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Abstract

The central claim of computationalism is generally taken to be that the brain
is a computer, and that any computer implementing the appropriate program
would ipso facto have a mind. In this paper I argue for the following propo-
sitions: (1) The central claim of computationalism is not about computers, a
concept too imprecise for a scientific claim of this sort, but is about physical
calculi (instantiated discrete formal systems). (2) In matters of formality, in-
terpretability, and so forth, analog computation and digital computation are
not essentially different, and so arguments such as Searle’s hold or not as well
for one as for the other. (3) Whether or not a biological system (such as the
brain) is computational is a scientific matter of fact. (4) A substantive scientific
question for cognitive science is whether cognition is better modeled by discrete
representations or by continuous representations. (5) Cognitive science and Al
need a theoretical construct that is the continuous analog of a calculus. The
discussion of these propositions will illuminate several terminology traps, in
which it’s all too easy to become ensnared.
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Words lie in our way! Whenever the ancients set down a word, they
believed they had made a discovery. How different the truth of the matter
was! — They had come across a problem; and while they supposed it to
have been solved, they actually had obstructed its solution. — Now in
all knowledge one stumbles over rock-solid eternalized words, and would
sooner break a leg than a word in doing so.

— Nietzsche (The Dawn, 47)

Introduction

The central claim of computationalism is that the brain is a computer, and that any
computer implementing the appropriate program would ipso facto have a mind. In
order to evaluate this claim we must be clear about what is meant by “computer,” and
that, I take it, is the principal purpose of this symposium. Related to this primary
issue are questions of the role of analog computation in computationalism, Searle’s
Chinese Room Argument and symbol grounding.

In this paper I will argue for the following propositions:

1.

The central claim of computationalism is not about computers, a concept too
imprecise for a scientific claim of this sort, but is about physical calculi (instan-
tiated discrete formal systems).

In matters of formality, interpretability, and so forth, analog computation and
digital computation are not essentially different, and so arguments such as
Searle’s hold or not as well for one as for the other.

Whether or not a biological system (such as the brain) is computational is a
scientific matter of fact.

A substantive scientific question for cognitive science is whether cognition is
better modeled by discrete representations or continuous representations.

Cognitive science and Al need a theoretical construct that is the continuous

analog of a calculus.

The discussion of these propositions will illuminate several terminology traps, in which
it’s all too easy to become ensnared.

2

Analog vs. Digital

2.1 History
Harnad has used terms such as “analog processing,” “analog sensory projection,”
“analog input,” “analog system” and even “analog world,” and has claimed that



Searle’s Chinese Room Argument applies to digital computers but not to analog
computers (e.g. Harnad 1990, in press-a, in press-b).!

Therefore we must begin by asking what “analog” means in these contexts. On one
hand, the term “analog” suggests that there is some special relationship (an analogy)
between that state of an analog device and the system it’s modeling; on the other
hand, in most people’s minds the terms “analog” and “digital” are synonymous with
“continuous” and “discrete.”? To avoid confusion it will be necessary to disentangle
these two senses of “analog,” and this requires a historical digression.?

The analog vs. digital dichotomy was already well-established in the U.S. by 1946

(OED Suppl., s.v. analogue). In 1948 Stibitz contrasted the two as follows:

The ordinary desk calculator is a digital machine. If the numbers are
not broken down into digits, but are represented by physical quantities
proportional to them the computer is called ‘analogue’. A slide rule is an

‘analogue’ device. (OEDS, loc. cit.)

Thus, in a simple analog computer the representing variable (the variable in the com-
puter model) is proportional to the represented variable (the variable in the modeled
system); so the analogy is obvious (it is literally 70 dvdAoyor = a proportion).*

In traditional applications of analog computing, the represented variables were
continuous physical quantities, and so the analog computer usually made use of con-
tinuous quantities (states of the analog device, such as voltages or currents) to repre-
sent them. In digital computers, in contrast, the discrete states of the computer and
the values of the modeled variable are not related by a simple proportion. We can

see how analog/digital came to be identified with continuous/discrete.’

2.2 Similarities and Differences

In spite of this history, there is no longer any reason to suppose that the analog/digital
distinction consists in the fact that analog computation is based on an “analogy”

! Although I think Searle also has digital computers in mind, I do not think his arguments depend
in any essential way on digital computation, and T will present later (section 5.2) a version of the
Chinese Room for analog computers.

2Consider “analog” and “digital” watches. People sometimes claim that the term ”analog watch”
alludes to an analogy between the motion of the hands and the rotation of the earth, but this is
absurd, for there 1s nothing in the motion of the earth to correspond to the separate hour and minute
hands. The hands on a watch go round because they use gears, not because they help us compute
the motion of the earth. An orrery, in contrast, is an explicit analogy to the solar system.

3These issues were much better understood when analog computation was more familiar; see for
example von Neumann (1956, 1958).

*Even for the slide rule — everyone’s favorite example of an analog computer — the relation
is more complex than a simple proportion, since length on the slide rule is proportional to the
logarithm of the number.

SIn spite of its puerile style, Truitt & Rogers (1960, Ch. 2) has an enlightening discussion of analog
computers and other analog devices, and of their relation to the continuous/discrete distinction. The
reader is referred to it for further explanation.



between two physical processes, whereas digital is not. Although the “analogy” is
less apparent in digital computation, it is nonetheless there (Lewis 1971, p. 323). In
particular, the relation in digital computation between the values of a model variable
and the values of a system variable is not a simple proportion, but there is still a one-
to-one relation (defined by a binary positional notation). Therefore, in both analog
and digital computation there is an isomorphism (a one-to-one structure-preserving
map) between the representing and the represented and so, in this sense, an analogy.

In summary, a formal correspondence (an “analogy”) between two systems is
central to both kinds of computation, because both are based on a formal structure
that underlies two systems, one in the computer, the other the system of interest.

The conclusion we should draw is that the difference between analog and digital
computers consists in whether the representation is continuous or discrete. The terms
“continuous computation” and “discrete computation” would be more accurate, but
history has given us “analog computation” and “digital computation,” and so I will
stick with them.

2.3 Complementarity Principle

This continuous/discrete distinction brings us to the edge of a terminology trap, so let
me try to show the way around it. Digital computers are perhaps our best examples of
discrete dynamical systems, yet according to the laws of physics, which are differential
equations, we know that the state of a digital computer must change continuously.
There can be no instantaneous voltage changes, for example. On the other hand,
although we think analog computers manipulate continuous quantities, a closer look
shows that the charge on a capacitor, for example, is an integral number of electrons.
Unless, of course, we choose to look closer yet, and take account of the wave nature
of the electron.

The key point is that the continuity or discreteness of these basic physical processes
is irrelevant to the operation of a computer under normal circumstances. The analog
computer operates with charges and currents sufficiently large that the discreteness
of electrons can be ignored, and the state change of a transistor in a digital computer

is rapid enough to be considered instantaneous. What we care about is — not the
ultimate nature of matter — but how the devices behave at the relevant scale of
observation.

Whether electrons behave more like waves or more like particles surely can’t mat-
ter to the business at hand: developing a decent model of cognition. (Or if it does
matter, then that is a claim requiring empirical justification.) So let’s avoid the

5The analogy is most apparent in that most literal kind of digital computation: counting on
your fingers. It may be objected that a one-to-one relation is impossible in the case where a digital
computer is modeling a continuous system, since the computer provides only a finite set of values to
correspond to a continuum in the modeled system. However, a closer look at analog computers shows
that they too have finite precision. To be precise we would have to say there is a homomorphism (a
many-to-one structure-preserving map) from the modeled system to the modeling system.



terminology trap of worrying whether cognition (or computation for that matter) is
really continuous or really discrete; what matters is: which sort of model is better,
continuous or discrete, at the appropriate level of analysis?” (See also MacLennan
1990c.)

Elsewhere (MacLennan in press-c, in press-d) I've proposed a methodological prin-
ciple aimed at avoiding this trap. It is called the Complementarity Principle, and
states that continuous and discrete models should be complementary, that is, an
approximately-discrete continuous model should make the same macroscopic predic-
tions as a discrete model, and conversely an approximately-continuous discrete model
should make the same macroscopic predictions as a continuous model.®

3 Continuous and Discrete Computation

3.1 Computation in Brief

Having considered the similarities and differences between analog and digital com-
putation, I will now consider more abstractly the process of computation, whether
analog or digital, with the aim of elucidating concepts such as formality, syntax,
representation, transduction and interpretation.

In its most basic sense, computation is the process of mechanically transforming
mathematical entities.? (Think of long division.)

However, since mathematical entities do not exist in the physical world, they can-
not be directly transformed by a mechanical process. Instead we must manipulate
physical surrogates, specifically, concretes that correspond to the mathematical ab-
stractions. Since the concretes are surrogates for the abstractions, we pay attention
to only those physical characteristics of the process that correspond to the properties
of the abstractions; all their other physical characteristics are irrelevant at best, and
noise or error at worst. Choice of physical instantiation is an engineering decision,
not a matter of principle, so long as the concrete system instantiates the abstract; the
“multiple realizability” of computations is ultimately a consequence on the multiple

It is precisely this terminology trap that leads Lewis (1971) to reject Goodman’s (1968, Ch.
IV) explication of the analog/digital distinction, which is quite accurate, and to seek a more com-
plex criterion grounded in “primitiveness” or “almost primitiveness” relative to some language of
physics. Haugeland (1981) points out that the analog/digital distinction is essentially an engineering
distinction.

8In the absence of complementarity, you have a theory that makes different macroscopic pre-
dictions depending on whether physical reality is, in mathematically absolute terms, discrete or
continuous, a possibility which is unlikely, though not impossible. Elsewhere I call this the Nobel
Prize argument, because if you have such a theory, you can (in principle) set up the experiments,
establish the absolute nature of reality (not just a better approximation to it), which would be an
unprecedented scientific accomplishment that would undoubtedly earn a Nobel prize.

9This in no way limits computation to numerical data, since the strings, sequences, sets, trees,
etc. manipulated by nonnumerical programs (such as Al programs) are also mathematical entities.



instantiability of mathematical entities. In computation, the substance (matter and
energy) is merely a carrier for the form (mathematical structure). Given this overview
I’ll turn to a more detailed analysis of computational systems.

3.2 Formal Systems
3.2.1 State Space.

A computation is characterized at each point in time by its state, which corresponds
to the collective state of all the devices comprised by the computer’s memory. The
only difference between digital and analog computation is that for analog computation
the state space is practically discrete, whereas for analog computation the state space
is, for practical purposes, a continuum. The state space is the basic representational
resource of a computer.

3.2.2 Process.

The actual computation is a sequence of states, which may be completely determined
by the initial state, or determined in part by variables external to the computer
(i.e., input). The principal difference between analog and digital computation is that
digital computation is viewed as a discrete-time process, with the successive states
forming a discrete series, whereas analog computation is viewed as a continuous-time
process, with the states forming a continuous trajectory in state space. In general
terms, the state space provides the “substance” for a computation, upon which a
“form” is imposed by the path through state space.

3.2.3 Autonomy.

Computational systems may differ in their autonomy, that is, in the degree to which
the system behaves on its own, as opposed to the computation being “driven” by some
outside agent. In the most autonomous case the process and the initial conditions
are both fixed, so that once the computation is started it proceeds to completion
independently of external causes; an example would be a program to compute the
square root of 2. A less autonomous system fixes the process but allows the initial
conditions to be determined externally; an example is a program to compute the
square root of a given number. Less autonomous yet is a system that is sensitive to
external input throughout its execution; examples include any interactive program
(in digital computation) and any feedback control system (in analog computation).

In mathematical terms, the future state S(¢') of a computational process is a
function of the current state S(¢) and the current input X (¢) to the process, S(t') =
Ft,S(t), X(t)].1°

0For discrete-time processes, S(t') represents the state after the next discrete state transition,
S(t+1); for continuous-time processes, S(t') represents the state at the next “instant,” S(t+dt). Tam



In other words, S comprises the dependent variables and X comprises the inde-
pendent variables. The three classes of computational autonomy are then defined by
F; in the first case F'is independent of X; in the second case F' depends on X only
at ¢ = 0; in the third case F' may depend on X at any time. There is also a class
of processes that depend on X but not on 5; they are completely reactive, with no
memory.

It is worth remarking that axiomatic systems, such as studied in formal logic,
unlike conventional programs, do not define a unique trajectory. Rather, they define
constraints (the inference rules) on allowable trajectories, but the trajectory over
which a given computation actually proceeds (i.e. the proof generated) is determined

by an outside agent (e.g. a human).!!

3.2.4 Concrete Realization.

In mathematical terms, a concrete realization of an abstract computation must have
all the structure of the abstract process. Of course, it will also have more struc-
ture, since mathematics can be no more than a finite abstraction from the infinite
concreteness of reality. In mathematical terms, a physical system is a concrete re-
alization of an abstract computation when there is a homomorphism (a many-one,

structure-preserving map) from the concrete process to the abstract process.'?

3.2.5 Program.

The topology of the computational process (i.e., discrete path or continuous path)
determines the form of the programs used to express it. Analog computations are
described by differential equations, which specify the continuous change of the de-
pendent variables. Digital computations are described by difference equations, which
describe discrete, incremental changes to the dependent variables.'®

ignoring here the possibility of nondeterministic computations, which are of course very important,
especially from a theoretical viewpoint, and have a role in analog as well as digital computation
(e.g., Rogers & Connolly 1960, Ch. 7). Nondeterministic processes permit certain bifurcations in
the computation path that are noncausal (at the relevant level of analysis). Note also that, as usual,
the state includes all the system’s “memory,” and so determines the extent to which prior states can
influence present behavior.

" Computations defined by axiomatic systems are often taken to be nondeterministic (as defined
in the previous footnote), rather than partially determined by an external agent. The present view
1s more accurate, because we are usually interested in the theorem that is proved, and because the
guidance of the computation is a critical part of realistic proof-generation processes.

12Specifically, there is a map H from the concrete to the abstract system such that if (1) ¢ is time;
and (2) s is a concrete state, x is a concrete input, and f is the concrete state transition operator; and
further (3) F is the abstract state transition operator; then (4) H{f(¢,s, )} = F(¢, H{s}, H{z}).
In practice, imprecision and other physical limitations cause most realizations to be imperfect.

13The distinction between (infinitesimal) differential equations and (finite) difference equations is
familiar enough from numerical programming, but applies equally well to nonnumerical program-
ming. Indeed, digital computer programs are just generalized difference equations (MacLennan



3.2.6 Programmability.

In a special-purpose computer (whether digital or analog), the equations are fixed
by the structure of the computer; in a general-purpose or programmable computer
the equations can be changed relatively easily, for example with a plug-board or
by loading a program into memory. In a stored-program computer, the program is
represented in the computer’s state space (which in the case of an analog computer
implies that the equations are represented in a continuous “language,” an idea which
has not been systematically explored).*

3.2.7 Universality.

Theoretical consideration of general-purpose computers leads to the question of the
existence of universal machines, that is, whether there are computers that can be
programmed to simulate any other computer. For the digital computer, this question
is answered by the Universal Turing Machine and its many equivalents. There is as
yet no corresponding theory of universal analog machines, though various notions
of universality have been proposed and are being explored along with the related
computability questions (e.g., Blum 1989; Blum & al. 1988; Franklin & Garzon 1990;
Garzon & Franklin 1989, 1990; MacLennan 1987, 1990d, in press-a, in press-b; Pour-
El & Richards 1979, 1981, 1982; Stannett 1990; Wolpert & MacLennan submitted).

3.2.8 Formality.

Each variable in the equations may represent a physical quantity or a pure number. In
conventional terms, each variable has an associated dimension.!® If all the variables
are pure numbers, so that none of them refer to physical quantities, then the system is
completely formal, since its behavior is determined by the structure of the equations
themselves and not by any specific physics. Such a system can be called “syntactic”
because its behavior depends on the formal interrelations among the variables rather
than on any specific physical interpretation of the variables (their “semantics”).

To the extent that the variables do refer to specific physical quantities, the equa-
tions are material, rather than formal, since they refer to a specific physical instanti-
ation. In this case we can divide the equations into two sets: the formal equations,
which contain no physical variables, and the material equations, which do. The formal
equations specify an implementation-independent computation, whereas the material
equations specify an implementation-specific transduction. Intuitively, the formal

1989, 1990b, pp. 81, 193). Nonnumerical analog computer programs are probably best treated as
differential equations over Banach spaces.

1Such continuous languages might be used to describe “second-order analog” systems (Haugeland
1981). See MacLennan (in press-a, in press-b, in-press-f) for some steps in this direction.

I5This discussion is simplest if put in terms of numerical computation, but applies equally well to
nonnumerical, in which case the question is whether a variable refers to an abstract mathematical
object or to a physical quality.



equations are the program, the material equations are the input/output relations to
the real world.

I must stress that even the formal variables and equations may have an interpre-
tation (physical or otherwise) associated with them, as when they represent logical
propositions and inference rules (respectively), but they are formal because the inter-
pretation is not a necessary part of their definition. Different physical instantiations
would work as well, and that, of course, is why we can build computers. The material
equations, in contrast, are by definition bound to a specific physical implementation,
and thus are grounded directly with the laws of physics.®

3.2.9 Calculus vs. Simulacrum.

The idea of a calculus has been understood since antiquity, although its full signifi-
cance was discovered only in this century through the work of Church, Post, Turing,
Godel and others. Originally, “calculus” meant a pebble, but it is also applied to
counting tokens, game pieces, voting tokens, and so forth (OLD, s.v.).!™ Tt is a token,
a nonspecific “something,” the properties of which are unimportant so long as it can
be distinguished from other tokens (and so counted etc.).

In its modern sense, “calculus” embodies the idea of formal digital computation,
and so also formal logical inference, and the theory of digital computation is in essence
the theory of calculi and their properties. Traditional “symbolic” theories of knowl-
edge representation and inference in Al and cognitive science take as a given that
knowledge and inference are to be represented as some kind of calculus. The idea of
a calculus thus becomes the central unifying principle of these theories.

['ve argued elsewhere (MacLennan 1988, in press-a, in press-b, in press-f) that
connectionism, which is oriented toward continuous knowledge representation and
inference, suffers from the lack of a unifying theoretical construct corresponding to
the calculus. In MacLennan (in press-a, in press-b, in press-f) I have proposed the
simulacrum as a possible theoretical construct to fulfill this role, that is, to be a
model of possible forms of continuous information representation and processing.'®
I will not go into details here, but note only that corresponding to the formulas of
calculi, simulacra have images, and that transformations of images are required to be
continuous.

16 As will be discussed in more detail later (section 5), Harnad’s “symbol grounding” is established

by the material equations, which connect the cognitive agent with its environment.

1"The corresponding Greek word, ¥ij¢os, appears in the generalized sense by the sixth century
BCE (LSJ, s.v.), where it can also mean a number, a pebble for divination, a mosaic tile, etc. and,
more abstractly, a vote or a judgement.

18«Simulacrum” (si-mu-ld-crum) is derived by analogy with “calculus,” and means a likeness,
image, representation, etc. (OLD, s.v.). While the term “image” is intended to include visual and
auditory images, it is not limited to these, but can be any element of a topological continuum.
Previously I have called these images “continuous symbols,” because they are the continuous analog
of the usual discrete symbols. However, I have found that the term “symbol” so strongly connotes
discreteness, that the phrase “continuous symbol” is more confusing than helpful.



3.2.10 Idealization.

I must stress that the simulacrum is an idealized computational system, which means
that it assumes the states and processes are perfectly continuous (i.e., mathematically
s0), just as a calculus assumes that states and processes are perfectly discrete. Such
idealization is appropriate for mathematical models, and in accord with the Comple-
mentarity Principle. We must remember, however, that physical instantiation of a
calculus or simulacrum is rarely perfect, and so in any particular case we must pay
attention to whether the idealization is a good enough approximation to the reality.

3.3 Interpretations
3.3.1 Syntax vs. Semantics.

One commonly distinguishes between an uninterpreted calculus (a calculus proper)
and an interpreted calculus. Both are formal computational systems, but in the former
case we consider only “syntactic” relations, those internal to the system, whereas in
the latter we take into account “semantic” relations, which associate some meaning in
an external domain with the states and processes of the calculus, thus making them
representations.t®

In exactly the same way we must distinguish uninterpreted and interpreted sim-
ulacra. In this case the “syntax” is determined entirely by the internal structure of
the continuous states and the internal dynamics of the processes, and in this sense
an uninterpreted simulacrum is viewed purely “syntactically.” A simulacrum is in-
terpreted, or given a semantics, in much the same way as a calculus: by defining
mappings from its images and processes onto the states and processes of some do-
main of interpretation. In this way it becomes a continuous representational system.

Although I've stated these ideas abstractly for the sake of generality, they are really
quite familiar. A formal analog computer program is just a set of differential equations
(perhaps with boundary conditions); they can be instantiated in one physical system
(the computer) and interpreted to tell us about any other system that obeys the same
equations. In particular, the variables of the physically instantiated formal system can
be interpreted as the variables pertaining to some other system with the same formal
structure (i.e. defined by the same differential equations). For example, voltages,
currents, and conductances in an electronic analog computer can be interpreted as
pressures, flow rates and cross-sectional area in a hydraulic system.

9Note that here we are talking about meaning attributed to the system by an external observer
(a human interpreter), not intrinsic semantics, that is, meaning inherent in the system. Analogously,
we distinguish systems that are intrinsically representational (e.g., presumably, brains) from ones
that we may view as representations (typical computer programs, formulas in mathematics or logic,
ete.).

10



3.3.2 Systematicity.

What we normally require of discrete representational systems, and what allows them
to reduce meaningful processes to syntax, is that the interpretation be systematic,
which means that it respects the constituent structure of the states. To find an anal-
ogous concept for continuous representational systems we need only look at system-
aticity more abstractly. Constituent structure merely refers to the algebraic structure
of the state space (e.g., as defined by the constructor operations; see, e.g., MacLennan
1990b, Chs. 2, 4). Systematicity then simply says that the interpretation must be
a homomorphism: a mapping that respects the algebraic structure (though perhaps
losing some of it).?°

The point is that these ideas are as applicable to continuous representational
systems as to the better-known discrete representational systems. In both cases the
representations (physical states) are arbitrary so long as the “syntax” (algebraic struc-
ture) is preserved.

3.4 Computation and Computational Systems

In the light of the preceding discussion, let me suggest the following definitions:

Computation is the instantiation of a formal process in a physical system
to the end that we may exploit or better understand that process.

“Formal,” as before, refers to the fact that the process is determined entirely by
the mathematical structure of the equations, and does not depend on any particular
physical instantiation of their variables. This definition covers both automatic and
hand computation, whether digital or analog.

A task is computational if its function would be served as well by any
system with the same formal structure.

Thus, computing the square root and unifying propositions are computational tasks,
but digesting starch is not.

A system is computational if it accomplishes a computational task by
means of a computation.

A computational system comprises a formal part (e.g., a calculus or sim-
ulacrum) and, usually, an interpretation.

2%Indeed, as explained in more detail in MacLennan (in press-c), systematicity in both the analog
and digital cases can be defined as continuity, under the appropriate topology in each case.

11



A complete interpretation is not necessary, since useful computations may pass through
uninterpretable states. This occurs in mathematics, for example, with the use of dif-
ferential notation in the infinitesimal calculus.?! A computational system usually
instantiates either a calculus or a simulacrum, though hybrid discrete4continuous
systems are also possible.

4 Computationalism

4.1 Computation and Computational Systems

Searle (1990) has said, “Computational states are not discovered within the physics,
they are assigned to the physics.” That is, a physical system is not intrinsically a
computer in the same sense that it may be intrinsically a brain, a star, or a rutabaga.
Although I agree with Searle in the general case of physical systems, I will argue that
we can discover computational systems within biology. This is because computational
tasks and processes are defined in terms of their function, and we can often establish
functions for biological systems. For example, if we could show that the visual cortex
would function as well whether it were implemented in neurons, silicon, hydraulics
or any other physical realization of some set of equations, then we would have shown
that the visual cortex is computational. That is, we would have shown that the visual
cortex is operating on mathematical entities by means of physical processes. On the
other hand, function is much harder to establish for nonbiological natural systems,
and so it would be difficult to show that they are intrinsically computational; in this
case | agree with Searle.

4.2 Computers

Although I think it makes sense to ask if the brain is a computational system or even
if the mind is a computation, I think it is sloppy to ask if the brain is a computer, for
in normal usage a computer is a tool used, or intended to be used, for computation.
Though we can use it in an extended sense to mean a computational system, such
usage is likely to lead to more confusion.

4.3 Computationalism

Rather than asking whether the brain is a computer, a better strategy is to formu-
late the hypothesis of computationalism in terms of the notion of computation and
computational systems, which is more susceptible to precise definition. This strategy
implies a research agenda:

Z1Strictly speaking, for example, in standard analysis, dy = 2zdz is an equation between two
uninterpretable formulas, since neither side of the equation stands for a number. The use of divergent
series as generating functions is another example. See also MacLennan (1990b, p. 421-6).

12



1. Characterize the dynamics of the brain in terms of equations or other mathe-
matical relations.

2. Determine if some of these equations are formal, that is, independent of their
material instantiation.

3. Determine whether differential or difference equations are a better model of the
processes (at the relevant level of abstraction), that is, whether the representa-
tions and processes are continuous or discrete.

Or, in brief, develop a mathematical model of the brain, determine if it is computa-
tional, and, if so, whether it is analog, digital or hybrid.

5 Intentionality

5.1 Mutatis Mutandis

Much has been made of analog computation in connection with Searle’s Chinese
Room Argument, and it has been claimed that the argument applies only to digital
computation (Harnad in press-a, in press-b). Although I think analog computation (in
the broad sense) plays a critical role in cognition, I do not think Searle’s arguments are
any less applicable to it. To argue this, I have to take a somewhat unusual position,
which may confuse the reader. I am not convinced by Searle’s argument, and I think
a version of the “systems reply” is correct (MacLennan in press-e). Nevertheless, my
purpose here is to argue only that the argument applies as well, mutatis mutandis,
to analog systems as to digital. That is, if you accept it in the digital case, then you
must also accept it in the analog case, and conversely if, like me, you do not accept
it in the digital case, then neither should you in the analog case.

Before presenting a specific analog version of the Chinese Room, I would like to
consider the argument in the terms introduced above. Suppose we characterize the
brain in terms of formal equations and material equations. The material equations
describe specific physical transduction process, such as the conversion of light energy
into nerve impulses, and the conversion of nerve impulses into muscular contractions.
The formal equations describe the computational process, which can in principle be
instantiated by any physical system obeying the same equations. In particular, Searle
himself can, in principle, instantiate the formal equations. Therefore, the argument
goes, there must be more to understanding Chinese than just implementing the right
formal equations, since if there weren’t, Searle could instantiate these equations, yet
without the subjective experience of understanding Chinese.??

??Harnad has correctly observed (in other terms) that a situated intelligence requires material
equations as well as formal equations, and that, although Searle can in principle instantiate the
formal ones, he cannot instantiate an arbitrary set of material equations.
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5.2 The Granny Room

With this background established, I can turn to a presentation of an analog version
of the Chinese Room. Since the notion of continuous computation is less familiar
than the notion of discrete computation, I'll present the example in some detail. 1
call it “the Granny Room,” because its purpose is to recognize my grandmother and
respond, “Hi Granny!” A (continuous) visual image is the input to the room, and a
(continuous) auditory image is the output.*

Inputs come from (scaleless) moving pointers. Outputs are by twisting knobs,
moving sliders, manipulating joysticks, etc. Various analog computational aids —
slide rules, nomographs, pantographs, etc. — correspond to the rule book. Infor-
mation may be read from the input devices and transferred to the computational
aids with calipers or similar analog devices. The person in the room (Searle, say)
implements the analog computation by performing a complicated, ritualized sensori-
motor procedure — the point is that the performance is as mechanical and mindless
as symbol manipulation. Picture an expert pilot flying an aircraft simulator. Now,
when the system correctly replies “Hi Granny,” Searle can honestly claim that he
doesn’t recognize the woman. Indeed, he may even be unaware that a face has been
“seen.” Therefore, the argument goes, formal equations are not sufficient for the
mental phenomenon of face recognition. In spite of the correct behavioral response,
no true recognition was involved.

It may be objected that this argument is not immune to the Systems Reply,
since the dials, levers, slide rules, etc. are an essential part of the computation.
Searle’s answer, in the digital case, is to have the person memorize all the rules,
thus internalizing the computation and becoming the system, but the same move
is possible in the analog case. Instead of memorizing a (vast) number of rules and
manipulating them mentally, like a mathematician or calculating prodigy, Searle must
instead memorize a incredibly complex continuous process, and carry it out mentally,
as might an expert choreographer. (Of course, we're talking principles here, not
practicalities.) Mutatis mutandis, the argument applies as well in the continuous
case as in the discrete.

It may be objected that even in this case Searle must still see the input and produce
the output, and that these are transductions, and so the process is not purely formal.
But the same applies in the digital case. Even if Searle memorizes all the rules, there
must still be some way to get the input to him and the output from him. If a slip of
paper bearing the Chinese characters is passed into the room, then he must look at
it before he can apply the memorized rules; similarly he must write down the result
and pass it out again. How is this different from him looking at a continuous pattern
(say on a slip of paper), and doing all the rest in his head, until he draws the result

Z3I've selected this example because face recognition is a characteristically connectionist task.
However, by the Complementarity Principle, I could as easily pick understanding Chinese as the
task. The relative discreteness or continuity of the task is not essential.
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on another slip of paper? Whatever move is made in the discrete argument, the same
can be made in the continuous. The only difference is that inside Searle’s head the
processing will be discrete in one case and continuous in the other, but very little
hangs on that difference.

Let’s consider this in more abstract terms. To subject a system to the Turing
Test, as supposed in Searle’s argument, requires that the inputs and outputs be rep-
resented physically. Thus at least some of the equations defining the system must be
material. A testable system cannot be pure computation; there must be transduction
somewhere, the only question is where.

Searle could instantiate the whole process, if it is possible for him to instantiate
the material as well as the formal equations. (This would be possible, for example, if
the input were in the form of visible light.) In this case, though, Harnad would claim
that the system is not purely formal and so, properly speaking, not computational.
If, on the other hand, we suppose that Searle instantiates only the formal equations,
then the input must be delivered to Searle as formal variables, that is, as quantities
whose physical instantiation is irrelevant. Therefore, the material equations must
be instantiated elsewhere, and some other device (or person etc.) must convert the
physical input into its formal representation. In this case Searle does not instantiate
the entire system, and so the Systems Reply can be made (as Harnad has observed).

In summary, we can construct an exact continuous analog of Searle’s discrete ar-
gument, and so the continuous/discrete (analog/digital) distinction cannot be crucial
to the presence or absence of original intentionality.

5.3 Synthetic Ethology

Harnad (1991; Hayes & al in press) has argued for the importance of Searle’s Argu-
ment on the grounds that it provides a loophole though an otherwise “impenetrable
other-minds barrier,” and therefore allows us to determine that computational sys-
tems could not be intentional. He also argues for a “Total Turing Test” as the only
means of determining the intentionality of noncomputational systems (Harnad 1989,
1991, in press-a, in press-b). In taking this essentially behaviorist stance he has
given up more than necessary. From a scientific standpoint the other minds barrier
is not impenetrable, for psychologists and ethologists routinely determine empirically
whether to attribute mental states and intentionality to other organisms. An ap-
proach, which is consistent with current scientific practice in neuropsychology and
neuroethology, is to ground intrinsic meaningfulness of external signals and internal
representations in terms of function, and to cash out function in terms of a tendency
to contribute to inclusive fitness (e.g., Burghardt 1970). Though such studies are
difficult to conduct in a natural environment, they can be approached through the
methods of “synthetic ethology” (MacLennan 1990a, 1992; MacLennan & Burghardt
submitted).
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6 Conclusions

Although it is commonly thought that analog computation differs from digital in that
the former has a special relationship (the “analogy”) with its subject matter, in fact
both kinds of computation depend on a systematic relationship between two systems,
specifically, that physical phenomena in the computer are instances (to sufficient ac-
curacy) of given mathematical relationships, which may also apply to other systems of
interest. In fact, the principal difference between analog and digital computation lies
in the former having continuous states that change continuously and the latter having
discrete states that change discretely. A methodological guideline, the Complemen-
tarity Principle, tells us that what matters is the behavior (continuous or discrete) at
the relevant level of analysis, not in some ultimate mathematico-physical sense.

Computation refers to the transformation of mathematical entities by means of
physical processes having the same formal structure. Thus multiple realization is a
necessary characteristic of computation. The concepts formality (“syntax”), interpre-
tation (“semantics”), systematicity, program, and universality apply as well to analog
computation as digital, though the analog domain is not so thoroughly investigated
as the digital. The simulacrum has been proposed as a unifying theoretical construct
to fulfill a role for analog computation corresponding to that fulfilled by the calculus
for digital computation.

A system is computational when its function would be served as well by any other
with the same formal structure. This presupposes that the function of a system can be
identified, but that is often possible for biological and artificial systems. Thus (contra
Searle) it is a legitimate scientific question to ask whether the brain or individual brain
systems are computational. A secondary question is whether individual systems are
more analog or more digital in their operation. Progress in connectionism is showing
the strength of continuous representations.

Although Searle’s Chinese Room Argument is presented in the context of discrete
(digital) computation, it applies as well, mutatis mutandis, to continuous (analog)
computation. As Harnad has noted (in different terms), an often neglected aspect
of Searle’s thought experiment are the material equations that interface the physical
world of the Turing Test to the (purported) formal equations of cognition. Although
I agree with Harnad that such “grounding” of representations is necessary for an
effective embodied intelligence, I do not agree that it depends in any essential way
on the continuous/discrete distinction, or that it is the only way out of Searle’s
conclusions.

It is likely that continuous representations of high dimension will provide better
models for many cognitive processes than the discrete, “symbolic” representations
that have been commonly used. However, this is an empirical question relating to
continuity or discreteness of cognitive processes at the relevant level of analysis, and
does not gain any support from Searle’s Chinese Room argument or from the need
for symbol grounding. The nature and source of original intentionality is nevertheless
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a critical question for cognitive science and Al.
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