11. Relational Database Retrievals in NaLural I'lotation

9

(defun eval (e a)

(cond

((ano (atom e) (numberp e)) e)

((atom e) (assoc e a))
((eq (ear e) tquote) (cadr e))
((eq (car e) 'cond) (evcon (cdr e) a))
(T (app1y (car e) (evargs (cdr e) a) a)

I

)))

(defun evcon (L a)

(cond

((eval (caar L) a)

(T (evcon (cdr L)

(eval (cadar L) a))

a))))

(defun evargs (x a) (mapcar (nu (rev 'evaI) a) x))

(defun apply (f x a)

(cond

((eq f rcar) (car (car x)))

((eq f 'cdr) (cdr (car x)))

((eq f 'atom) (atom (car x)))

((eq f rnul1) (nu1l (car x)))

((eq f rcons) (cons (car x) (cadr x))
((eq f 'eq) (eq (car x) (cadr x)))

(T (let ((L (eval f a)))

(1et ((LE (mapcar '1ist (cadr
(evaI (caddr L) (append

L) x)

LE a))
))

)

)))))

Figure 12. LISP Universal Function in LISP

10

I

rr IIames ev al uate f ormrt mean s :

form if (atom form and number form), else:
names search form if atom form, else:
second form if first form is rrquotert, else:
names do-conditional rest form, if first form is ilcondrr, else
names apply first form with names evaluate-list rest form.

trltrames do-conditional palrsrf means :

names evaluate second first pairs,
if names evaluate first first pairs,

else names do-conditional rest pairs.

ItNames evaluate-list formsft means :

ni1 if nul1 forms, else:
names evaluate first forms,
with names evaluate-list rest forms.

Figure 13. LISP Universal Function in Natural Notation (part 1)

11

rrllames apply function wit,h aclualsrr means:

fir st, fir st aclual s i f function is tr g3prt , eI se :

rest first aetuals if function is ilcdrrr, else:
atom first, actuals if function is ttatom'r, eise:
nu11 first actuals if funet,ion is ftnul1rt, else:
first actuals with seeond actuals, if function
first actuals is second actuals, if funetion is
names apply-user function with actuals.

is ttconsrr, else:
ll an ll a] ca .

, v49V.

rtliames apply-user function with aciualstt means:

lambda-expression means names evaluate function, below:
bound-variables means seeond Iambda-expression, below:
bound-variables pair-with actuals, append names,

evaluate third lambda-expression.

ItNames pair-with valuesrt means:

ni1 if nu11 names, else:
first names with first values,
with rest names pair-with rest values.

Figure 14. LISP Universal Function in Natural l{otation (Part Z)

I

I

-)

12

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. Maclennan, Code 52Ml
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Jim Bowery
Viewdata Corp. of America, Inc.
Suite 305
1444 Biscayne Blvd
Miami, FL 33132

Dr. R. B. Grafton
Code 433
0ffice of Navai Research
800 N. Quincy St.
Ariington, UA 22217

2

2

1

40

t2

1

1

-13-

