Coding And Scripting Technigues For FSM Designs With
Synthesis-Optimized, Glitch-Free Outputs

Clifford E. Cummings

Sunburst Design, Inc.

ABSTRACT

A common synthesis recommendation is to code modules with a cloud of combinational logic on
the module inputs and registered logic on all of the module outputs. FSM designs often include
outputs generated from combinational logic based on the present state or combinational Mealy
outputs. This paper details design and synthesis techniques that support the coding and synthesis
scripting of glitch-free registered outputs for Finite State Machine designs.

1.0 Introduction

Efficient state machine design using a Hardware Description Language (HDL), such as Verilog,
can take many forms [1][2]. Are there specific forms that lend themselves well to synthesis? This
paper describes some common coding styles and highlights two coding styles with registered
outputs that are well suited for commonly used synthesis techniques.

This paper will briefly describe coding styles that generate combinational logic outputs and then

will detail coding styles that generate registered outputs and describe why the registered output
coding styles are often beneficial to synthesis strategies.

2.0 Basic FSM Structure

A typical block diagram for a Finite State Machine (FSM) is shown in Figure 1.

inputs (Mealy State Machine Only)
e e e e e
combinational sequential : combinational
logic logic | logic
|
|
— D I D
Next next Present state Output | OUtPUts
State > State > Logic ?
state Logic FF's
> >
clock

Figure 1 - FSM Block Diagram

A Moore state machine is an FSM where the outputs are only a function of the present state.

A Mealy state machine is an FSM where one or more of the outputs are a function of the present
state and one or more of the inputs.

Both Moore and Mealy FSMs have been successfully implemented in digital designs. How the
outputs are generated for these state machines is an interesting topic. Outputs are sometimes
generated by combinational logic based on comparisons with a set of states, and sometimes
outputs can be derived directly from individual state bits.

SNUG Boston 2000 2 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

Except where noted,

The code in[Example 1juses a common, efficient outputs “rd” and
Verilog coding style to implement the state diagram “ds” equal 0

shown in Figure 2.

This coding style is sometimes referred to as a two-
always block coding style with continuous
assignment outputs. The first always block in this
example is used to generate the sequential state
register, the second always block is used to generate
the combinational next state logic, and the

continuous assignments are used to generate the

combinational output logic.

ws=0
ws=1

Figure 2 - FSM1 State Diagram

nodul e fsmla (ds, rd, go, ws, clk, rst_n);

out put ds, rd;
i nput go, ws;
i nput clk, rst_n;

paraneter [1:0] |IDLE
READ
DLY
DONE

reg [1:0] state, next;

al ways @ posedge cl k or

o
o
o
o

b0O,
b01,
b10,
b11;

negedge rst_n) <4—

if (!rst_n) state <= IDLE;
el se state <= next;

al wvays @state or go or ws) begin

next = 2'bx;
case (state)

IDLE: if (go)
el se
READ:
DLY: if (ws)
el se
DONE:
endcase
end
assign rd =
assign ds =
endnodul e

next
next

next

next
next

next

State register,
sequential
always block

\

READ,
| DLE;

Next state,
combinational
always block

DLY;

READ,;
DONE;

| DLE;

/

(state==READ || state==DLY);

Continuous
assignment
outputs

(st at e==DONE) ;

Example 1 - FSM Coding Style - Two-always blocks with continuous assignment outputs

SNUG Boston 2000

3 FSM Designs With Synthesis-Optimized,

Glitch-Free Outputs

The code in is used to synthesize the same basic logic as but the
generation of the outputs is accomplished by moving the output equations into the same always
block that is used to generate the combinational next state logic. This is a commonly used two-
always block coding style.

modul e fsml (ds, rd, go, ws, clk, rst_n);
out put ds, rd;
i nput go, ws;
i nput clk, rst_n;
reg ds, rd;

parameter [1:0] IDLE = 2'b00,
READ = 2' b01,
DLY = 2'bl0,
DONE = 2' bl1;

reg [1: 0] state, next;

al ways @ posedge cl k or negedge rst_n) <4+— State register,
if (!'rst_n) state <= |DLE; sequential
el se state <= next; always block

al ways @state or go or ws) begin

next = 2'bx; V\
ds = 1' bO;

rd = 1' bO: Next state & outputs,
case (st at e) combinational always
IDLE: if (go) next = READ; block
el se next = | DLE;
READ: begin rd = 1' b1,
next = DLY,;
end
DLY: begin rd = 1' b1,
if (ws) next = READ,
el se next = DONE;
end
DONE: begin ds = 1' b1,
next = | DLE;
end
endcase
end
endnodul e

Example 2 - FSM Coding Style - Two-always blocks with combined output assignments

SNUG Boston 2000 4 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

The combinational outputs generated by these two coding styles (Example 1land Example 2)
suffer two principal disadvantages:

1. Combinational outputs can glitch between states.
2. Combinational outputs consume part of the overall clock cycle that would have been
available to the block of logic that is driven by the FSM outputs.

When module outputs are generated using combinational logic, there is less time for the
receiving module to pass signals through inputs and additional combinational logic before they
must be clocked.

3.0 Partitioning For Synthesis

No combinational
logic on the outputs

A popular and proven technique for partitioning a

design for synthesis is to partition the design so R W

that all outputs are registered and all

combinational logic is on the input-side of a :D- registered |

module as shown in Figure 3. This is sometimes outputs
>Set|1(;1;2tial

referred to as "cloud-register™ partitioning.

A variation on the same synthesis technique is to
partition the design so that all combinational logic =~ “--- - oo oo
is on the inputs or between registered stages Figure 3 - "Cloud-register" module partition
within the module as shown in Figure 4.

module

o o o f E o, No combinational
/ logic on the outputs

1

i

)]

:D- registered 1
outputs |

1

Sequential
logic

Sequential
logic

Figure 4 - Multi-stage module partition with registered outputs

The reason this technique is important is not that it necessarily makes a design any better, but that
it greatly simplifies the task of constraining a design for synthesis.

Designs can be and have been successfully completed with combinational logic on both the
inputs and the outputs of module partitions, but such designs complicate the task of constraining
a design to meet timing requirements.

As shown in Figure 5, if a design requires a 10ns clock cycle, and if the output combinational
logic of module A consumes 3.5ns, then the inputs of modules C and D and some of the inputs of

SNUG Boston 2000 5 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

10ns clgck cycle

module E must be constrained to
use only 6.5ns (including setup [moduleA . A ______MmodueC

time on registered elements). If
module B consumes 5ns in the i
output combinational logic, then

the other inputs of module E must ~ “------------------------) Lo
be constrained to use only 5ns

(including setup time on registered ______P“PE‘E'E_D__,I
elements). :
Different _input i
For this simple 5-module design, eatired
the task of making these Ll | "o
constraints is not too difficult, but
module B module E

imagine having to constrain dozens ---====-=-==---=-mmmomo\ AT - oo s s oo oo '

of inputs on the tens or hundreds of
modules of a larger design, and i
making sure all of the constraints

have been correctly set. Thisisone 777777 | — inininggininininl/2ly/A
of the motivations behind
registered module outputs.

Figure 5 - Constraining combinational outputs that drive
combinational inputs

4.0 Synthesis Time Budgeting

In a paper entitled "Evolvable Makefiles and Scripts for Synthesis", [3] Ekstrandh and Bell,
describe a clever time-budgeting technique for synthesizing many modules by constraining inputs
and outputs to sequential modules, and applying time-budget allotments to pure combinational
modules. If pure combinational logic modules are removed and all sequential module outputs are
registered, techniques similar to those described by Ekstrandh and Bell become even easier to
implement.

One major argument against registered outputs is that redundant combinational logic might be
required at the inputs of multiple receiving modules. In contrast, moving the combinational logic
from some module outputs to the inputs of receiving modules might help suggest a different,
more optimal partitioning of a design.

The best reason for moving combinational logic away from module outputs is that it significantly
reduces synthesis scripting efforts that can lead to more easily meeting overall timing constraints.
Tight constraints on output combinational logic in a driving module and tight timing constraints
on input combinational logic in a receiving module generally does not yield the same efficient
logic that could be inferred if all of the combinational logic could be optimized together with a
larger overall timing constraint.

SNUG Boston 2000 6 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

5.0 Registering FSM Outputs

Two good methods for coding FSMs so that all module outputs are registered include, (1)
generating and registering "next-outputs”, and (2) Encoding the state variables so that each
output is one of the encoded bits of the registered state variable.

nodul e fsmlb (ds, rd, go, ws, clk, rst_n);
out put ds, rd;
i nput go, ws;
i nput clk, rst_n;
reg ds, rd;

paranmeter [1:0] IDLE = 2'b00,
READ = 2' b01,
DLY = 2'bl0,
DONE = 2' bl1;

reg [1:0] state, next;

al ways @ posedge clk or negedge rst_n) <4 State register,
if (!rst_n) state <= | DLE; sequential
el se state <= next; always block

al ways @state or go or ws) begin
next = 2'bx;

case (state) \
IDLE: if (go) next READ;

| f ! Next state,

el se next = IDLE combinational
READ: next = DLY; always block
DLY: if (ws) next = READ

el se next = DONE;
DONE: next = |DLE;
endcase
end

al ways @ posedge cl k or negedge rst_n)
if (!rst_n) begin

dz <= 1 Eg — Registered

ra <= ; outputs
end i
sequential

° Zg beg|<2 1' bO; always block
rd <= 1'bO;
case (state)
IDLE: if (go) rd <= 1'bl;
READ: rd <= 1'b1;
DLY: if (ws) rd <= 1'b1;
el se ds <= 1'bil;

endcase
end
endnodul e

Example 3 - FSM Coding Style - Three-always block coding style

SNUG Boston 2000 7 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

5.1 Three Always Block FSM

The first method commonly used to register
the FSM outputs is to code a two always
block FSM, the same as in but
instead of generating the outputs using
continuous assignments, code a third block
as a sequential always block to register the

"next outputs” as shown in Example 3

This method requires careful coding since
this style forces an engineer to examine the
present state and the inputs to determine
what the "next outputs™ will be. This
method is somewhat error prone, but works
fine if the outputs are properly coded.

The block diagram in Figure 6 shows the

combinational sequential
logic logic

1T

inputs

state

Present
State
> FF's

sequential
next logic
outputs

Output
clock FF's

=

Figure 6 - FSM with registered outputs

outputs

two sequential and one combinational logic blocks that are generated by the three always blocks.

5.2 One-Hot Output Encoding

A second interesting method for registering
the FSM outputs is to select a state encoding
that forces the outputs to be driven by
individual state-register bits as shown in the
block diagram of Figure 7.

A structured method for encoding the
outputs as part the state encoding is outlined
in the following steps:

1. Count the number of outputs (x) and
the number of states (y) in the state
machine and start by making a table
with y+1 rows and x+1 columns.

2. Starting at the second row in the left-
hand column, make a list of all the
FSM states, moving down the column
for each state in the state machine.
This will fill the left-hand column

except for the top left-hand column
cell.

SNUG Boston 2000

combinational sequential
logic logic

1T

state &
outputs

Present

> state

FF's

clock

>

Figure 7 - FSM with registered outputs encoded as state

bits
of outputs
X=2

of states
y=4

table size
3 columns by 5 rows

Figure 8 - Extracting table information from a state
diagram

8 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

3. Starting at the first row, second column and working to the right, list each FSM output as a

separate column header.

A4—| Output columns |
State ds rd p—
IDLE 0 0 rows
READ 0 1
DLY 0 1 state
DONE 1 0

Table 1 - Starting state table (redundant output patterns
are circled)

4. Place a"1" in each output column where an
output is high for the listed states and place a
"0" in each output column where an output is
low for the listed states.

5. Atfter filling out the entire table, search for
output patterns that are the same for more

state

state
01

state
01

Redundant
states

Figure 9 - One-hot output encoded redundant states

than one state. If there are no duplicate patterns, use the output patterns in the table as state
encodings. If all of the encodings are unique, no additional state bits are necessary and each
state bit not only represents part of the state encoding, it also represents what will become a

registered output bit.

Note: FSM inputs do not affect the state encodings. Only the number of states and the number of

outputs affect the state encodings.

In general, the output patterns will not be unique to any one state and the following additional

steps will be required:

6. Circle the duplicate output patterns in the table as shown in

7. If there are two output patterns that are the same, one additional state bit will be required to
create unique state encodings. If there are three or four output patterns that are the same, two
additional state bits will be required to create unique state encodings. If there are between
five and eight output patterns that are the same, three additional state bits will be required to

create unique state encodings, etc.

state x0 ds Rd
IDLE 0 0
READ 0 1
DLY 0 1
DONE 1 0

Table 2 - State table after adding extra state bit column

SNUG Boston 2000 9

FSM Designs With Synthesis-Optimized,

Glitch-Free Outputs

8. Add a blank column between the state names
column and the first output column and label
this column "x0." Add another column for
each additional required state bit, labeling

each column "x1", "x2", etc.
state x0 ds rd
IDLE 0 0 0
READ 0 0 1
DLY 1 0 1
DONE 0 1 0

Table 3 - State table with unique state encodings

Fill the added columns with all zeros except for
the circled redundant-encodings rows. Add

binary encodings into the extra columns of the redundant-encoding rows to create unique state

encodings as shown in Figure 10.

nmodul e fsmla _ffol (ds, rd, go, ws,

out put ds, rd;

i nput go, ws;

i nput clk, rst_n;

/!l state bits = x0 _ ds rd

parameter [2:0] IDLE = 3'b0_00,
READ = 3' b0_01,
DLY = 3'bl_01,
DONE = 3' b0_10;

reg [2: 0] state, next;

al ways @ posedge cl k or

negedge rst_n)

if (!rst_n) state <= | DLE;
state <= next;

el se

al ways @state or go or ws) begin

next = 2'bx;
case (state)
IDLE: if (go) next
el se next
READ: next
DLY: if (ws) next
el se next
DONE: next
endcase
end

READ;
| DLE;
DLY;

READ,;
DONE;
| DLE;

assign {ds,rd} = state[1:0];

endnodul e

SNUG Boston 2000

state
0_10

state
101

state
001

Unique
states

Figure 10 - One-hot output encodings with extra bits to
create unique state encodings

clk, rst_n);

«—

\

State register,
sequential
always block

Next state,
combinational
always block

Outputs are

assigned directly
from the state-

register bits

Example 4 - FSM Coding Style - One-hot outputs encoding

10

FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

The state encodings in will now be used to make Verilog parameter assignments to

define each state encoding.

Now that the outputs have been incorporated into the state encodings, one or more continuous
assignment statements can directly drive the outputs, where the actual state bits are used to drive
the outputs. Since no additional glue logic is required to drive the outputs, the outputs will now

be glitch-free.

The outputs of the Verilog state machine are now easily coded by making bit-select assignments
from the state vector to each output, or by concatenating all of the outputs together into one
continuous assignment and assigning all of the significant state bits to the outputs as shown in

If extra state bits were required to create unique state encodings, the output bits will

be the LSBs of the state vector.

6.0 Mealy Outputs

Asynchronous Mealy outputs violate the synthesis guideline to partition a design into "cloud-
register" groupings. An asynchronous Mealy output is an output that is a function of the present
state and one or more inputs, which requires combinational logic to be placed on the Mealy
outputs, forming a cloud of combinational logic after the register, as shown on the FSM module

in the block diagram of Figure 11.

FSM module

Mealy input

module C

Figure 11 - FSM Mealy output driving combinational inputs

It is frequently feasible to move asynchronous Mealy outputs from an FSM module to the input
or inputs of one or more modules (such as modules C and D as shown in Figure 12) that would

have been driven by the Mealy outputs.

SNUG Boston 2000 11

FSM Designs With Synthesis-Optimized,

Glitch-Free Outputs

Mealy input module C

FSM module

Figure 12 - Mealy logic partitioned separate from the FSM output

Transferring the Mealy logic from the output of the FSM module to the inputs of the driven
modules might cause extra logic to be inferred because the logic has to be taken from a single
output-"cloud" and added to potentially multiple input-"clouds." The undesirable, small increase
in area due to the addition of redundant logic is generally offset by significantly simplifying the
design effort and synthesis scripts.

7.0 Conclusions

» Partitioning designs so that there is no combinational logic on the outputs of an FSM
significantly simplifies the task of synthesizing a multi-module design.

» Coding FSMs with registered outputs eliminates combinational output logic.
» Coding FSMs with registered outputs insures that the outputs will be glitch-free.

» The one-hot output encoding style is an efficient technique for coding FSMs to drive
registered outputs directly from the state register bits.

References

[1] S. Golson, "State Machine Design Techniques for Verilog and VHDL," Synopsys Journal
of High-Level Design, September 1994, pp. 1-48.

[2] C.E. Cummings, "State Machine Coding Styles for Synthesis,” SNUG (Synopsys Users
Group) 1998 Proceedings, section-TB1 (3" paper), March 1998.

[3] A. Ekstrandh, W. Bell, "Evolvable Makefiles and Scripts for Synthesis,” SNUG (Synopsys
Users Group) 1997 Proceedings, section-C1 (2" paper), February 1997.

SNUG Boston 2000 12 FSM Designs With Synthesis-Optimized,
Glitch-Free Outputs

