Is $an^2+bn+d=O(n^2)$ for a,b,d>=1,b>d? To prove this, we need to find a constant c such that $cn^2\geq an^2+bn+d$. Let c=2a. Now we need to find a constant x such that for all n>=x, $2an^2\geq an^2+bn+d$. We'll try x=2b.

Let's proceed by an inductive argument. To make our life simpler, let $f(n) = 2an^2$, and $g(n) = an^2 + bn + d$. When n = 2b, $f(2b) = 8ab^2$ and $g(2b) = 4ab^2 + 2b^2 + d = (4a+2)b^2 + d$. Since b > d and $b^2 > b$, f(x) > g(x).

Now, let's assume that our statement is true for all values between x and n for some n. We already know that this is true for n = x. Let's look at n + 1:

$$f(n+1) = 2a(n+1)^2$$

= $2an^2 + 4an + 2a$
= $f(n) + 4an + 2a$

$$g(n+1) = a(n+1)^{2} + b(n+1) + d$$

$$= an^{2} + 2an + a + bn + b + d$$

$$= an^{2} + bn + d + 2an + (a+b)$$

$$= g(n) + 2an + (a+b)$$

From our inductive hypothesis, we know $f(n) \ge g(n)$, thus:

$$f(n) + 4an + 2a \ge g(n) + 4an + 2a$$

All that we need to show is that 4an + 2a > 2an + a + b:

$$4an + 2a$$
 $>$? $2an + a + b$
 $2an$ $>$? $b - a$

Since $n \ge 2b$, this means 4ab > b - a, which is clearly true when $a, b \ge 1$. Thus:

$$f(n) + 4an + 2a > g(n) + 4an + 2$$

> $g(n) + 2an + a + b$
 $f(n+1) > g(n+1)$

Therefore, for all n >= 2b, $2an^2 > an^2 + bn + d$, meaning $2an^2 \ge an^2 + bn + d$, meaning $an^2 + bn + d = O(n^2)$