
Homework	2	
	

• These	exercises	use	the	hotel	schemas	shown	with	the	Chapter	4	exercises.	
• For	each	problem,	formulate	the	appropriate	mysql	commands	to	solve	the	problem	
• Please	use	the	same	naming	conventions	for	Homework	2	that	you	used	for	Homework	

1.	To	recap	those	conventions:	
a. Each query exercise in the homework should be in a separate .sql file.
b. The name of the sql files should be the number of the question.

• If	you	need	to	write	any	sentences	(or	anything	that's	not	valid	SQL)	in	the	answers,	like	
in	question	2,	write	them	as	SQL	comments,	otherwise	the	grading	script	will	see	it	as	a	
syntax	error.	You	can	look	at	this	link	for	more	information	about	commenting	in	
MySQL:	https://dev.mysql.com/doc/refman/5.7/en/comments.html.	

• Some	of	you	included	the	output	to	your	SQL	queries	in	your	solution	files.	That	is	not	
valid	SQL	code	so	please	do	not	do	that—we	have	to	edit	it	out	and	this	time	we	will	
deduct	points	if	we	have	to	do	so.	

• When	you	test	your	queries,	you	should	add	or	delete	additional	sample	data	to	the	
Hotel	schemas	as	needed.	For	example,	when	I	was	testing	my	queries	for	guest	and	
room	overbooking,	I	added	sample	data	that	overbooked	guests	and	rooms,	and	when	I	
was	creating	an	archival	table	for	the	booking	table,	I	inserted	older	dated	booking	
tuples	into	the	Booking	relation.	

• Make	sure	that	when	we	specify	the	order	and	names	of	columns	in	a	view,	that	
you	use	the	same	order	and	names.	Since	we	will	be	doing	script-based	grading,	it	
is	essential	that	you	do	so	in	order	for	the	outputs	to	match.	If	you	have	any	doubt	
about	the	order	of	the	columns	and	the	names	of	the	columns,	look	at	the	example	
output	given	with	the	problem.	
		

1. 6.18:	Make	sure	that	you	print	the	details	for	all	rooms,	even	unoccupied	ones.	If	the	room	
is	occupied,	then	print	the	name	of	the	guest	staying	in	that	room.	Hint:	I	made	two	views	
for	this	query	and	then	used	a	certain	type	of	join	between	the	views	to	get	my	final	
result.	

+--------+---------+-----------+--------+--------------------+
| roomNo | hotelNo | type | price | guestName |
+--------+---------+-----------+--------+--------------------+
100	1	double	94.49	Brad Vander Zanden
200	1	family	115.49	Daffy Duck
300	1	king	142.28	NULL
400	1	penthouse	944.99	NULL
110	1	double	36.75	NULL
+--------+---------+-----------+--------+--------------------+

	
2. 7.11:	mySql	will	not	enforce	the	constraints,	but	it	will	check	them	syntactically.	You	can	

check	to	see	whether	or	not	your	constraints	might	work	in	practice	by	running	them	
independently	of	the	create	table	command	and	seeing	whether	they	would	detect	the	
prohibited	condition.	For	example,	you	can	run	your	overbooking	query	at	the	command	
line	to	check	whether	or	not	it	would	return	overbooked	rooms.	More	specifically, here's	
what	I	suggest	you	do:	

a. Parts	a-d	can	all	be	written	using	check	commands.	These	should	not	be	
commented	out	because	mysql	will	parse	them.	However	it	will	not	enforce	
them.	

b. For	parts	e-f	write	a	select	query	that	returns	doubly	booked	rooms	or	guests	
who	have	double	bookings.		

i. In	order	to	test	these	queries,	you	will	need	to	insert	some	tuples	into	
your	relations	that	create	double	bookings	and	doubly	booked	rooms.	

ii. Your	queries	will	probably	need	to	join	the	booking	relation	with	itself	in	
order	to	check	for	doubly	booked	rooms	or	guests	who	have	double	
bookings.	The	reason	is	that	you	must	find	a	way	to	compare	two	
bookings,	and	a	join	will	allow	you	to	do	so.	

c. Once	your	select	query	works,	couch	it	in	a	constraint	using	NOT	EXISTS	as	
shown	on	page	18	of	the	SQL	DDL	slides	
(http://web.eecs.utk.edu/~bvz/cs465/notes/Ch07-SQL-DDL.pdf).	

d. Since	mysql	does	not	recognize	the	constraint	command,	leave	it	in	your	create	
table	command	but	comment	it	out.	You	can	look	at	this	link	for	more	
information	about	commenting	in	MySQL:	
https://dev.mysql.com/doc/refman/5.1/en/comments.html.	

3. This	problem	requires	that	you	write	three	commands:	
a. Write	a	command	that	creates	a	separate	table	called	BookingOld	with	the	

same	structure	as	the	hotel	Booking	table	to	hold	archive	records.		
b. Using	the	INSERT	statement,	copy	the	records	from	the	Booking	table	to	the	

archive	table	relating	to	bookings	before	1st	January	2003.		Only	move	
bookings	where	the	guest	has	already	checked	out	before	1st	January	2003.	If	
the	guest	is	still	staying	at	the	hotel	on	1st	January	2003,	do	not	copy	them	to	
the	new	table.	The	INSERT	command	has	a	form:	

INSERT	INTO	relation	(SELECT	…);	
	

where	all	tuples	returned	by	the	select	query	are	inserted	into	the	relation.	
c. Write	a	query	that	deletes	all	bookings	before	1st	January	2003	from	the	

Booking	table.	Only	delete	a	booking	if	the	guest	has	checked	out	before	1st	
January	2003.	

	
4. Create	a	view	named	CurrentGuestCount	that	contains	a	count	of	the	number	of	guests	

currently	staying	at	each	hotel.	Your	view	should	contain	columns	for	the	hotelNo	and	the	
guest	count	as	follows:	
+---------+------------+
| hotelNo | guestCount |
+---------+------------+
| 1 | 3 |
| 2 | 2 |
+---------+------------+

	
5. Create	a	view	named	HotelData	containing	the	names	of	all	guests	currently	staying	at	one	

of	our	hotels	and	the	names	of	the	hotel	at	which	they	are	staying.	Order	the	results	by	
hotel	name.	For	example:	
+--------------------+-----------------+
| guestName | hotelName |
+--------------------+-----------------+
Minnie Mouse	Grosvenor Hotel
Daffy Duck	Grosvenor Hotel
Brad Vander Zanden	Grosvenor Hotel
Winnie The Pooh	Holiday Inn
Cinderella	Holiday Inn

+--------------------+-----------------+
	
6. Create	a	view	named	CheckingOutToday	that	contains	the	account	information	for	

each	guest	at	the	Grosvenor	Hotel	who	is	checking	out	today.	The	account	information	
should	include	the	guest	number,	guest	name,	guest	address,	room	number	being	
checked	out	of,	number	of	days	spent	in	the	room,	and	the	total	cost	of	the	stay.	You	will	
need	to	use	the	DATEDIFF	function	to	calculate	the	number	of	dates	spent	in	the	room	
and	you	will	need	to	do	some	arithmetic	in	the	field	that	represents	the	total	cost	of	the	
stay.		

+---------+--------------------+---------------+--------+---------+-----------+
| guestNo | guestName | guestAddress | roomNo | numDays | totalCost |
+---------+--------------------+---------------+--------+---------+-----------+
| 20 | Brad Vander Zanden | Knoxville, TN | 100 | 4 | 359.96 |
| 30 | Daffy Duck | Knoxville, TN | 200 | 4 | 439.96 |
+---------+--------------------+---------------+--------+---------+-----------+

	
7. Consider	the	following	view	defined	on	the	Hotel	schema:	
	

CREATE	VIEW	RoomBookingCount	(hotelNo,	roomNo,	bookingCount)	
AS						SELECT	b.hotelNo,	r.roomNo,	COUNT(*)	
									 FROM	Room	r,	Booking	b	
									 WHERE	r.roomNo	=	b.roomNo	AND	r.hotelNo	=	b.hotelNo	
									 GROUP	BY	b.hotelNo,	r.roomNo;	
	
For	each	of	the	following	queries,	state	whether	the	query	is	valid	and	for	the	valid	
ones	show	how	each	of	the	queries	would	be	mapped	onto	a	query	on	the	
underlying	base	tables.	Base	your	decision	on	whether	a	query	is	valid	or	invalid	on	
the	criteria	presented	in	class	and	in	the	book,	not	on	whether	the	query	runs	in	
mysql.	All	three	queries	shown	below	will	run	in	mysql,	but	they	may	or	may	not	be	
valid	according	to	the	SQL	standard.	

	 	
(a)	 SELECT	hotelNo,	roomNo	
	 FROM	RoomBookingCount	
	 WHERE	hotelNo	=	1;	

	
(b)		 SELECT	hotelNo,	SUM(bookingCount)		
	 FROM	RoomBookingCount	
	 GROUP	BY	hotelNo;	

	
(c)	 SELECT	*	
	 FROM	RoomBookingCount		
	 ORDER	BY	bookingCount;		

	
8. Required	for	graduate	students,	extra	credit	(15	points)	for	undergraduate	students:	

Write	an	SQL	query	that	prints	each	branch	(i.e.,	the	branchNo)	whose	staff	count	
exceeds	the	average	staff	count	for	a	branch,	and	print	the	amount	by	which	each	such	
branch	exceeds	the	average	staff	count.	Use	the	branch	and	staff	relations	from	the	
DreamHome	case	study	in	the	book.	You	should	probably	use	an	SQL	variable	to	help	
simplify	the	query.	You	will	need	to	set	the	SQL	variable	first,	then	execute	the	query.	

	
+----------+----------------------------------+
| branchNo | staffDiff |
+----------+----------------------------------+
| B003 | 1.000000000000000000000000000000 |
+----------+----------------------------------+
	

