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I. INTRODUCTION
The terms aalue-oienkd and object-oriented are used to describe both programming languages and

programming styles. This paper att.empt.s to elucidate the differences between values and objects and
argues that their proper discrimination can be a valuable aid to conquering program complexitSi. The
first section shows that ualues arnount to timeless abstractions for which the concepts of updaring, shar-
ing and instantiation have no mearring. The second section shows thar objeck exist in time and. hence,
can be created. destroyed, copied. shared and updated. The third section argues that proper discrimina-
tion of these concepts in programming languages *'ill clarify problems such as the role of state in func-
tional programming. The paper concludes by discussing the use of the value-/object distinction as a tool
for program orgalization.

2. VAI,TTES

Values are opplicatiae. The term uolue-orunka rs most olten used tn conjunction with appl'icotiue pro-
gramming. That is, with programming w'ith pure expressrons and w'ithout the use of assignment, or
other irnperatzue facilities. .4.nother wa.y co put this is that value-orienred programming is programming
in the absence of side-effects. This st-vle of programming is important because it has many of the
advantages of simple algebraic expressions. urz. that an expression can be understood by understaading
its constituents, that the meaning of the subexpressions is independent of their context, and that there
are simple interfaces between the parts of the expression that are obvious from the syntD( of the
expression. That is. each part of an expression involving values is independent of aJI the others. One
reason for this is that values are read-only. i.e., it is not possible to update their components. Since
they are unchangeable, it is alwavs safe to share values for efficiency. That is, they exhibit rcferential
trontparency.'there is never any danger of one expression altering something w.hich is used by another
expression. Any sharing that takes place is hidden from the programmer and is done by the system for
more efficient storage utilization. Avoiding updating eliminates dangling reference problems and
simpiifies deallocation [3j.

What are aalues? We have discussed a number of properties of values. What exactly are they? The
besi examples of values are ma[hematical entities, such as integer, real and complex numbers, hence

One characteristic of mathematical enticies is that they are atcmporal, in the iiteral sense of being
timeless. To put it another *'ay. the concept of time or duration does not apply to mathematical enti-
ties any more than the concept color applies to them: the;r are neither created nor destroyed. When we
write 2+3 there is no implication that 5 has just come into existence and that 2 and 3 have been con-
sumed. What is it about numbers that give chem this propertlz?

Values are obstactions. The fundamental fact that gives mathematical entities and other values their
properties is that they are abstractians. ( universals or concepts). Although a full explication of
mathemaiical entities is beyond the scope of this paper it should be fairly clear that the number 2 is an
abstraction that subsu.mes all particular pairs. This universal naiure of abstractions makes them arem-
poral. or timeless. Th'e number 2 can neilher be creared nor desrroyed because its existence is not tied
to the creation or desbruction of parricular pairs. Indeed. lhe concept of exist€nce, in its usuai sense, is
not applicable to the number 2. It is the same with all values, because all values correspond to abstrac-
tions: they can neither be created nor destroyed.
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It is also the case that abstrartions, and hence values. are immutable. Although values can be
operated on, in the sense of relating values to other values, they cannot be altered. That is, 2+1 = 3
sta[es a relation among values; it does not a]ter them. When in a programming language we assign z
the value 2, z := 2, and later add one to z, z i= z *1, haven't we changed a number, which is a value?
No, we haven't; the number 2 has remained the same. What we have changed is the number that the
name 'r' denotes. We can give names to values and we can change the names that we give to values,
but this doesn't change the values. The naming of values and the changing of names is discussed in a
Later section.

Voluea cannotbe courted.. A corollary of the above is that there is not such a thing as "copies" of a
value. This should be clear from mathematics: it is not meaningful to speak of this 2 or that 2; there is
just 2. That is, the number 2 is uniquely determined by its value. This is because an absrraction is
unique'ly determined by the things which it subsumes, hence, anything which subsumes all possible
pairs is the abssraction 2. Therefore, the concept'number'is not even applicable to abstractions; it
makes no sense to ask how many 2's there are. In a programming language, it is pointless to ma.ke
another copy of a value; there is no such thing. There is also no reason to ma.ke such a copy since
values are immutable. (It is, of course, possible to make copies of a representation of a valuel this is
discussed Iater.)

It is also meaningless to talk about the sharing of values. Since values are immutable. cannot be
counied. and cannol, be copied. ir is imelevant whether different program segments share the same
value or different "copies" ol the value. Of course. there might be implementation differences. If a
long string value is assigned io a variable it will make a big difference whether a fresh copy must be
made or whether a pointer to the original copy can be stored. While this is an important implementa-
iion concern. it is irrelevant to the semantics of values.

Valuec are uoed to model abstractiona. We have discussed a number of the characteristics of values
but have not discussed whether values should be included in programming languages, or, if they a.re,
what they should be used for. The answer to this question lies in the relation we have shown between
values and abstractions: values are the programming language equivalent of abstractions. Thus. va]ues
will be most effective when they are used to model abstractions in the problem to be solved. This is in
fact their usual use, since integer and real data values are used to model quantities represented by
integer and real numbers. Similarly. the abstraction 'color' might be modeled by values of a Pascal or
Ada enumeration type, (RED, BLLIE, GREEN). On the other hand, it is not common to treat com-
pound data values. such as complex numbers or sequences. as values. If done, this would eliminate
on6 Fource of errors, namely. updating a data structure that is unknowingly shared l3l . Value-oriented
languafies, such as the languages for data-flor,r' machines and functional programming, have only values.
ls there any need for objects at all? This is answered in the following sections.

3. OBJEqTS

Computing can be a'icued as s*nulation It has been said that computing can be vie*'ed as simulation
i4l . This is certainiy obvious in the case of programs that explicitly simulate or model some physical
situation. The metaphor can be extended to many other situations. Consider an employee data base:
each record in the data base corresponds to an employee. The data base canr be said to be a simulation,
or model, of some aspects of the corporation.' Similarly, the data structures in an operating system
often reflect the status of some objects in the real world. For instance, they might reflect the fact thab a
tape drive is rewinding or in a parity-error status. The data structures can also reflect logical situations,
such as the fact that a tape drive is assigned to a particular job in the system.

' A data sttcture is needed lor each ent'ilg. Simulation is simplified if there is a data structure
corresponding to each entity to be simulated. since this factors and encapsulates related information.
This is exactly the approach that has been taken in object-oriented programming languages, such as

Smalltalk {1,7]. The usual r*'av to structure a program in such a language is to create an object for each
entity in the system being modeled. These entities might be real-world objects or*objects that are only
real to the application, such as figures on a display screen. The messages these objects respond to,are
just the relevant manipulations that can be performed on the corresponding real eniities. Given this
relationship between programming language objects and real world objec[s. we will try to clarify the
notion of an object'
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V/hot is on object? ln our programming environment we have objects and in the real world we have
objecrs. Just what is an object? When we attempt to answer this question we immedialely find our-
selves immersed in age-old philosophical problems. ln particular, what makes one object different from
another? One philosophical answer to this question is to say that while the two objects have the same
form, they have different suDstance. To put this is more concrete terms, we could say that the two
objects are aiike in every way excepi that they occupy differenu regions of space.

We find exactly the same situation arising in programming languages. We might have two array
variables that contain exactly the same values, yet they are two different variables. What makes them
different? They occupy different locations. So by analogy. the form of the array variable is the order
and value of its elements while its substance is the region of memory it occupies.

Objects con be instantiatzil. There is also a Iess philosophical way in which we distinguish real world
objects: we give them proper names. We find an exactlv analogous situation in programming languages.
Programming objects, such as the array variables already mentioned. generally have a unique name:
the reference to the object. This is generally closely related to the region of storage the object occupies.
This is not necessary. however, as we can see b1'considering a file system. It is eas;r to see that files
are objects: it is quite normal io have two different files with the same conLent,s. Of course, if the files
are to be distinguished. then thel'must have distmct names For <,ur purposes. we will not be too con-
cerned about whal ind*:iduoting element is used to dist inguish objectsl whether it is some form of
unique identification (such as a capability). or whether rt rs rmplicit in the region of storage occupied;
we will assume thar each object is different frc,m e'.'ery;rther object even if they contain the same data
values. In general. we can say that the uniqueness t,i an object is determined by its ezternal relations
and is independent of its 'internal relarions and properties. This is opposed to a value, which is com-
pletely determined by its internal relations and properties (e.g., a set is completely determined by its
elements). Thus there might be any number of inetances of otherwise identical objects. This leads to a
number of further consequences.

Objects can be changed. We have said that the identity of an object is independent of any of its
internai proper[ies or attributes. For instance, even if all of the elements of an aray variable are
changed, it is still the same variable (because it occupies the same region of storage). This is of course
like real world objects. for they too can change and retain their identity. Values, on the other hand can
never change. For instance. if we add 5 to 1-2i, we don't change 1*2i, we compute a different value,
6+2i- This changeability, this fact that an object might have one set of properties at one time and a
different set au another time, is a distinctive feature of objects (and of programs).

Objects haae $ate. This changeability of objects leads to the idea of the state of an object: the sum
total of the internal properties and attributes of an object at a given point in time. Thus, we can say
that the stale of an object can be changed in time. Siare is of course a central idea in computer science,
so it is not surprising to find that objects are ar the heart of computer science. Since the stale of an
object can change in time, it is certainly the case that objects exist "in time," i.e., they are not atem-
poral like values.

Objects can be crcakd and d,estroyed. The fart that object,s are not atemporal leads to the concjusion
that they can be both crea[ed and desrroyed. This is familiar in programming languages where, for
instance, a variabie might be created every rime a.certain block is entered and deshoyed every time it is
exiied. M.rry languages also provide explicir means for creating and desroying objects (e.g., Pascal's
'nerr'' and'dispose'). Since values a.re atemporal, it is meaningless to spea.k of their being either
created or desEoyed.

Objects can be shared., Since there can be any number of instances of otherwise identical objects and
since objects can change their properties in time, it is a crucial question whether an object is shared or
not. This is be'cause a change made to the object b;- one sharer will be visible to the other sharer.
Such side-effects are common in programming and are ofcen used by programmers as a way of com-
municating. People also frequently use shared objects as means of communication. For insta.nce, two
persons might communicate by altering the sLate of a blackboard.
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Recall that in our discussion of values we found that the issue of sharing didn't apply. Whether a
pa-rticular implementation chooses to share copies of values or not is irreievant to the semantics of the
program; it is strictly an issue of efficiency. Sharing is a crucial issue where objects are concerned.

Computer eciznce as objectified mathematis. We can see no\+'an important difference between the
domain of mathemarics and the domain of computer science. Mathematics deals with things such as
numbers, functions. vectors, groupsr etc. These are all abstrartions, i.e., values. It has been said that
the theorems of mathemaiics are timeless, and this is literally true. Since mathematics deals with the
relations alnong values a.nd since vaiues are at€mporal. the resulting relations (which are themselves
abstractions and values) are a[emporal. Conversely. much of computer science dea]s with objects and
*'ith the way they change in time. State is a central idea. It might not be unreasonable to call com-
puter science objectifi ed m athem arics, or object-orie nted mathe m atics.

It has frequently been observed that the advan[age of applicative programming is that it is more
mathematical and eliminates the idea of state from programming. We can see lhai this means that
applicative programming deals only with values (indeed. several languages for appiicative programming
are called "value-oriented" languages) . ReaJIy, applicative programming is just mathematics.

These ideas can be summarized in two observations:

. hogramming is object-oriented marhemacics.

. Mathematics is value-oriented programming.

These two principles show the unity between the two fields arrd isolate their differences.

4. VALIIES A}TD OBIECTS IN PROGRAJVIMINGLA.}IGUA@S

Most languagea conluse them. Both values and objects are a,ccommodated in most programming
languages, altJrough usually in a very asymmetric and ad hoc way. For example, a language such as
FORTRAN supports values of severa.l types, including integers, reals, complex numbers and logical
values. These are all treated as mathematical values; for example, it is not possible to "update" the
real pa.rt of a complex number separately lrom the imaginary part. Of course, it is possible to store all
of these values in variables. but thar is a different issue, as we will see later. On the other hand, FOR-
TRAN provides objects in the form of updatable. sharable arrays. This pattern has been followed with
fe*'variations in mos! other languages. AII of these languages unnecessariiy tie the value or object
nalure of a thing to its type. usually by treating the atomic daca types as values and the compound data
typeE-as objects. We will argue below, that this confusion complicates programming.

hogramming'languages a.re most often deficient in their treatment of compound valuesl in particu-
lar, they rarely provide recursive data types as Hoare described them [31. They tend to confuse the log-
ical issue of whether a thing should be an object (i.e., it is shared, updatable. destroyable, etc.) with the
implementation issue of whether it should be shared for efficiency. We *'ill see how this can be solved
I ate r.

Mathematis deals poorly with objects. We have said that mathematics is vaiue-oriented; thai is. it
deals with timeless relations and operations on abstractions. Concepts that are central bo objects (and
compuler science), such as state, upda.ring and sharing, are alien to malhematics. This is not to say thal
it is impossible to deal with objects in mathematics; it is done every day, only indirectly. For instance,
it is common to deal in ph.vsics with slzstems thai, change in time; they are represented mathematically
by functions of aa independent variable representing time. The relationships between objects can be
represented as differential equations (or difference equaiions if stat,e changes are quantized) . Similarly,
mathematics can distinguish instances of an object by attaching a unique name (generally a natural
number) to each instance of a value. These techniques work but are awkt'ard. A more fully developed
artempl to apply the concepts of mathematics to the description of objects can be seen__in.-denotaiional
semantics. Here the state is e.xplicitll- passed from function to function to represent its alteration in
rim e.

Fen theory deals poorly with ualues. In our /en theory i5l we attempted to deal with objects rrrore
directly by developing an axiomatic theory of objects. This *'as done in two ways: (f) we discarded the
axiom of set theory thai forces two sets r+'ith the same values to be identical. This permitted multiple
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instances of the same sei. (2) An axiom was inserted that required there to be at least a countable
infinity of instances of each set. The result was an object-oriented theory of sets and relations. This
worked well for describing many of the properties of objects and for defining the semantics of those
programming language constructs that are object-oriented. Unfortunalely, it suffered from the dual
problem of mathematics: it was awkward to deal with values. What is 2? Is it the name of some dis-
tinguished objeci that we have chosen to represent 2 or does it denore aay object with a certain struc-
ture? There are related problems with operations on values. For instance, which 5 does 2+3 reiurn?
These are all problems of attempting to deal with values in an object-oriented system. Values are
inherently extensbnal while fen theory is inherentiy intcnaional (see [2], p. 109) . The soiution adopted
in fen theory was to treab values as equivalence ciasses of objects in the supporting logic. This was pos-
sible because that logic was extensional (i.e., value-oriented).

Computera uae objects to represent ualues. These are exactly the issues ihat must be faced in dealing
with values on a computer. Absractions are noL physical objects (except so far as they exist in our
brains) , so to deal with them ihey must be represented or encoded into objects. We do this when we
represent the number 2 by the numeral'2' or the word'two' on a piece of paper. Once a value has
been represented as an object ii acguires some of the attributes of objects. Clearly, whenever a value is
to be manipulated in a computer it must be represented as the stare of some physical object. Typically,
lhere will be many such representing objecrs in a computer at a time. For instance, 2 can be
represenred b;- a bit paLrern in a register and in several memor)'iocations. Therefore. everything "in"
a compu[er is an object; [here are no values in computers. fiis does not imp]y, however, that values
should be discarded from programming languages.

Prograrnmers need oalues. Most conventional languages have both values and objects, although a
purely object-oriented programming language could be designed. This could be done by storing every-
thing in memory and then oniy dealing with the addresses of these things. It would be like having a
poinrer to-every object. It would then be necessary for the programmer to keep track of the different
instances of what were intuitively the same value so that he wouldn't accidentiy update a shared value
or miss considering as equal two insances of the same value. Some languages actually come close to
this, such as Sma-lltalk. Unless such a language were carefully designed. it would be almost impossible
to deal with values such as numbers in the usua.l way.

. Programmers need objects. Converseiy, programmers need objects in their programming languages.
There have, for sure, been completely value-oriented programming languages. These include the FP
and FFP systems of Barkus ill. It is inreresting to note, however, that Backus went on to define the
AST system. which includes the notion of state (and implicitly, of objects) . Applicative languages were
originally developed in reaction to what was surely an overuse of objects and imperative features in pro-
gramming. Yet, it seems clear thar we cannot eliminate lhem from programming without dehimental
effect. Por example, it is not uncommon to see applicative programs pass large data structures, which
represent the state of the computation, from one function to the next. The result in such a case is not
grearer clarity, bu! Iess. We should not be surprised to have to deal with objects in programming; as we
argued before, this is a nalural outgrowth of ihe fart thar we a.re frequently modeiing real world objects.
A better solution than banning objects is to determine thei proper application and discipline their use.

We should use appropiate model'*tg tools. This suggests thar programmers should be clear about what
ihey are rying to model and then use the .pp.opiiut constructs. if they are modeling an abstraction,
such as a number, then they should use values: if they are modeling an entity or thing that exists in
time, then they should use an object. This implies that languages should support both values and
objects and the means to use them in these ways. To put it another way. we must develop an appropri-
ate discipline for using va-lues and objects and linguistic means for supporting that discipline.

Names ahould be fized. How can we arrive at such a discipline? How can we tame the staie? One
of the motivarions for value-oriented programming is the incredible complexity that can result from a
srare composed of hundreds or thousands of individual variables. all capable of being changed (the Von
Neumann bottieneck). We can see a possible solution to this problem by looking at natural languages.
Generall-v, a word has a fixed meaning within a given context. This holds whether the word is a com-
mon noun or a proper name- We do no[ use a word to refer to one abstraction one moment and
anor,her the next, or to refer to one objecc one moment and another the next. Yet this is exactly what
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we do with variables in programming languages. To the extent that we need lemporary identifiers,
natural Ianguages provide pronouns. These are aucomatically bound and have a verv limited scope
(generally a sentence or two) .

Can these ideas be applied !o programming languages? It would seem so; let's consider the conse-
quences. Suppose that names in programming Ianguages were always bound to a fixed value or object
within acontext; effectively all names would be constants. Similarly, whenever an object was created it
could be given a name that would refer to that object until it was destroyed. There would be no "vari-
ables" that can be rebound from momeni to moment by an assignment statement. Variables in the
usual sense would only be allowed as compcnents of the state of an object and the only allowable
assignments would be to these components.

Would it be possible to program in such a language. or would it be too inconvenient? Without actu-
ally designing it is difficult to tell. We can only point to the fact that a considerable amount of good
mathematics has been done wichout the aid of variables, not to mention a considerable amount dealing
with real world objects. Such a language could provide. as does mathematics, mechanisms for declaring
constants of very local scope. Some languages do provide these mechanisms aiready (e.g., 'let
t = {a+b)12 irr...', or'sin(t)+cos(t) where, = ...'). As suggesred by natura.l languages, it, might be
possible to provide some sort of pronoun facility. Hence. what we are describing is a programming
language that is variable-free. but does not do ar*'av uith objects. values. or naJTles.

5. CONCLUSIONS

In this paper we have distinguished the two concepts'value'and'object'. We have shown tha!
values are abstractions, and hence atemporal, unchangeable and non-instarltiated. We have shown that
objects correspond to real world entities. and hence exist in time. are changeable, have state, a.re instan-
tiated, and can be created, destroyed, and shared. These concepts are implicit in most programming
languages. but are noi well delimited.

We claim that programs can be made more manageable by recognizing explicitly the value/object
disrinction. This can be done by incorporating facilities for handling values and objects in programming
languages.
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