
XHTML Forms
Web forms, much like the analogous paper forms, allow the user to provide input. This input is typically sent to a server for
processing. Forms can be used to submit data (e.g., placing an order for a product) or retrieve data (e.g., using a search
engine). There are two parts to a form: the user interface, and a script to process the input and ultimately do something
meaningful with it. This document explains how to create the form’s user interface. The mechanics for processing form
data – specifically with PHP – will be covered later in the course.

Form syntax
A form has three main components: the form element, form widgets (e.g., text boxes and menus), and a submit button. The
form element has two required attributes – method and action.

<form method="post" action="script.url">
 ...
</form>

All form widgets have a name attribute that uniquely identifies them. The data is sent to the server as name-value pairs,
where the name is the input element’s name and value is that input element’s value. We will discuss later how this value
can be used by the server-side script.

Submission method
The method attribute specifies how data should be sent to the server. The get method encodes the form data into the URL.
Suppose a form has two input elements with the names name1 and name2 with respective values value1 and value2. The
get method would send a URL of the form script.url?name1=value1&name2=value2. The post method will not include
the form data encoded into the URL. The post method is considered more secure because the get method allows a hacker
to bypass the form by calling the script directly and passing an arbitrarily-encoded URL string, which could contain invalid
names and values. NOTE: If the form values contain non-ASCII characters or the form content of the URL exceeds 100
characters, the post method must be used.

Submission action
The action attribute specifies the script that will process the data. The value for this attribute is typically a CGI script or
some other type of Web-based script, such as a PHP script. The get method is typically used when the script does not
modify any state information on the server side, such as when a database query is performed. The post method is typically
used if the script does modify any state information, such as making an update to a database.

Selection widgets
Selection widgets allow a user to select one or more items from a constrained set of choices. Selection widgets should
always be preferred over text input widgets when the number of constrained choices is a manageable number, because they
prevent erroneous input. If the number of constrained choices is small enough so that they can all be visually displayed,
(e.g., a person’s gender), radio buttons or check boxes should be used. If the number of constrained choices is large enough
that it is infeasible to display them all (e.g., the states in the United States), a menu is a good choice.

Radio buttons
A radio button is a form widget that allows the user to choose only one of a predefined set of items. When the user selects a
radio button, any previously selected radio button in the same group is deselected. To create a radio button, use the input
element with radio as the type attribute’s value, specify a name using the name attribute, and provide a value using the
value attribute. All radio buttons that have the same value for the name attribute are considered a group. The value provided
to the name attribute will be the name used in the name-value pair that gets passed to the server-side script. To make one of
the radio buttons be the default selection, set the checked attribute for that radio button to the value “checked”.

<p>How would you rate your skill in programming?

 <input type="radio" name="skill" value="beg" />Beginner
 <input type="radio" name="skill" value="int" />Intermediate
 <input type="radio" name="skill" value="adv" />Advanced
 <input type="radio" name="skill" value="sup" />Super-hacker</p>
<p>How many hours do you spend programming each week?

 <input type="radio" name="hours" value="beg" />0-10

 <input type="radio" name="hours" value="int" checked="checked" />11-20

 <input type="radio" name="hours" value="adv" />21-30

 <input type="radio" name="hours" value="sup" />30+</p>

This is how the markup may appear in the browser.

Note that the labels displayed next to the radio buttons are not the values of the value attributes. The value attribute’s
content is what will be sent to the server; the label/description is provided within the page text. Also note that the first
group of radio buttons does not have a radio button selected. To ensure that a selection is made, use the checked attribute as
shown in the example. If no radio button in a group is selected, that group’s name-value pair will not be sent to the server,
meaning that the input element will be undefined within the script that processes the form data.

Checkboxes
A checkbox is a form widget that allows the user to make multiple selections from a number of items. To create a
checkbox, use the input element, specify checkbox as the type, specify a name using the name attribute, and provide a
value using the value attribute. As with radio buttons, all checkboxes that have the same value for the name attribute are
considered a group. You may pre-select one or more checkboxes by setting the checked attribute for that checkbox to the
value “checked”.

<p>What programming languages have you used?

 <input type="checkbox" name="proglang" value="c" />C
 <input type="checkbox" name="proglang" value="cplusplus" />C++
 <input type="checkbox" name="proglang" value="java" />Java
 <input type="checkbox" name="proglang" value="perl" />Perl
 <input type="checkbox" name="proglang" value="perl" />Python</p>
<p>I agree to...

 <input type="checkbox" name="cheaplabor" value="yes" checked="checked" />work for $1.50/hour.

 <input type="checkbox" name="longdays" value="yes" checked="checked" />work 12 hours per day.

 <input type="checkbox" name="late" value="yes" />show up late every day.

 <input type="checkbox" name="usecomments" value="yes" checked="checked" />comment my code.
</p>

Here’s how the markup may appear in the browser.

Suppose the checkboxes corresponding to “C”, “Java”, and “Perl” were selected in the above example. Three name-value
pairs would be sent to the server: proglang=c, proglang=java, and proglang=perl.

Menus
A menu is a form widget that allows the user to select one (or possibly multiple) of several predefined values. Menus are
useful in situations where there is not enough screen “real estate” to display all the values or where the readability of the
page could be impaired by displaying too many values. Suppose you want the user to select their state of residence. One
method is to make numerous radio buttons; the alternative is to use a menu.

The example output on the left demonstrates how the menu hides all but the first choice, whereas all of the choices are
displayed when using radio buttons. The example output on the left also shows how the menu allows a user to immediately
see the currently selected value, whereas radio buttons would force a user to scan potentially all of the radio buttons to
determine the currently selected value. One might argue that the menu therefore improves page readability as well as
conserving screen real estate. The example output on the right shows the expansion of the menu widget and the addition of
scroll bars to further minimize the real estate occupied by the menu items.

To create a menu, use the select element to specify a name using the name attribute. The optional attribute size specifies
the desired height, in lines, of the menu and the optional attribute multiple allows the user to select more than one menu
option (usually with the Control key for PCs and Command key for Macintoshes). The menu items themselves are created
using the option element, which has a required value attribute. The text for the menu item is specified between the begin-
and end-tags for the option element. To have a menu item selected by default, use the selected attribute.

<select name="state">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="as">American Samoa</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca">California</option>
 ...
</select>

The following markup demonstrates the select element’s size and multiple attributes, as well as the selected attribute
for the option element.

<select name="state" size="5" multiple="multiple">
 <option value="al">Alabama</option>
 <option value="ak">Alaska</option>
 <option value="as">American Samoa</option>
 <option value="az">Arizona</option>
 <option value="ar">Arkansas</option>
 <option value="ca" selected="selected">California</option>
 ...
</select>

Here is how the markup may appear in the browser.

The example output on the left shows a menu with five options displayed simultaneously, with California already selected
as the default choice. The example output on the right shows a menu with multiple (non-contiguous) choices selected.

Most Web browsers support grouping menu items into categories. To create a group menu, use the optgroup element,
specifying the name of the category with the label attribute. Next, make the desired menu choices (option elements)
children of the optgroup element.

<select name="state" size="10">
 <optgroup label="Pacific">
 <option value="ak">Alaska</option>
 <option value="ca">California</option>
 <option value="hi">Hawaii</option>
 <option value="or">Oregon</option>
 <option value="wa">Washington</option>
 </optgroup>
 <optgroup label="West">
 <option value="az">Arizona</option>
 <option value="co">Colorado</option>
 …
</select>

Here is how the output may appear in the browser.

Text input widgets
Text input widgets are used to input one or more strings of text. They can have either a specialized purpose, such as
submitting a password, or a generic purpose, such as entering a free-form line of text.

Text boxes
Text boxes contain one line of free-form text, and are typically used when the input is not derived from a constrained set of
values. For example, text boxes are good choices for names or addresses, because it is impossible to predict in advance the
name or address that could be entered by a user. To create a text box, use the input element, specify text as the type
attribute’s value, and name the text box using the name attribute.

<p>Username: <input type="text" name="username" /></p>
<p>Nickname: <input type="text" name="nickname" /></p>

This is how the markup may appear in the browser.

Three optional elements control how the text box appears. The value attribute specifies the default text that should be
shown when the text box is displayed. This text, unless modified by the user, will be sent to the server. The size attribute
specifies the width of the text box measured in characters. The maxlength attribute specifies the maximum number of
characters that can be entered in the text box.

<p>Username: <input type="text" name="username" /></p>
<p>Nickname: <input type="text" name="nickname" /></p>
<p>Favorite book: <input type="text" name="favbook" size="60"
 value="The Hitchhiker's Guide to the Galaxy" /></p>
<p>I bet you can't type "The quick brown fox jumped over the lazy dog"!

<input type="text" name="pangram" maxlength="12" /></p>

This is how the markup may appear in the browser. NOTE: The text in the last text box was entered to demonstrate that no
more than twelve characters are permitted.

A few things to note about text boxes:
• The default width is twenty characters (e.g., size="20").
• The default value for a text box is the empty string (e.g., value=""). Unlike a radio button group – which if no

radio button is selected, sends nothing to the server – the text box will send the empty string to the server.

Password boxes
Password boxes can be used to visually mask confidential data, such as passwords, from casual observers. Password boxes
are identical to text boxes, except that whatever is typed into a password box is masked by bullets or asterisks. To create a
password box, use the input element, specify password as the type attribute’s value, and name the password box using the
name attribute.

<p>Username: <input type="text" name="uname" /></p>
<p>Password: <input type="password" name="passwd" /></p>

Here is how the markup may be displayed in the browser.

As with text boxes, password boxes also support the size, maxlength, and value attributes; however, having a predefined
value for a password box defeats the purpose of having a password at all. It is also important to note that password boxes do
not provide any encryption, so it is possible for the password to be intercepted when the form data is sent to the server
unless a secure connection is used (i.e., HTTPS). The primary purpose of the password box is to visually protect the text
string.

Text areas
Text areas allow the user to provide more than one line of textual input. Text areas can be as wide as the page itself, and the
browser will add scroll bars if the text provided by the user exceeds the size of the text area. To create a text area, use the
textarea element, specify the number of rows and columns using the rows and cols attributes, and name the text area
using the name attribute. Default text can be specified by placing it between the textarea begin- and end-tags.

<p>Username: <input type="text" name="username" /></p>
<textarea name="comments" rows="2" cols="30">Default text</textarea>
<textarea name="comments" rows="5" cols="40"></textarea>

This is how the markup may appear in the browser. NOTE: The text in the second text area was added to demonstrate that
scroll bars are added if the input text exceeds the size of the text area.

Hidden fields
A hidden field is a form component that allows name/value pairs to be specified without any visual representation. The
hidden name/value pairs will be sent to the server for processing just like the pairs corresponding to the other form widgets.
To create a hidden field, use the input element, specify hidden as the type attribute’s value, and provide values for both
the name and value attributes.

<input type="hidden" name="promotion_code" value="x3g9kf43" />

Hidden fields can be specified anywhere within the form begin- and end-tags.

Hidden fields are useful for providing context. For example, the hidden field in the above example would allow a script to
identify any promotion that is associated with the Web page, perhaps for data mining purposes, without confusing the user
by providing unnecessary information.

Submitting and resetting forms
Form data is submitted to the server when the user clicks on a submit button widget. NOTE: There are other methods for
submitting form data without using a button widget; however, they are beyond the scope of this document. To create a
submit button, use the input element, specify submit as the type attribute’s value, and provide a label for the button widget
via the value attribute.

<input type="submit" value="Let's Go!" />

This is how the markup may appear in the browser.

The name attribute is optional for the submit button. If present, then the browser will send a name-value pair to the server.
For example, suppose you have a Web page with two separate forms corresponding to creating an account and signing in

using an existing account. The first form might have fields for address information, desired username, and password. The
second form will likely only have two text boxes: username and password. The first form’s submit button may be marked
up as <input type="submit" name="newacct" value="Create Account" />. The second form’s submit button may be
marked up as <input type="submit" name="signin" value="Sign In" />. The script on the server can simply check for
the existence of newacct or signin to determine the next course of action.

A typical companion to the submit button widget is the reset button widget, which resets a form to its original state (i.e.,
default values). To create a reset button, use the input element, specify reset as the type attribute’s value, and provide a
label for the button widget via the value attribute.

<input type="reset" value="Start Over" />

This is how the markup may appear in the browser.

To create a submit or reset button with an image, use the button element with an img child element. The type, name, and
value attributes for the button element should either be submit or reset depending on the desired action.

<button type="submit" name="submit" value="submit">

</button>

This is how the markup may appear in the browser.

Organizing form content
A form typically contains several types of elements for gathering information. As the form becomes more complex, it helps
the user if these elements are organized into visually distinct groups. Legends, labels, and tab order can help organize form
widgets so that the form is easier to understand for the user.

Legends
A legend visually groups widgets by placing a labeled border around them. To create a legend, use the fieldset element.
The fieldset element contains two items: the legend and the form widgets that are to be grouped together. To create a
legend, begin a legend element, specify the label text, then end the legend element. The legend element also accepts an
optional value – left, right, or center – for the align attribute. The default alignment is left.

<fieldset>
 <legend>Basic Information</legend>
 <p>Username: <input type="text" name="username" /></p>
 <p>Email: <input type="text" name="email" /></p>
</fieldset>
<fieldset>
 <legend align="right">Employment Eligibility</legend>
 <p>I agree to...

 <input type="checkbox" name="cheaplabor" value="yes" checked="checked" />work for $1.50/hour.

 <input type="checkbox" name="longdays" value="yes" checked="checked" />work 12 hours per day.

 <input type="checkbox" name="late" value="yes" />show up late every day.

 <input type="checkbox" name="usecomments" value="yes" checked="checked" />comment my code.
 </p>
 <p>I believe that <i>the cake</i> is...

 <input type="radio" name="cake" checked="checked" />a lie.

 <input type="radio" name="cake" />not a lie.
 </p>
</fieldset>

Here is how the markup may appear in the browser:

Labels
The XHTML label element allows an informative label to be presented with a widget. The label element has two
advantages: (1) the focus will be given to the associated form widget when the user clicks on the label, and (2) the
label/widget association can be used for client-side scripting purposes.

To make use of the label element, first assign a unique value to the id attribute for the widget to be labeled. Then provide
this unique id to the label element’s for attribute and provide text for the label:

<p>
 <label for="uname">Username:</label>
 <input type="text" name="username" id="uname" />
</p>

Labels typically do not change how the markup appears in the browser. The only noticeable difference is that the mouse
cursor may appear as an arrow over an XHTML label instead of an i-beam.

A few things to note about labels:
• The XHTML label element is optional.
• Technically the for attribute is optional for the label element. If omitted, however, the label will not be associated

with any widget and will be useless.
• The content of the label is not restricted to text; an image could be used as a label. Here’s an example:

<p>
 <label for="uname"></label>
 <input type="text" name="username" id="uname" />
</p>

Tab order
As with links, the tab order can be specified for the fields of a form. The default tab order depends on the order in which the
form elements exist in the XHTML markup. Specifying a tab order allows the user to complete fields in a particular group
before going on to the next group. To specify a tab order, use the tabindex attribute of any form element. For some reason
Mozilla Firefox and Microsoft Windows Internet Explorer do not work properly with a tabindex of 0 (zero), so you should
start your tab indices at 1 (one). Here’s an example where controlling tab order would be useful:

<table>
 <tr>
 <td>Username:</td>
 <td><input type="text" name="username" tabindex="1" /></td>
 <td>Favorite programming language:</td>
 <td><input type="text" name="favlang" tabindex="3" /></td>
 </tr>
 <tr>
 <td>Password:</td>
 <td><input type="password" name="passwd" tabindex="2" /></td>
 <td>Favorite computer scientist:</td>
 <td><input type="text" name="favcompsci" tabindex="4" /></td>
 </tr>
</table>

Here’s how the markup may appear in the browser:

The default tab order is “Username”, “Favorite programming language”, “Password”, and “Favorite computer scientist”
based on the order in which the form elements were given in the markup. However, username and password fields are
typically grouped together. Therefore, the preferred order (as given in the markup above) is “Username”, “Password”,
“Favorite programming language”, and “Favorite computer scientist”.

Recall the following about tab order:
• The value for taborder attribute should be between 0 (first) and 32767 (last).
• When the user is presented with the Web page, the first time the Tab key is pressed, the browser’s URL text field

will be given focus. Any subsequent presses of the Tab key will give the element with taborder="0" focus, then
taborder="1", and so on.

• For selection widgets, pressing the Tab key only gives the next form element the input focus; to manipulate the
element, further keystrokes are necessary. For example, checkboxes and radio buttons can be “activated” by
pressing the Return key. Menus can be manipulated by using the arrow keys, where pressing Enter sets the
selected value.

Keyboard shortcuts
As with links, keyboard shortcuts can be specified to give focus to and activate fields of a form. To specify an access key,
use the accesskey attribute of any form element.

<p>Username: <input type="text" name="username" accesskey="u" /></p>
<p>How would you rate your skill in programming?

 <input type="radio" name="skill" value="beg" accesskey="g" />Beginner
 <input type="radio" name="skill" value="int" accesskey="i" />Intermediate
 <input type="radio" name="skill" value="adv" accesskey="a" />Advanced
 <input type="radio" name="skill" value="sup" accesskey="s" />Super-hacker
</p>

For Microsoft Windows browsers, keyboard shortcuts must be modified with the “Shift+Alt” key combination. For
example, “Shift+Alt+A” will select the “Advanced” radio button in the markup example given above. For Macintosh
browsers, keyboard shortcuts must be modified with the Control key.

Disabling elements
Situations may arise where you want form widgets to be displayed in the browser, but you do not want their values to be
modified. To disable a form element, specify a value of disabled for the disabled attribute. The browser will “grey out”
the element so that the user will not be able to interact with it (the grey out effect is browser-dependent). For example, a
user could provide optional beneficiary information for a retirement account.

<fieldset>
 <legend>Beneficiary Information</legend>
 <p>Do you want your account to have a beneficiary?

 <input type="radio" name="wantsbenef" value="true" />Yes
 <input type="radio" name="wantsbenef" value="false" checked="checked" />No
 </p>
 <p>Beneficiary's name:
 <input type="text" name="benefname" disabled="disabled" value="Enter name" />
 </p>
</fieldset>

Here’s how the markup may appear in the browser:

The above example shows how the default value for the “Beneficiary’s name” field is visible; however, the “greyed out”
effect indicates that the field is disabled. NOTE: JavaScript would be required to enable the text field if the user changed the
radio button state to “Yes”, and likewise to disable the text field if the user changed the radio button state to “No”.

