UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

NPS52-82-009
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ﬁaﬁgﬂgégg Natural Notation for Applicative Techincal Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Bruce J. Maclennan

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :;gER&A&OERLKE'GSFTT'NPURMOBJEERCST' TASK
Naval Postgraduate School 61152N: RRO00-01--10
Monterey, CA 93940 N0O0O01482WR20043

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Postgraduate School September 1982
Monterey, CA 93940 3. NUMBER OF PAGES

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Chief of Naval Research
Arlington, Virginia 22217 UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Notation, Applicative Languages, Functional Programming, Relational
Programming, Logic Programming, PROLOG, Relational Databases, LISP.

20. ABSTRACT (Continue on reyerse side if neceseary and identify by block number) .
any non-specialists are 1nt1m1date3v Ey the mathematical appearance of most

applicative, functional, and very-high-level languages. This report presents a
simple notation that has an unintimidating, natural-language appearance and that]
jcan be adapted to a variety of languages. The paper demonstrates its use as an
alternate syntax for LISP, PROLOG, Backus' FP, relational programming, and rela-
tional database retrievals. The grammar's eight productions can be handled by a
simple recursive-descent parser.

DD ,75%%: 1473 eoimion oF 1 Nov 68 is oBsOLETE UNCLASSIFIED

S/N 0102- LF-014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

A SIMPLE, NATURAL NOTATION FOR APPLICATIVE LANGUAGES#*

B. J. MacLennan
Computer Science Department
Naval Postgraduate School

Monterey, CA 93940

1 Introduction

Many non-specialists are intimidated by the mathematical appear-
ance of most applicative and very-high=-level 1languages.
Mathematical notations have distinct manipulative advantages,
some of whiech I have discussed in MaclLennan (1979). Unfor-
tunately the widespread use of advanced languages may be limited
by their excessive use of mathematical notations. This paper
presents a simple notation that has an unintimidating, natural-
language appearance and that can be adapted to a variety of

languages.

I must stress that I am not suggesting that this notation
constitutes natural language programming. This notation is very
far indeed from being even a subset of English, or any other
natural language. However, the reader will see that with a

proper choice of vocabulary the notation can be quite readable.

I must also stress that this notation is not in 1itself a
programming language. It 1is more accurate to describe it as a
* Work described in this report was supported in part by the

Office of Naval Research under contract number NQOOQO14-82-WR-
20162.

syntactic framework that can be adapted to a number of specific

contexts by a proper choice of vocabulary. The figures in this
paper demonstrate its use as an alternate syntax for LISP, 1logic
programming, functional programming, relational programming, and

relational database operations.

2. Syntax

A natural, readable notation results from combining non-symbolic
operator names with a right-assbciative infix syntax, and comma
and colon rules that suppress many parentheses. Of course, some
of the manipulative advantages of a mathematical notation are

lost.

Briefly, the syntax 1is as follows: All identifiers are
divided 1into three classes: niladic (x, y, 2z, in the foilowing
examples), monadic (f, g), and dyadic (p, q, r). Monadic appli-
cations, whether functions or predicates, are written "f x", "f g
x", etc. These associate to the right, hence "f g x" means "f(g
x)mr., Dyadic applications, whether functions or relations, are
written with a right-associative, infix syntax. That is, "x p vy
q 2" means "x p (y q z)". Monadic applications are more binding
than dyadic applications; hence, "f x p g y" means "(f x) p (g
y)". Operations that accept more than two operands are expressed
by using a list building (or argument combining) operation. For
example, 1if the operation "y with z" produces the pair (y,z),

then the triadic operation p can be applied by "x p y with z".

Commas and colons can be used to eliminate many parentheses.
A comma 1is equivalent to a right parenthesis. The corresponding
left parenthesis is at the nearest preceding colon, or at the
beginning of the -expression, 1if there is no preceding colon.
Hence, "x p y, Q@ z" means "(x p y) q 2" and "x p:'y q 2z, r w"
means "x p (y q z) r w", which by right-associativity means "x p

((y g z) r wyn.

Since the parsing of expressions is determined by the <clas-
sification of identifiers into niladic, monadic, and dyadic, it
is not possible to directly use a monadic or dyadic identifier as
the argument to another application. To do this it is necessary
to convert the monadic or dyadic identifier into a niladic iden-
tifier by quoting 1it. For example, the inverse of the dyadic

identifier plus must be written
inverse 'plus’
The formal grammar for this notation is in the appendix.

Figure 1 shows the natural notation adapted to LISP. The
particular vocabulary choices shown are typical. The following
two figures show a program in conventional LISP notation and in
the natural notation. The remaining figures compare other

mathematical and symbolic notations to the natural notation.

3. References

(1] MaclLennan, B. J. Observations on the Differences Between

Formulas and Sentences and their Application to Programming

Language Design, SIGPLAN Notices lﬁ, 7, (July 1979), pp.

51-61.

Appendix: Grammar for Natural Notation.

sentence = clause.
clause = term [predicate]

+ phrase, predicate
predicate = infix term [predicate]

+ infix: clause
phrase = simple-phrase

+ phrase, infix simple-phrase
simple-phrase = term [infix simple-phrase]
term & . nilad

+ "(" clause ")"

+ prefix term

+ 'monad’

+ 'dyad'

+ constant
infix = dyad

+ n{m" clause "}"

+ prefix infix
prefix = monad

+ "fn clause """

Natural Notation LISP
"X F Y with Z" means B (defun F (X Y Z) B)
"X F Y" means B (defun F (X Y) B)
"F X" means B (defun F (X) B)
C if B, else D (cond (B C) (T D))
"Y" means Y, below B (let ((X Y)) B)
first X (car X)
rest X (edr X)
second X (cadr X)
third X (caddr X)
X with Y (cons X Y)
X is Y (eq X Y)
atom X (atom X)
null X (null X)
number X (numberp X)
X append Y (append X Y)
X search Y (asscc X Y)
Figure 1. Comparison of Natural Notation and LISP

(defun eql (x y)
(or (and (atom x) (atom y) (eq x y))
(and (not (atom x)) (not (atom y))
(eql (car x) (car y))

(eql (edr x) (edr y)))))
Figure 2. Equal Function in LISP

"X equals Y" means:
atom X and atom Y and X is Y, or
not atom X and not atom Y and:
first X equals first Y, and

rest X equals rest Y.

Figure 3. Equal Function in Natural Notation

Isa (John, human).
Gives (John, book, Mary).
Gives (John, book, x) & Likes (John, x).

Likes (w,x) & Gives(w,y,x), Likes(w,y).

Figure 4. Logic Program in Usual Notation

John isa human.

John gives book to Mary.

John gives book to one, if John likes one.
One likes another, if:

one gives gift to another, and one likes gift.

Figure 5. Logic Program in Natural Notation

Def IP (/+)°(ocec X)'trans.

Def MM (e ¢ IP)*(oc distl)* [1, trans®2]

1]

Figure 6. Functional Program in Backus Notation

Inner-product means

transpose then repeat times then reduce-by plus.

Matrix-multiply means:
first combine second then transpose,
then repeat distribute-left

then repeat repeat inner-product.

Figure 7. Functional Program in Natural Notation

-1

f$R = f «Reof

rightsib = T = '$(Id! | (+1))

next = move.total [while(non.dom rightsib, parent); rightsib]
prev = move.total
[while(non.dom rightsib '1, parent); rightsib '1]
remove(L) = L := subtree N; excise
subtree(n) = (m | m X ints) = T
where m = subnodes n
reach = (img T).(X ints)
excise = T := T <> non.subnodes N | (T '1N, N, NT N)
replace(L) = T := (T~ 'N : first L | L) / T

Figure 8. Part of Syntax Directed Editor in Relational Notation

"Function map structure" means

function then structure then inverse function.
"Right-sibling" means

inverse tree map identity parallel something plus 1.
"Move-next" means parent do-while non domain right-sibling,

then right-sibling, apply total then move.
"Move-previous" means

parent do-while non domain inverse right-sibling,

then inverse right-sibling, apply total then move.

"Remove-from buffer" means:
buffer becomes subtree of current-node, then excise.
"Subtree a-node" means:
tree if-in the-subnodes combine the-subnodes cross integers,
where the-subnodes means subnodes of a-node.

"Reach" means: something cross integers, then image tree.

"Excise" means tree becomes
tree restrict non subnodes of current-node
combine: current-node apply inverse tree,

connect current-node connect non-term of current-node.

"Replace-from buffer" means tree becomes:

current-node apply inverse tree, maps-to first buffer,

combine buffer, extend tree.

Figure 9. Part of Syntax Directed Editor in Natural Notation

{(F.COMPANY): F & FORESTS A F.SIZE>1000}
{(F.COMPANY,F.FOREST): F & FORESTS A F.LOC='CALIFORNIA'}

{(F.SIZE,F.LOC): F € FORESTS A

J TE&TREE (T.SPECIES='CEDAR' A T.FOREST = F.FOREST)}

{(F.SIZE,T.TREENUM): F € FORESTS /A T & TREE AN

T.FOREST = F.FOREST A T.SPECIES = 'CEDAR'}

Figure 10. Relational Database Retrievals in Conventional

Notation
Company F whenever: F in forests, and size F > 1000.

Company F with forest F, whenever:

F in forests, and location F is "California".

Size F with location F, whenever: F in forests,
and: T in trees, exists:

species T is "cedar", and forest T is forest F.

Size F with tree-number F, whenever:
F in forests, and T in trees, and

forest T is forest F, and species T is "cedar".

Figure 11. Relational Database Retrievals in Natural Notation

(defun eval (e a)
(cond
((and (atom e) (numberp e)) e)
((atom e) (assoc e a))
((eq (car e) 'quote) (cadr e))
((eq (car e) 'cond) (evcon (cdr e) a))

(T (apply (car e) (evargs (ecdr e) a) a))))

(defun evcon (L a)
(cond
((eval (caar L) a) (eval (cadar L) a))

(T (evecon (cdr L) a))))

(defun evargs (x a) (mapcar (bu (rev 'eval) a) x))

(defun apply (f x a)

(cond

((eq f 'ecar) (car (car x)))

((eq f 'edr) (edr (car x)))

((eq f 'atom) (atom (car x)))

((eq f '"null) (null (car x)))

((eq f 'cons) (cons (car x) (cadr x)))

((eq f 'eq) (eq (car x) (cadr x)))

(T (let ((L (eval f a)))

(let ((LE (mapcar 'list (cadr L) x)))

(eval (caddr L) (append LE a)))))))

Figure 12. LISP Universal Function in LISP

- 10 =

"Names evaluate form" means:
form if (atom form and number form), else:
names search form if atom form, else:

second form if first form is "quote", else:

names do-conditional rest form, if first form is "cond", else

names apply first form with names evaluate-list rest form.

"Names do-conditional pairs" means:
names evaluate second first pairs,
if names evaluate first first pairs,

else names do-conditional rest pairs.

"Names evaluate-list forms" means:
nil if null forms, else:
names evaluate first forms,

with names evaluate-list rest forms.

Figure 13. LISP Universal Function in Natural Notation (Part

b

"Names apply function with actuals" means:
first first actuals if function is "car", else:
rest first actuals if function is "cdr", else:
atom first actuals if function is "atom", else:
null first actuals if function is "null", else:
first actuals with second actuals, if function is "cons", else:
first actuals is second actuals, if function is "eq", else:

names apply-user function with actuals.

"Names apply-user function with actuals" means:
lambda-expression means names evaluate function, below:
bound-variables means second lambda-expression, below:
bound-variables pair-with actuals, append names,

evaluate third lambda-expression.

"Names pair-with values" means:
nil if null names, else:
first names with first values,

Wwith rest names pair-with rest values.

Figure 14. LISP Universal Function in Natural Notation (Part 2)

- 1B

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Hq

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52MI]
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93940

Jim Bowery

Viewdata Corp. of America, Inc.
Suite 305

1444 Biscayne Blvd

Miami, FL 33132

Dr. R. B. Grafton

Code 433

Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217

-13 -

40

12

